Search results for: modular approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14023

Search results for: modular approach

13513 A Mathematical Model Approach Regarding the Children’s Height Development with Fractional Calculus

Authors: Nisa Özge Önal, Kamil Karaçuha, Göksu Hazar Erdinç, Banu Bahar Karaçuha, Ertuğrul Karaçuha

Abstract:

The study aims to use a mathematical approach with the fractional calculus which is developed to have the ability to continuously analyze the factors related to the children’s height development. Until now, tracking the development of the child is getting more important and meaningful. Knowing and determining the factors related to the physical development of the child any desired time would provide better, reliable and accurate results for childcare. In this frame, 7 groups for height percentile curve (3th, 10th, 25th, 50th, 75th, 90th, and 97th) of Turkey are used. By using discrete height data of 0-18 years old children and the least squares method, a continuous curve is developed valid for any time interval. By doing so, in any desired instant, it is possible to find the percentage and location of the child in Percentage Chart. Here, with the help of the fractional calculus theory, a mathematical model is developed. The outcomes of the proposed approach are quite promising compared to the linear and the polynomial method. The approach also yields to predict the expected values of children in the sense of height.

Keywords: children growth percentile, children physical development, fractional calculus, linear and polynomial model

Procedia PDF Downloads 148
13512 Bi-Criteria Vehicle Routing Problem for Possibility Environment

Authors: Bezhan Ghvaberidze

Abstract:

A multiple criteria optimization approach for the solution of the Fuzzy Vehicle Routing Problem (FVRP) is proposed. For the possibility environment the levels of movements between customers are calculated by the constructed simulation interactive algorithm. The first criterion of the bi-criteria optimization problem - minimization of the expectation of total fuzzy travel time on closed routes is constructed for the FVRP. A new, second criterion – maximization of feasibility of movement on the closed routes is constructed by the Choquet finite averaging operator. The FVRP is reduced to the bi-criteria partitioning problem for the so called “promising” routes which were selected from the all admissible closed routes. The convenient selection of the “promising” routes allows us to solve the reduced problem in the real-time computing. For the numerical solution of the bi-criteria partitioning problem the -constraint approach is used. An exact algorithm is implemented based on D. Knuth’s Dancing Links technique and the algorithm DLX. The Main objective was to present the new approach for FVRP, when there are some difficulties while moving on the roads. This approach is called FVRP for extreme conditions (FVRP-EC) on the roads. Also, the aim of this paper was to construct the solving model of the constructed FVRP. Results are illustrated on the numerical example where all Pareto-optimal solutions are found. Also, an approach for more complex model FVRP with time windows was developed. A numerical example is presented in which optimal routes are constructed for extreme conditions on the roads.

Keywords: combinatorial optimization, Fuzzy Vehicle routing problem, multiple objective programming, possibility theory

Procedia PDF Downloads 485
13511 Green Initiative and Marketing Approach: Developing a Better Marketing Approach of Green Initiatives by an Apparel Brand

Authors: Vaishali Joshi, Pallav Joshi

Abstract:

Environment concern has become an important topic and continues to acquire more popularity in the coming scenario. We all are exposed to messages daily, which encourage us to involve in green behavior. Factors such as Global Warming, Climate change are creating a big buzz amongst the people. Realizing this, many firms/companies are adopting the bright way of making profit along with creating a brand image, by going green. These firms/companies persuade consumers to use purchase eco-friendly products for the benefit of the environment and the society. In such scenario, it becomes very essential for such firms/companies to approach the customers in a better way. In other words, we can say that marketing approach plays a crucial role for such firm/companies. Hence in this research study, we have tried to create a marketing approach for the firms/companies for selling the eco-friendly apparels. We have studied the hypothetical apparel brand who has taken a green initiative of making their products eco-friendly. We have named this hypothetical brand as “Go-Green”. By taking this hypothetical brand we have studied about how this brand can achieve better marketing approach. In particular, we have studied the four types of print advertisements of this brand as follows :(i) print advertisement showing only eco-friendly apparel (ii) print advertisement showing eco-friendly apparel labeled with eco-label (iii) print advertisement showing eco-friendly apparel along with information about the benefit of the featured apparel and (iv) print advertisement showing eco-friendly apparel with both eco-label and information about the benefit of the featured apparel. The conclusion of this research suggest that respondents more positively evaluate the print advertisement of eco-friendly apparel labeled with eco-labels and information about the benefit of the featured apparel, compared by other three print advertisement. Moreover, in this research study, we have studied environment knowledge, as the moderating factor affecting the consumer green purchase behavior.

Keywords: eco-friendly apparel, print advertisement, eco-label, environment knowledge

Procedia PDF Downloads 286
13510 Global Low Carbon Transitions in the Power Sector: A Machine Learning Archetypical Clustering Approach

Authors: Abdullah Alotaiq, David Wallom, Malcolm McCulloch

Abstract:

This study presents an archetype-based approach to designing effective strategies for low-carbon transitions in the power sector. To achieve global energy transition goals, a renewable energy transition is critical, and understanding diverse energy landscapes across different countries is essential to design effective renewable energy policies and strategies. Using a clustering approach, this study identifies 12 energy archetypes based on the electricity mix, socio-economic indicators, and renewable energy contribution potential of 187 UN countries. Each archetype is characterized by distinct challenges and opportunities, ranging from high dependence on fossil fuels to low electricity access, low economic growth, and insufficient contribution potential of renewables. Archetype A, for instance, consists of countries with low electricity access, high poverty rates, and limited power infrastructure, while Archetype J comprises developed countries with high electricity demand and installed renewables. The study findings have significant implications for renewable energy policymaking and investment decisions, with policymakers and investors able to use the archetype approach to identify suitable renewable energy policies and measures and assess renewable energy potential and risks. Overall, the archetype approach provides a comprehensive framework for understanding diverse energy landscapes and accelerating decarbonisation of the power sector.

Keywords: fossil fuels, power plants, energy transition, renewable energy, archetypes

Procedia PDF Downloads 51
13509 Modified Model-Based Systems Engineering Driven Approach for Defining Complex Energy Systems

Authors: Akshay S. Dalvi, Hazim El-Mounayri

Abstract:

The internal and the external interactions between the complex structural and behavioral characteristics of the complex energy system result in unpredictable emergent behaviors. These emergent behaviors are not well understood, especially when modeled using the traditional top-down systems engineering approach. The intrinsic nature of current complex energy systems has called for an elegant solution that provides an integrated framework in Model-Based Systems Engineering (MBSE). This paper mainly presents a MBSE driven approach to define and handle the complexity that arises due to emergent behaviors. The approach provides guidelines for developing system architecture that leverages in predicting the complexity index of the system at different levels of abstraction. A framework that integrates indefinite and definite modeling aspects is developed to determine the complexity that arises during the development phase of the system. This framework provides a workflow for modeling complex systems using Systems Modeling Language (SysML) that captures the system’s requirements, behavior, structure, and analytical aspects at both problem definition and solution levels. A system architecture for a district cooling plant is presented, which demonstrates the ability to predict the complexity index. The result suggests that complex energy systems like district cooling plant can be defined in an elegant manner using the unconventional modified MBSE driven approach that helps in estimating development time and cost.

Keywords: district cooling plant, energy systems, framework, MBSE

Procedia PDF Downloads 130
13508 Generating Ideas to Improve Road Intersections Using Design with Intent Approach

Authors: Omar Faruqe Hamim, M. Shamsul Hoque, Rich C. McIlroy, Katherine L. Plant, Neville A. Stanton

Abstract:

Road safety has become an alarming issue, especially in low-middle income developing countries. The traditional approaches lack the out of the box thinking, making engineers confined to applying usual techniques in making roads safer. A socio-technical approach has recently been introduced in improving road intersections through designing with intent. This Design With Intent (DWI) approach aims to give practitioners a more nuanced approach to design and behavior, working with people, people’s understanding, and the complexities of everyday human experience. It's a collection of design patterns —and a design and research approach— for exploring the interactions between design and people’s behavior across products, services, and environments, both digital and physical. Through this approach, it can be seen that how designing with people in behavior change can be applied to social and environmental problems, as well as commercially. It has a total of 101 cards across eight different lenses, such as architectural, error-proofing, interaction, ludic, perceptual, cognitive, Machiavellian, and security lens each having its own distinct characteristics of extracting ideas from the participant of this approach. For this research purpose, a three-legged accident blackspot intersection of a national highway has been chosen to perform the DWI workshop. Participants from varying fields such as civil engineering, naval architecture and marine engineering, urban and regional planning, and sociology actively participated for a day long workshop. While going through the workshops, the participants were given a preamble of the accident scenario and a brief overview of DWI approach. Design cards of varying lenses were distributed among 10 participants and given an hour and a half for brainstorming and generating ideas to improve the safety of the selected intersection. After the brainstorming session, the participants spontaneously went through roundtable discussions regarding the ideas they have come up with. According to consensus of the forum, ideas were accepted or rejected. These generated ideas were then synthesized and agglomerated to bring about an improvement scheme for the intersection selected in our study. To summarize the improvement ideas from DWI approach, color coding of traffic lanes for separate vehicles, channelizing the existing bare intersection, providing advance warning traffic signs, cautionary signs and educational signs motivating road users to drive safe, using textured surfaces at approach with rumble strips before the approach of intersection were the most significant one. The motive of this approach is to bring about new ideas from the road users and not just depend on traditional schemes to increase the efficiency, safety of roads as well and to ensure the compliance of road users since these features are being generated from the minds of users themselves.

Keywords: design with intent, road safety, human experience, behavior

Procedia PDF Downloads 139
13507 Modeling the Compound Interest Dynamics Using Fractional Differential Equations

Authors: Muath Awadalla, Maen Awadallah

Abstract:

Banking sector covers different activities including lending money to customers. However, it is commonly known that customers pay money they have borrowed including an added amount called interest. Compound interest rate is an approach used in determining the interest to be paid. The instant compounded amount to be paid by a debtor is obtained through a differential equation whose main parameters are the rate and the time. The rate used by banks in a country is often defined by the government of the said country. In Switzerland, for instance, a negative rate was once applied. In this work, a new approach of modeling the compound interest is proposed using Hadamard fractional derivative. As a result, it appears that depending on the fraction value used in derivative the amount to be paid by a debtor might either be higher or lesser than the amount determined using the classical approach.

Keywords: compound interest, fractional differential equation, hadamard fractional derivative, optimization

Procedia PDF Downloads 126
13506 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification

Procedia PDF Downloads 464
13505 A Semiparametric Approach to Estimate the Mode of Continuous Multivariate Data

Authors: Tiee-Jian Wu, Chih-Yuan Hsu

Abstract:

Mode estimation is an important task, because it has applications to data from a wide variety of sources. We propose a semi-parametric approach to estimate the mode of an unknown continuous multivariate density function. Our approach is based on a weighted average of a parametric density estimate using the Box-Cox transform and a non-parametric kernel density estimate. Our semi-parametric mode estimate improves both the parametric- and non-parametric- mode estimates. Specifically, our mode estimate solves the non-consistency problem of parametric mode estimates (at large sample sizes) and reduces the variability of non-parametric mode estimates (at small sample sizes). The performance of our method at practical sample sizes is demonstrated by simulation examples and two real examples from the fields of climatology and image recognition.

Keywords: Box-Cox transform, density estimation, mode seeking, semiparametric method

Procedia PDF Downloads 284
13504 Employing a System of Systems Approach in the Maritime RobotX Challenge: Incorporating Information Technology Students in the Development of an Autonomous Catamaran

Authors: Adam Jenkins

Abstract:

The Maritime RobotX Challenge provides a platform for postgraduate students conducting research in autonomous robotic systems to participate in an international competition. Although targeted to postgraduate students, the problem domain lends itself to a wide range of different levels of student expertise. In 2022, undergraduate Information Technology students from the University of South Australia undertook the challenge, utilizing a System of the Systems approach to the project's architecture. Each student group produced an independent solution to an identified task, which was then implemented on a Single Board Computer (SBC). A Central Control System then engaged each solution when appropriate, allowing the encapsulated SBC systems to manage each task as it was encountered. This approach facilitated collaboration among the multiple independent student teams over an 18-month period, and the fundamental system-agnostic architecture allowed for both the variance in student solutions and the limitations caused by the global electronics shortage. By adopting this approach, Information Technology teams were able to work independently yet produce an effective solution, leveraging their expertise to develop and construct an autonomous catamaran capable of meeting the competition's demanding requirements while producing a high level of engagement. The System of Systems approach is recommended to other universities interested in competing at this level and engaging students in a real-world problem.

Keywords: case study, robotics, education, programming, system of systems, multi-disciplinary collaboration

Procedia PDF Downloads 76
13503 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction

Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh

Abstract:

Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.

Keywords: feature selection, neural network, particle swarm optimization, software fault prediction

Procedia PDF Downloads 94
13502 Emergence of Information Centric Networking and Web Content Mining: A Future Efficient Internet Architecture

Authors: Sajjad Akbar, Rabia Bashir

Abstract:

With the growth of the number of users, the Internet usage has evolved. Due to its key design principle, there is an incredible expansion in its size. This tremendous growth of the Internet has brought new applications (mobile video and cloud computing) as well as new user’s requirements i.e. content distribution environment, mobility, ubiquity, security and trust etc. The users are more interested in contents rather than their communicating peer nodes. The current Internet architecture is a host-centric networking approach, which is not suitable for the specific type of applications. With the growing use of multiple interactive applications, the host centric approach is considered to be less efficient as it depends on the physical location, for this, Information Centric Networking (ICN) is considered as the potential future Internet architecture. It is an approach that introduces uniquely named data as a core Internet principle. It uses the receiver oriented approach rather than sender oriented. It introduces the naming base information system at the network layer. Although ICN is considered as future Internet architecture but there are lot of criticism on it which mainly concerns that how ICN will manage the most relevant content. For this Web Content Mining(WCM) approaches can help in appropriate data management of ICN. To address this issue, this paper contributes by (i) discussing multiple ICN approaches (ii) analyzing different Web Content Mining approaches (iii) creating a new Internet architecture by merging ICN and WCM to solve the data management issues of ICN. From ICN, Content-Centric Networking (CCN) is selected for the new architecture, whereas, Agent-based approach from Web Content Mining is selected to find most appropriate data.

Keywords: agent based web content mining, content centric networking, information centric networking

Procedia PDF Downloads 475
13501 Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy

Authors: Samira-Sadat JamaliDinan, Haidar Almohri, Mohammad-Reza Nazem-Zadeh

Abstract:

Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set.

Keywords: temporal lobe epilepsy, machine learning, clustering, magnetoencephalography

Procedia PDF Downloads 154
13500 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis

Authors: Iman Farasat, Howard M. Salis

Abstract:

Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.

Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement

Procedia PDF Downloads 473
13499 Object Oriented Fault Tree Analysis Methodology

Authors: Yi Xiong, Tao Kong

Abstract:

Traditional safety, risk and reliability analysis approaches are problem-oriented, which make it great workload when analyzing complicated and huge system, besides, too much repetitive work would to do if the analyzed system composed by many similar components. It is pressing need an object and function oriented approach to maintain high consistency with problem domain. A new approach is proposed to overcome these shortcomings of traditional approaches, the concepts: class, abstract, inheritance, polymorphism and encapsulation are introduced into FTA and establish the professional class library that the abstractions of physical objects in real word, four areas relevant information also be proposed as the establish help guide. The interaction between classes is completed by the inside or external methods that mapping the attributes to base events through fully search the knowledge base, which forms good encapsulation. The object oriented fault tree analysis system that analyze and evaluate the system safety and reliability according to the original appearance of the problem is set up, where could mapped directly from the class and object to the problem domain of the fault tree analysis. All the system failure situations can be analyzed through this bottom-up fault tree construction approach. Under this approach architecture, FTA approach is developed, which avoids the human influence of the analyst on analysis results. It reveals the inherent safety problems of analyzed system itself and provides a new way of thinking and development for safety analysis. So that object oriented technology in the field of safety applications and development, safety theory is conducive to innovation.

Keywords: FTA, knowledge base, object-oriented technology, reliability analysis

Procedia PDF Downloads 248
13498 Bionaut™: A Microrobotic Drug-Device Platform for the Local Treatment of Brainstem Gliomas

Authors: Alex Kiselyov, Suehyun Cho, Darrell Harrington; Florent Cros, Olin Palmer, John Caputo, Michael Kardosh, Eran Oren, William Loudon, Michael Shpigelmacher

Abstract:

Despite the most aggressive surgical and adjuvant therapeutic strategies, treatment of both pediatric and adult brainstem tumors remains problematic. Novel strategies, including targeted biologics, immunotherapy, and specialized delivery systems such as convection-enhanced delivery (CED), have been proposed. While some of these novel treatments are entering phase I trials, the field is still in need of treatment(s) that exhibits dramatically enhanced potency with optimal therapeutic ratio. Bionaut Labs has developed a modular microrobotic platform for performing localized delivery of diverse therapeutics in vivo. Our biocompatible particles (Bionauts™) are externally propelled and visualized in real-time. Bionauts™ are specifically designed to enhance the effect of radiation therapy via anatomically precise delivery of a radiosensitizing agent, as exemplified by temozolomide (TMZ) and Avastin™ to the brainstem gliomas of diverse origin. The treatment protocol is designed to furnish a better therapeutic outcome due to the localized (vs systemic) delivery of the drug to the neoplastic lesion(s) for use as a synergistic combination of radiation and radiosensitizing agent. In addition, the procedure is minimally invasive and is expected to be appropriate for both adult and pediatric patients. Current progress, including platform optimization, selection of the lead radiosensitizer as well as in vivo safety studies of the Bionauts™ in large animals, specifically the spine and the brain of porcine and ovine models, will be discussed.

Keywords: Bionaut, brainstem, glioma, local delivery, micro-robot, radiosensitizer

Procedia PDF Downloads 195
13497 Cost-Effective, Accuracy Preserving Scalar Characterization for mmWave Transceivers

Authors: Mohammad Salah Abdullatif, Salam Hajjar, Paul Khanna

Abstract:

The development of instrument grade mmWave transceivers comes with many challenges. A general rule of thumb is that the performance of the instrument must be higher than the performance of the unit under test in terms of accuracy and stability. The calibration and characterizing of mmWave transceivers are important pillars for testing commercial products. Using a Vector Network Analyzer (VNA) with a mixer option has proven a high performance as an approach to calibrate mmWave transceivers. However, this approach comes with a high cost. In this work, a reduced-cost method to calibrate mmWave transceivers is proposed. A comparison between the proposed method and the VNA technology is provided. A demonstration of significant challenges is discussed, and an approach to meet the requirements is proposed.

Keywords: mmWave transceiver, scalar characterization, coupler connection, magic tee connection, calibration, VNA, vector network analyzer

Procedia PDF Downloads 107
13496 Worm Gearing Design Improvement by Considering Varying Mesh Stiffness

Authors: A. H. Elkholy, A. H. Falah

Abstract:

A new approach has been developed to estimate the load share and stress distribution of worm gear sets. The approach is based upon considering the instantaneous tooth meshing stiffness where the worm gear drive was modelled as a series of spur gear slices, and each slice was analyzed separately using the well established formulae of spur gears. By combining the results obtained for all slices, the entire envolute worm gear set loading and stressing was obtained. The geometric modelling method presented, allows tooth elastic deformation and tooth root stresses of worm gear drives under different load conditions to be investigated. On the basis of the method introduced in this study, the instantaneous meshing stiffness and load share were obtained. In comparison with existing methods, this approach has both good analysis accuracy and less computing time.

Keywords: gear, load/stress distribution, worm, wheel, tooth stiffness, contact line

Procedia PDF Downloads 345
13495 Educational Equity in Online Art Education: The Reggio Emilia Approach in White Ant Atelier for Persian-Speaking Children

Authors: Mahsa Mohammadhosseini

Abstract:

This study investigates the effectiveness of adapting the Reggio Emilia approach to online art education, specifically through White Ant Atelier (W.A.A), a virtual art initiative for Persian-speaking children. Employing an action research framework, the study examines the implementation of Reggio Emilia principles via the "Home" art project, which spanned four months and included 16 sessions. The analysis covers 50 artworks produced by participants, including 17 pieces created collaboratively by mothers and their children. The results demonstrate that integrating the Reggio Emilia approach into online platforms significantly improves children's creative expression and engagement. This finding illustrates that virtual education when integrated with child-centered methodologies like Reggio Emilia, can effectively address and reduce educational inequities among Persian-speaking children.

Keywords: Reggio Emilia, online education, art education, educational equity

Procedia PDF Downloads 18
13494 Data-Driven Dynamic Overbooking Model for Tour Operators

Authors: Kannapha Amaruchkul

Abstract:

We formulate a dynamic overbooking model for a tour operator, in which most reservations contain at least two people. The cancellation rate and the timing of the cancellation may depend on the group size. We propose two overbooking policies, namely economic- and service-based. In an economic-based policy, we want to minimize the expected oversold and underused cost, whereas, in a service-based policy, we ensure that the probability of an oversold situation does not exceed the pre-specified threshold. To illustrate the applicability of our approach, we use tour package data in 2016-2018 from a tour operator in Thailand to build a data-driven robust optimization model, and we tested the proposed overbooking policy in 2019. We also compare the data-driven approach to the conventional approach of fitting data into a probability distribution.

Keywords: applied stochastic model, data-driven robust optimization, overbooking, revenue management, tour operator

Procedia PDF Downloads 134
13493 An Effective Approach to Knowledge Capture in Whole Life Costing in Constructions Project

Authors: Ndibarafinia Young Tobin, Simon Burnett

Abstract:

In spite of the benefits of implementing whole life costing technique as a valuable approach for comparing alternative building designs allowing operational cost benefits to be evaluated against any initial cost increases and also as part of procurement in the construction industry, its adoption has been relatively slow due to the lack of tangible evidence, ‘know-how’ skills and knowledge of the practice, i.e. the lack of professionals in many establishments with knowledge and training on the use of whole life costing technique, this situation is compounded by the absence of available data on whole life costing from relevant projects, lack of data collection mechanisms and so on. This has proved to be very challenging to those who showed some willingness to employ the technique in a construction project. The knowledge generated from a project can be considered as best practices learned on how to carry out tasks in a more efficient way, or some negative lessons learned which have led to losses and slowed down the progress of the project and performance. Knowledge management in whole life costing practice can enhance whole life costing analysis execution in a construction project, as lessons learned from one project can be carried on to future projects, resulting in continuous improvement, providing knowledge that can be used in the operation and maintenance phases of an assets life span. Purpose: The purpose of this paper is to report an effective approach which can be utilised in capturing knowledge in whole life costing practice in a construction project. Design/methodology/approach: An extensive literature review was first conducted on the concept of knowledge management and whole life costing. This was followed by a semi-structured interview to explore the existing and good practice knowledge management in whole life costing practice in a construction project. The data gathered from the semi-structured interview was analyzed using content analysis and used to structure an effective knowledge capturing approach. Findings: From the results obtained in the study, it shows that the practice of project review is the common method used in the capturing of knowledge and should be undertaken in an organized and accurate manner, and results should be presented in the form of instructions or in a checklist format, forming short and precise insights. The approach developed advised that irrespective of how effective the approach to knowledge capture, the absence of an environment for sharing knowledge, would render the approach ineffective. Open culture and resources are critical for providing a knowledge sharing setting, and leadership has to sustain whole life costing knowledge capture, giving full support for its implementation. The knowledge capturing approach has been evaluated by practitioners who are experts in the area of whole life costing practice. The results have indicated that the approach to knowledge capture is suitable and efficient.

Keywords: whole life costing, knowledge capture, project review, construction industry, knowledge management

Procedia PDF Downloads 260
13492 Model-Based Software Regression Test Suite Reduction

Authors: Shiwei Deng, Yang Bao

Abstract:

In this paper, we present a model-based regression test suite reducing approach that uses EFSM model dependence analysis and probability-driven greedy algorithm to reduce software regression test suites. The approach automatically identifies the difference between the original model and the modified model as a set of elementary model modifications. The EFSM dependence analysis is performed for each elementary modification to reduce the regression test suite, and then the probability-driven greedy algorithm is adopted to select the minimum set of test cases from the reduced regression test suite that cover all interaction patterns. Our initial experience shows that the approach may significantly reduce the size of regression test suites.

Keywords: dependence analysis, EFSM model, greedy algorithm, regression test

Procedia PDF Downloads 427
13491 Energy Efficient Massive Data Dissemination Through Vehicle Mobility in Smart Cities

Authors: Salman Naseer

Abstract:

One of the main challenges of operating a smart city (SC) is collecting the massive data generated from multiple data sources (DS) and to transmit them to the control units (CU) for further data processing and analysis. These ever-increasing data demands require not only more and more capacity of the transmission channels but also results in resource over-provision to meet the resilience requirements, thus the unavoidable waste because of the data fluctuations throughout the day. In addition, the high energy consumption (EC) and carbon discharges from these data transmissions posing serious issues to the environment we live in. Therefore, to overcome the issues of intensive EC and carbon emissions (CE) of massive data dissemination in Smart Cities, we propose an energy efficient and carbon reduction approach by utilizing the daily mobility of the existing vehicles as an alternative communications channel to accommodate the data dissemination in smart cities. To illustrate the effectiveness and efficiency of our approach, we take the Auckland City in New Zealand as an example, assuming massive data generated by various sources geographically scattered throughout the Auckland region to the control centres located in city centre. The numerical results show that our proposed approach can provide up to 5 times lower delay as transferring the large volume of data by utilizing the existing daily vehicles’ mobility than the conventional transmission network. Moreover, our proposed approach offers about 30% less EC and CE than that of conventional network transmission approach.

Keywords: smart city, delay tolerant network, infrastructure offloading, opportunistic network, vehicular mobility, energy consumption, carbon emission

Procedia PDF Downloads 141
13490 Some New Bounds for a Real Power of the Normalized Laplacian Eigenvalues

Authors: Ayşe Dilek Maden

Abstract:

For a given a simple connected graph, we present some new bounds via a new approach for a special topological index given by the sum of the real number power of the non-zero normalized Laplacian eigenvalues. To use this approach presents an advantage not only to derive old and new bounds on this topic but also gives an idea how some previous results in similar area can be developed.

Keywords: degree Kirchhoff index, normalized Laplacian eigenvalue, spanning tree, simple connected graph

Procedia PDF Downloads 366
13489 Fully Autonomous Vertical Farm to Increase Crop Production

Authors: Simone Cinquemani, Lorenzo Mantovani, Aleksander Dabek

Abstract:

New technologies in agriculture are opening new challenges and new opportunities. Among these, certainly, robotics, vision, and artificial intelligence are the ones that will make a significant leap, compared to traditional agricultural techniques, possible. In particular, the indoor farming sector will be the one that will benefit the most from these solutions. Vertical farming is a new field of research where mechanical engineering can bring knowledge and know-how to transform a highly labor-based business into a fully autonomous system. The aim of the research is to develop a multi-purpose, modular, and perfectly integrated platform for crop production in indoor vertical farming. Activities will be based both on hardware development such as automatic tools to perform different activities on soil and plants, as well as research to introduce an extensive use of monitoring techniques based on machine learning algorithms. This paper presents the preliminary results of a research project of a vertical farm living lab designed to (i) develop and test vertical farming cultivation practices, (ii) introduce a very high degree of mechanization and automation that makes all processes replicable, fully measurable, standardized and automated, (iii) develop a coordinated control and management environment for autonomous multiplatform or tele-operated robots in environments with the aim of carrying out complex tasks in the presence of environmental and cultivation constraints, (iv) integrate AI-based algorithms as decision support system to improve quality production. The coordinated management of multiplatform systems still presents innumerable challenges that require a strongly multidisciplinary approach right from the design, development, and implementation phases. The methodology is based on (i) the development of models capable of describing the dynamics of the various platforms and their interactions, (ii) the integrated design of mechatronic systems able to respond to the needs of the context and to exploit the strength characteristics highlighted by the models, (iii) implementation and experimental tests performed to test the real effectiveness of the systems created, evaluate any weaknesses so as to proceed with a targeted development. To these aims, a fully automated laboratory for growing plants in vertical farming has been developed and tested. The living lab makes extensive use of sensors to determine the overall state of the structure, crops, and systems used. The possibility of having specific measurements for each element involved in the cultivation process makes it possible to evaluate the effects of each variable of interest and allows for the creation of a robust model of the system as a whole. The automation of the laboratory is completed with the use of robots to carry out all the necessary operations, from sowing to handling to harvesting. These systems work synergistically thanks to the knowledge of detailed models developed based on the information collected, which allows for deepening the knowledge of these types of crops and guarantees the possibility of tracing every action performed on each single plant. To this end, artificial intelligence algorithms have been developed to allow synergistic operation of all systems.

Keywords: automation, vertical farming, robot, artificial intelligence, vision, control

Procedia PDF Downloads 39
13488 Using Short Learning Programmes to Develop Students’ Digital Literacies in Art and Design Education

Authors: B.J. Khoza, B. Kembo

Abstract:

Global socioeconomic developments and ever-growing technological advancements of the art and design industry indicate the pivotal importance of lifelong learning. There exists a discrepancy between competencies, personal ambition, and workplace requirements. There are few , if at all, institutions of higher learning in South Africa which offer Short Learning Programmes (SLP) in Art and Design Education. Traditionally, Art and Design education is delivered face to face via a hands-on approach. In this way the enduring perception among educators is that art and design education does not lend itself to online delivery. Short Learning programmes (SLP) are a concentrated approach to make revenue and lure potential prospective students to embark on further education study, this is often of weighted value to both students and employers. SLPs are used by Higher Education institutions to generate income in support of the core academic programmes. However, there is a gap in terms of the translation of art and design studio pedagogy into SLPs which provide quality education, are adaptable and delivered via a blended mode. In our paper, we propose a conceptual framework drawing on secondary research to analyse existing research to SLPs for arts and design education. We aim to indicate a new dimension to the process of using a design-based research approach for short learning programmes in art and design education. The study draws on a conceptual framework, a qualitative analysis through the lenses of Herrington, McKenney, Reeves and Oliver (2005) principles of the design-based research approach. The results of this study indicate that design-based research is not only an effective methodological approach for developing and deploying arts and design education curriculum for 1st years in Higher Education context but it also has the potential to guide future research. The findings of this study propose that the design-based research approach could bring theory and praxis together regarding a common purpose to design context-based solutions to educational problems.

Keywords: design education, design-based research, digital literacies, multi-literacies, short learning programme

Procedia PDF Downloads 164
13487 Park’s Vector Approach to Detect an Inter Turn Stator Fault in a Doubly Fed Induction Machine by a Neural Network

Authors: Amel Ourici

Abstract:

An electrical machine failure that is not identified in an initial stage may become catastrophic and it may suffer severe damage. Thus, undetected machine faults may cascade in it failure, which in turn may cause production shutdowns. Such shutdowns are costly in terms of lost production time, maintenance costs, and wasted raw materials. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator fault in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect this fault, is based on Park’s Vector Approach, using a neural network.

Keywords: doubly fed induction machine, PWM inverter, inter turn stator fault, Park’s vector approach, neural network

Procedia PDF Downloads 608
13486 Defect-Based Urgency Index for Bridge Maintenance Ranking and Prioritization

Authors: Saleh Abu Dabous, Khaled Hamad, Rami Al-Ruzouq

Abstract:

Bridge condition assessment and rating provide essential information needed for bridge management. This paper reviews bridge inspection and condition rating practices and introduces a defect-based urgency index. The index is estimated at the element-level based on the extent and severity of the different defects typical to the bridge element. The urgency index approach has the following advantages: (1) It facilitates judgment submission, i.e. instead of rating the bridge element with a specific linguistic overall expression (which can be subjective and used differently by different people), the approach is based on assessing the defects; (2) It captures multiple defects that can be present within a deteriorated element; and (3) It reflects how critical the element is through quantifying critical defects and their severity. The approach can be further developed and validated. It is expected to be useful for practical purposes as an early-warning system for critical bridge elements.

Keywords: condition rating, deterioration, inspection, maintenance

Procedia PDF Downloads 452
13485 Specialized Translation Teaching Strategies: A Corpus-Based Approach

Authors: Yingying Ding

Abstract:

This study presents a methodology of specialized translation with the objective of helping teachers to improve the strategies in teaching translation. In order to allow students to acquire skills to translate specialized texts, they need to become familiar with the semantic and syntactic features of source texts and target texts. The aim of our study is to use a corpus-based approach in the teaching of specialized translation between Chinese and Italian. This study proposes to construct a specialized Chinese - Italian comparable corpus that consists of 50 economic contracts from the domain of food. With the help of AntConc, we propose to compile a comparable corpus in for translation teaching purposes. This paper attempts to provide insight into how teachers could benefit from comparable corpus in the teaching of specialized translation from Italian into Chinese and through some examples of passive sentences how students could learn to apply different strategies for translating appropriately the voice.

Keywords: contrastive studies, specialised translation, corpus-based approach, teaching

Procedia PDF Downloads 370
13484 Validating Texture Analysis as a Tool for Determining Bioplastic (Bio)Degradation

Authors: Sally J. Price, Greg F. Walker, Weiyi Liu, Craig R. Bunt

Abstract:

Plastics, due to their long lifespan, are becoming more of an environmental concern once their useful life has been completed. There are a vast array of different types of plastic, and they can be found in almost every ecosystem on earth and are of particular concern in terrestrial environments where they can become incorporated into the food chain. Hence bioplastics have become more of interest to manufacturers and the public recently as they have the ability to (bio)degrade in commercial and in home composting situations. However, tools in which to quantify how they degrade in response to environmental variables are still being developed -one such approach is texture analysis using a TA.XT Texture Analyser, Stable Microsystems, was used to determine the force required to break or punch holes in standard ASTM D638 Type IV 3D printed bioplastic “dogbones” depending on the thicknesses of them. Manufacturers’ recommendations for calibrating the Texture Analyser are one such approach for standardising results; however, an independent technique using dummy dogbones and a substitute for the bioplastic was used alongside the samples. This approach was unexpectedly more valuable than realised at the start of the trial as irregular results were later discovered with the substitute material before valuable samples collected from the field were lost due to possible machine malfunction. This work will show the value of having an independent approach to machine calibration for accurate sample analysis with a Texture Analyser when analysing bioplastic samples.

Keywords: bioplastic, degradation, environment, texture analyzer

Procedia PDF Downloads 205