Search results for: low molecular weight proteins
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6309

Search results for: low molecular weight proteins

5799 Performance Enhancement of Hybrid Racing Car by Design Optimization

Authors: Tarang Varmora, Krupa Shah, Karan Patel

Abstract:

Environmental pollution and shortage of conventional fuel are the main concerns in the transportation sector. Most of the vehicles use an internal combustion engine (ICE), powered by gasoline fuels. This results into emission of toxic gases. Hybrid electric vehicle (HEV) powered by electric machine and ICE is capable of reducing emission of toxic gases and fuel consumption. However to build HEV, it is required to accommodate motor and batteries in the vehicle along with engine and fuel tank. Thus, overall weight of the vehicle increases. To improve the fuel economy and acceleration, the weight of the HEV can be minimized. In this paper, the design methodology to reduce the weight of the hybrid racing car is proposed. To this end, the chassis design is optimized. Further, attempt is made to obtain the maximum strength with minimum material weight. The best configuration out of the three main configurations such as series, parallel and the dual-mode (series-parallel) is chosen. Moreover, the most suitable type of motor, battery, braking system, steering system and suspension system are identified. The racing car is designed and analyzed in the simulating software. The safety of the vehicle is assured by performing static and dynamic analysis on the chassis frame. From the results, it is observed that, the weight of the racing car is reduced by 11 % without compromising on safety and cost. It is believed that the proposed design and specifications can be implemented practically for manufacturing hybrid racing car.

Keywords: design optimization, hybrid racing car, simulation, vehicle, weight reduction

Procedia PDF Downloads 285
5798 Solanum tuberosum Ammonium Transporter Gene: Some Bioinformatics Insights

Authors: A. T. Adetunji, F. B. Lewu, R. Mundembe

Abstract:

Plants require nitrogen (N) to support desired production levels. Nitrogen is available to plants in the form of nitrate or ammonium, which are transported into the cell with the aid of various transport proteins. Ammonium transporters (AMTs) play a role in the uptake of ammonium, the form in which nitrogen is preferentially absorbed by plants. Solanum tuberosum AMT1 (StAMT1) was characterized using molecular biology and bioinformatics methods. Nucleotide database sequences were used to design AMT1-specific primers which were used to amplify the AMT1 internal regions. Nucleotide sequencing, alignment and phylogenetic analysis assigned StAMT1 to the AMT1 family. The deduced amino acid sequences showed that StAMT1 is 92%, 83% and 76% similar to Solanum lycopersicum LeAMT1.1, Lotus japonicus LjAMT1.1 and Solanum lycopersicum LeAMT1.2 respectively. StAMT1 fragments were shown to correspond to the 5th - 10th trans-membrane domains. Residue StAMT1 D15 is predicted to be essential for ammonium transport, while mutations of StAMT1 S76A may further enhance ammonium transport.

Keywords: ammonium transporter, bioinformatics, nitrogen, primers, Solanum tuberosum

Procedia PDF Downloads 242
5797 Assessment of Drug Delivery Systems from Molecular Dynamic Perspective

Authors: M. Rahimnejad, B. Vahidi, B. Ebrahimi Hoseinzadeh, F. Yazdian, P. Motamed Fath, R. Jamjah

Abstract:

In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane.

Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier

Procedia PDF Downloads 332
5796 Molecular Mechanisms of Lipid Metabolism and Obesity Modulation by Caspase-1/11 and nlrp3 Inflammasome in Mice

Authors: Lívia Pimentel Sant'ana Dourado, Raquel Das Neves Almeida, Luís Henrique Costa Corrêa Neto, Nayara Soares, Kelly Grace Magalhães

Abstract:

Introduction: Obesity and high-fat diet intake have a crucial impact on immune cells and inflammatory profile, highlighting an emerging realization that obesity is an inflammatory disease. In the present work, we aimed to characterize the role of caspase-1/11 and NLRP3 inflammasome in the establishment of mice obesity and modulation of inflammatory lipid metabolism induced by high fat diet intake. Methods and results: Wild type, caspase-1/11 and NLRP3 knockout mice were fed with standard fat diet (SFD) or high fat diet (HFD) for 90 days. The weight of animals was measured weekly to monitor the weight gain. After 90 days, the blood, peritoneal lavage cells, heart and liver were collected from mice studied here. Cytokines were measured in serum by ELISA and analyzed in spectrophotometry. Lipid antigen presentation molecule CD1d expression, reactive oxygen species (ROS) generation and lipid droplets biogenesis were analyzed in cells from mice peritoneal cavity by flow cytometry. Liver histopathology was performed for morphological evaluation of the organ. The absence of caspase-1/11, but not NLRP3, in mice fed with HFD favored the mice weight gain, increased liver size, induced development of hepatic steatosis and IL-12 secretion in mice compared to mice fed with SFD. In addition, caspase-1/11 knockout mice fed with HFD presented an increased CD1d molecule expression, as well as higher levels of lipid droplets biogenesis and ROS generation compared to wild type mice also fed with HFD. Conclusion: Our data suggest that caspase-1/11 knockout mice have greater susceptibility to obesity as well as increased activation of lipid metabolism and inflammatory markers.

Keywords: caspase 1, caspase 11, inflamassome, obesity, lipids

Procedia PDF Downloads 306
5795 Mitigating the Aggregation of Human Islet Amyloid Polypeptide with Nanomaterials

Authors: Ava Faridi, Pouya Faridi, Aleksandr Kakinen, Ibrahim Javed, Thomas P. Davis, Pu Chun Ke

Abstract:

Human islet amyloid polypeptide (IAPP) is a hormone associated with glycemic control and type 2 diabetes. Biophysically, the chirality of IAPP fibrils has been little explored with respect to the aggregation and toxicity of the peptide. Biochemically, it remains unclear as for how protein expression in pancreatic beta cells may be altered by cell exposure to the peptide, and how such changes may be mitigated by nanoparticle inhibitors for IAPP aggregation. In this study, we first demonstrated the elimination of the IAPP nucleation phase and shortening of its elongation phase by silica nanoribbons. This accelerated IAPP fibrillization translated to reduced toxicity, especially for the right-handed silica nanoribbons, as revealed by cell viability, helium ion microscopy, as well as zebrafish embryo survival, developmental and behavioral assays. We then examined the proteomes of βTC6 pancreatic beta cells exposed to the three main aggregation states of monomeric, oligomeric and amyloid fibrillar IAPP, and compared that with cellular protein expression modulated by graphene quantum dots (GQDs). A total of 29 proteins were significantly regulated by different forms of IAPP, and the majority of these proteins were nucleotide-binding proteins. A regulatory capacity of GQDs against aberrant protein expression was confirmed. These studies have demonstrated the great potential of employing nanomaterials targeting the mesoscopic enantioselectivity and protein expression dysregulation in pancreatic beta cells.

Keywords: graphene quantum dots, IAPP, silica nanoribbons, protein expression, toxicity

Procedia PDF Downloads 135
5794 In vitro Effects of Porcine Follicular Fluid Proteins on Cell Culture Growth in Luteal Phase Porcine Oviductal Epithelial Cells

Authors: Mayuva Youngsabanant, Chanikarn Srinark, Supanyika Sengsai, Soratorn Kerdkriangkrai, Nongnuch Gumlungpat, Mayuree Pumipaiboon

Abstract:

The follicular fluid proteins of healthy medium size follicles (4-6 mm in diameters) and large size follicles (7-8 mm in diameter) of large white pig ovaries were collected by using sterile technique. They were used for testing the effect on primary in vitro cell culture growth of porcine oviductal epithelial cells (pOEC). Porcine oviductal epithelial cells of luteal phase was culture in M199 and added with 10% fetal calf serum 2.2 mg/mL, NaHCO₃, 0.25 mM pyruvate, 15 µg/mL and 50 µg/mL, gentamycin sulfate at high humidified atmosphere with 5% CO₂ in 95% air atmosphere at 37°C for 96 h before testing. The optimized concentration of pFF of two follicle sizes (at concentration of 2, 4, 20, 40, 200, 400, 500, and 600 µg proteins) in culture medium was observed for 24 h using MTT assay. Results were analyzed with a one-way ANOVA in SPSS statistic. Moreover, pOEC was also studied in morphological characteristic on long-term culture. The results of long-term study revealed that pOEC showed 70-80 percentage of healthy morphology on epithelial-like character and contained 30 percentage of an elongated shape (fibroblast-like morphology) at 4 weeks of culture time. MTT assay reviewed an increase in the percentage of viability of pOEC in 2 treated of follicular fluid groups. Two treatment concentration groups were higher than control group (p < 0.05) but not in positive control group. Interestingly, at 200 µg protein of 2 treated follicular fluid groups were reached the highest cell viability which is higher than a positive control and it is significantly different form control group (P < 0.05). These cells are developed and had fibroblast elongate shape which is longer than the cells in control group and positive control group. This report implies that pFF of medium follicle size at 200 µg proteins and large follicle size at 200 and 500 µg proteins could be optimized concentration for using as a supplement in culture medium to promote cell growth and development instead of growth hormone from fetal calf serum. It could be applied in cell biotechnology researches. Acknowledgements: The project was funded by a grant from Silpakorn University Research and Development Institute (SURDI) and Faculty of Science, Silpakorn University, Thailand.

Keywords: in vitro, porcine follicular fluid protein (pFF), porcine oviductal epithelial cells (pOEC), MTT

Procedia PDF Downloads 134
5793 Paramecuim as a Model for the Evaluation of Toxicity (Growth, Total Proteins, Respiratory and GSH Bio Marker Changes) Observed after Treatment with Essential Oils Isolated from Artemisia herba-alba Plant of Algeria

Authors: Bouchiha Hanene, Rouabhi Rachid, Bouchama Khaled, Djebar Berrebbah Houraya, Djebar Mohamed Reda

Abstract:

Recently, some natural products such as essentials oils (EOs) have been used in the fields as alternative to synthetic compounds, to minimize the negative impacts to the environment. This fact has led to questions about the possible impact of EOs on ecosystems. Currently in toxicology, the use of alternative models can help to understand the mechanisms of toxic action, at different levels of organization of ecosystems. Algae, protozoa and bacteria form the base of the food chain and protozoan cells are used as bioindicators often of pollution in environment. Unicellular organisms offer the possibility of direct study of independent cells with specific characteristics of individual cells and whole organisms at the same time. This unicellular facilitates the study of physiological processes, and effects of pollutants at the cellular level, which makes it widely used to assess the toxic effects of various xenobiotics. This study aimed to verify the effects of EOs of one famous plant used tremendously in our folk medicine, namely Artemisia herba alba in causing acute toxicity (24 hours) and chronic (15 days) toxicity for model cellular (Paramecium sp). To this end, cellular’s of paramecium were exposed to various concentrations (Three doses were chosen) of EOs extracted from plant (Artemisia herba alba). In the first experiment, the cellular s cultures were exposed for 48 hours to different concentrations to determine the median lethal concentration (DL50). We followed the evolution of physiological parameters (growth), biochemical (total proteins, respiratory metabolism), as well as the variations of a bio marker the GSH. Our results highlighted a light inhibition of the growth of the protozoa as well as a disturbance of the contents of total proteins and a reduction in the reduced rate of glutathione. The polarographic study revealed a stimulation of the consumption of O2 and this at the treated cells.

Keywords: essential oils, protozoa, bio indicators, toxicity, Growth, bio marker, proteins, polarographic

Procedia PDF Downloads 340
5792 Transcriptome Analysis of Saffron (crocus sativus L.) Stigma Focusing on Identification Genes Involved in the Biosynthesis of Crocin

Authors: Parvaneh Mahmoudi, Ahmad Moeni, Seyed Mojtaba Khayam Nekoei, Mohsen Mardi, Mehrshad Zeinolabedini, Ghasem Hosseini Salekdeh

Abstract:

Saffron (Crocus sativus L.) is one of the most important spice and medicinal plants. The three-branch style of C. sativus flowers are the most important economic part of the plant and known as saffron, which has several medicinal properties. Despite the economic and biological significance of this plant, knowledge about its molecular characteristics is very limited. In the present study, we, for the first time, constructed a comprehensive dataset for C. sativus stigma through de novo transcriptome sequencing. We performed de novo transcriptome sequencing of C. sativus stigma using the Illumina paired-end sequencing technology. A total of 52075128 reads were generated and assembled into 118075 unigenes, with an average length of 629 bp and an N50 of 951 bp. A total of 66171unigenes were identified, among them, 66171 (56%) were annotated in the non-redundant National Center for Biotechnology Information (NCBI) database, 30938 (26%) were annotated in the Swiss-Prot database, 10273 (8.7%) unigenes were mapped to 141 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, while 52560 (44%) and 40756 (34%) unigenes were assigned to Gen Ontology (GO) categories and Eukaryotic Orthologous Groups of proteins (KOG), respectively. In addition, 65 candidate genes involved in three stages of crocin biosynthesis were identified. Finally, transcriptome sequencing of saffron stigma was used to identify 6779 potential microsatellites (SSRs) molecular markers. High-throughput de novo transcriptome sequencing provided a valuable resource of transcript sequences of C. sativus in public databases. In addition, most of candidate genes potentially involved in crocin biosynthesis were identified which could be further utilized in functional genomics studies. Furthermore, numerous obtained SSRs might contribute to address open questions about the origin of this amphiploid spices with probable little genetic diversity.

Keywords: saffron, transcriptome, NGS, bioinformatic

Procedia PDF Downloads 86
5791 Effectiveness of Intraoperative Heparinization in Neonatal and Pediatric Patients with Congenital Heart Diseases: Focus in Heparin Resistance

Authors: Karakhalis N. B.

Abstract:

This study aimed to determine the prevalence of heparin resistance among cardiac surgical pediatric and neonatal patients and identify associated risk factors. Materials and Methods: The study included 306 pediatric and neonatal patients undergoing on-pump cardiac surgery. Patients whose activated clotting time (ACT) targets were achieved after the first administration of heparin formed the 1st group (n=280); the 2nd group (n=26) included patients with heparin resistance. The initial assessment of the haemostasiological profile included determining the PT, aPPT, FG, AT III activity, and INR. Intraoperative control of heparinization was carried out with a definition of ACT using a kaolin activator. A weight-associated protocol at the rate of 300 U/kg with target values of ACT >480 sec was used for intraoperative heparinization. Results: The heparin resistance was verified in 8.5% of patients included in the study. Repeated heparin administration at the maximum dose of≥600 U/kg is required in 80.77% of cases. Despite additional heparinization, 19.23% of patients had FFP infusion. There was reduced antithrombin activity in the heparin resistance group (p=0.01). Most patients with heparin resistance (57.7%) were pretreated with low molecular weight heparins during the preoperative period. Conclusion: Determining the initial level of antithrombin activity can predict the risk of developing heparin resistance. The factor analysis verified hidden risk factors for heparin resistance to the heparin pretreatment, chronic hypoxia, and chronic heart failure.

Keywords: congenital heart disease, heparin, antithrombin, activated clotting time, heparin resistance

Procedia PDF Downloads 74
5790 Novel Phenolic Biopolyether with Potential Therapeutic Effect

Authors: V.Barbakadze, L.Gogilashvili, L.Amiranashvili, M.Merlani, K.Mulkijanyan

Abstract:

The high-molecular fractions from the several species of two genera (Symphytum and Anchusa) of Boraginaceae family Symphytum asperum, S. caucasicum, S. officinale, and Anchusa italica were isolated. According to IR, 13C and 1H NMR, 2D heteronuclear 1H/13C HSQC spectral data and 1D NOE experiment, the main structural element of these preparations was found to be a regularly substituted polyoxyethylene, namely poly[3-(3,4-dihydroxyenyl)glyceric acid] (PDPGA) or poly[oxy-1-carboxy-2-(3,4-dihydroxyphenyl)ethylene]. Such caffeic acid-derived biopolymer to our knowledge has not been known and has been identified for the first time. This compound represents a new class of natural polyethers with a residue of 3-(3,4-dihydroxyphenyl)glyceric acid as the repeating unit. Most of the carboxylic groups of PDPGA from A. italica unlike the polymer of S. asperum, S. caucasicum, and S. officinale are methylated. The 2D DOSY experiment gave the similar diffusion coefficient for the methylated and non-methylated signals of A. italica PDPGA. Both sets of signals fell in the same horizontal. This would imply a similar molecular weight for methylated and non-methylated polymers. This was further evidenced by graphic representations of the intensity decay of the 1H signals of aromatic H-2″ and H-1 at δ 7.16 and 5.24 and that of the methoxy group at δ 3.85. These three signals essentially showed the same curve shape. According to results of in vitro and in vivo experiments PDPGA of S.asperum and S.caucasicum could be considered as potential anti-inflammatory, wound healing and anti-cancer therapeutic agent.

Keywords: caffeic acid-derived polyether, poly[3-(3, 4-dihydroxyphenyl)glyceric acid], poly[oxy-1-carboxy-2-(3, 4-dihydroxyphenyl)ethylene], symphytum, anchusa

Procedia PDF Downloads 394
5789 Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems.

Keywords: solubility, random forest, molecular descriptors, maccs keys

Procedia PDF Downloads 30
5788 Mechanism of Melanin Inhibition of Morello Flavone- 7″- Sulphate and Sargaol extracts from Garcinia livingstonei (Clusiaceae): Homology Modelling, Molecular Docking, and Molecular Dynamics Simulations

Authors: Ncoza Dlova, Tivani Mashamba-Thompson

Abstract:

Garcinia livingstonei (Clusiaceae) extracts, morelloflavone- 7″- sulphate and sargaol were shown to be effective against hyper-pigmentation through inhibition of tyrosinase enzyme, in vitro . The aim of this study is to elucidate the structural mechanism through which morelloflavone- 7″- sulphate and sargaol binds human tyrosinase. Implementing a homology model to construct a tyrosinase model using the crystal structure of a functional unit from Octopus hemocyanin (PDB: 1JS8) as a reference template enabled us to create a human tyrosinase model. Molecular dynamics and binding free energy calculations were optimized to enable molecular dynamics simulation of the copper dependent inhibitors. Results show the importance of the hydrogen bond formation morelloflavone- 7″- sulphate and sargaol between compound and active site residues. Both complexes demonstrated the metallic coordination between compound and arginine residue as well as copper ions within the active site. The comprehensive molecular insight gained from this study should be vital in understanding the binding mechanism morelloflavone- 7″- sulphate and sargaol. Moreover, these results will assist in the design of novel of metal ion dependent enzyme inhibitors as potential anti-hyper-pigmentation disorder therapies.

Keywords: hyper-pigmentation disorders, dyschromia African skin, morelloflavone- 7″- sulphate, sagoal

Procedia PDF Downloads 397
5787 Bioinformatics and Molecular Biological Characterization of a Hypothetical Protein SAV1226 as a Potential Drug Target for Methicillin/Vancomycin-Staphylococcus aureus Infections

Authors: Nichole Haag, Kimberly Velk, Tyler McCune, Chun Wu

Abstract:

Methicillin/multiple-resistant Staphylococcus aureus (MRSA) are infectious bacteria that are resistant to common antibiotics. A previous in silico study in our group has identified a hypothetical protein SAV1226 as one of the potential drug targets. In this study, we reported the bioinformatics characterization, as well as cloning, expression, purification and kinetic assays of hypothetical protein SAV1226 from methicillin/vancomycin-resistant Staphylococcus aureus Mu50 strain. MALDI-TOF/MS analysis revealed a low degree of structural similarity with known proteins. Kinetic assays demonstrated that hypothetical protein SAV1226 is neither a domain of an ATP dependent dihydroxyacetone kinase nor of a phosphotransferase system (PTS) dihydroxyacetone kinase, suggesting that the function of hypothetical protein SAV1226 might be misannotated on public databases such as UniProt and InterProScan 5.

Keywords: Methicillin-resistant Staphylococcus aureus, dihydroxyacetone kinase, essential genes, drug target, phosphoryl group donor

Procedia PDF Downloads 399
5786 Conservativeness of Functional Proteins in Bovine Milk by Pulsed Electric Field Technology

Authors: Sulhee Lee, Geon Kim, Young-Seo Park

Abstract:

Unlike the traditional milk sterilization methods (LTLT, HTST, or UHT), pulsed electric field (PEF) technology is a non-thermal pasteurization process. This technology minimizes energy required for heat treatment in food processing, changes in sensory properties, and physical losses. In this study, structural changes of bovine milk proteins, the amount of immunoproteins such as IgG, and their storability by PEF treatment were examined. When the changes of protein content in PEF-treated milk were examined using HPLC, the amounts of α-casein and β-lactoglobulin were reduced over 40% each, whereas those of κ-casein and β-casein did not change. The amount of α-casein in HTST milk was reduced to 50%. When PEF was applied to milk at the energy level of 250 kJ, the amounts of IgG, IgA, β-lactoglobulin (β-LG), lactoferrin, and α-lactalbumin (α-LA) decreased by 43, 41, 35, 63, and 45%, respectively. When milk was sterilized by LTLT process followed by PEF process at the level of 150 kJ, the concentrations of IgG, IgA, β-LG, lactoferrin, and α-LA were 56.6, 10.6, 554, 2.8 and 660.1 μg/mL, respectively. When the bovine milk was sterilized by LTLT process followed by PEF process at the energy level of 180 kJ, storability of immunoproteins of milk was the highest and the concentrations of IgG, IgA, and β-LG decreased by 79.5, 6.5, and 134.5 μg/mL, respectively, when compared with the initial concentrations of those proteins. When bovine milk was stored at 4℃ after sterilization through HTST sterilizer followed by PEF process at the energy level of 200 kJ, the amount of lactoferrin decreased 7.3% after 36 days of storage, whereas that of lactoferrin of raw milk decreased 16.4%. Our results showed that PEF treatment did not change the protein structure nor induce protein denaturation in milk significantly when compared with LTLT or HTST sterilization. Also, LTLT or HTST process in combination with PEF were more effective than LTLT only or HTST only process in the conservation of immunoproteins in bovine milk.

Keywords: pulsed electric field, bovine milk, immunoproteins, sterilization

Procedia PDF Downloads 431
5785 Synthesis and Molecular Docking Studies of Hydrazone Derivatives Potent Inhibitors as a Human Carbonic Anhydrase IX

Authors: Sema Şenoğlu, Sevgi Karakuş

Abstract:

Hydrazone scaffold is important to design new drug groups and is found to possess numerous uses in pharmaceutical chemistry. Besides, hydrazone derivatives are also known for biological activities such as anticancer, antimicrobial, antiviral, and antifungal. Hydrazone derivatives are promising anticancer agents because they inhibit cancer proliferation and induce apoptosis. Human carbonic anhydrase IX has a high potential to be an antiproliferative drug target, and targeting this protein is also important for obtaining potential anticancer inhibitors. The protein construct was retrieved as a PDB file from the RCSB protein database. This binding interaction of proteins and ligands was performed using Discovery Studio Visualizer. In vitro inhibitory activity of hydrazone derivatives was tested against enzyme carbonic anhydrase IX on the PyRx programme. Most of these molecules showed remarkable human carbonic anhydrase IX inhibitory activity compared to the acetazolamide. As a result, these compounds appear to be a potential target in drug design against human carbonic anhydrase IX.

Keywords: cancer, carbonic anhydrase IX enzyme, docking, hydrazone

Procedia PDF Downloads 70
5784 Metabolically Healthy Obesity and Protective Factors of Cardiovascular Diseases as a Result from a Longitudinal Study in Tebessa (East of Algeria)

Authors: Salima Taleb, Kafila Boulaba, Ahlem Yousfi, Nada Taleb, Difallah Basma

Abstract:

Introduction: Obesity is recognized as a cardiovascular risk factor. It is associated with cardio-metabolic diseases. Its prevalence is increasing significantly in both rich and poor countries. However, there are obese people who have no metabolic disturbance. So we think obesity is not always a risk factor for an abnormal metabolic profile that increases the risk of cardiometabolic problems. However, there is no definition that allows us to identify the individual group Metabolically Healthy but Obese (MHO). Objective: The objective of this study is to evaluate the relationship between MHO and some factors associated with it. Methods: A longitudinal study is a prospective cohort study of 600 participants aged ≥18 years. Metabolic status was assessed by the following parameters: blood pressure, fasting glucose, total cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides. Body Mass Index (BMI) was calculated as weight (in kg) divided by height (m2), BMI = Weight/(Height)². According to the BMI value, our population was divided into four groups: underweight subjects with BMI <18.5 kg/m2, normal weight subjects with BMI = 18.5–24.9 kg/m², overweight subjects with BMI=25–29.9 kg/m², and obese subjects who have (BMI ≥ 30 kg/m²). A value of P < 0.05 was considered significant. Statistical processing was done using the SPSS 25 software. Results: During this study, 194 (32.33%) were identified as MHO among 416 (37%) obese individuals. The prevalence of the metabolically unhealthy phenotype among normal-weight individuals was (13.83%) vs. (37%) in obese individuals. Compared with metabolically healthy normal-weight individuals (10.93%), the prevalence of diabetes was (30.60%) in MHO, (20.59%) in metabolically unhealthy normal weight, and (52.29%) for metabolically unhealthy obese (p = 0.032). Blood pressure was significantly higher in MHO individuals than in metabolically healthy normal-weight individuals and in metabolically unhealthy obese than in metabolically unhealthy normal weight (P < 0.0001). Familial coronary artery disease does not appear to have an effect on the metabolic status of obese and normal-weight patients (P = 0.544). However, waist circumference appears to have an effect on the metabolic status of individuals (P < 0.0001). Conclusion: This study showed a high prevalence of metabolic profile disruption in normal-weight subjects and a high rate of overweight and/or obese people who are metabolically healthy. To understand the physiological mechanism related to these metabolic statuses, a thorough study is needed.

Keywords: metabolically health, obesity, factors associated, cardiovascular diseases

Procedia PDF Downloads 103
5783 Towards Designing of a Potential New HIV-1 Protease Inhibitor Using Quantitative Structure-Activity Relationship Study in Combination with Molecular Docking and Molecular Dynamics Simulations

Authors: Mouna Baassi, Mohamed Moussaoui, Hatim Soufi, Sanchaita RajkhowaI, Ashwani Sharma, Subrata Sinha, Said Belaaouad

Abstract:

Human Immunodeficiency Virus type 1 protease (HIV-1 PR) is one of the most challenging targets of antiretroviral therapy used in the treatment of AIDS-infected people. The performance of protease inhibitors (PIs) is limited by the development of protease mutations that can promote resistance to the treatment. The current study was carried out using statistics and bioinformatics tools. A series of thirty-three compounds with known enzymatic inhibitory activities against HIV-1 protease was used in this paper to build a mathematical model relating the structure to the biological activity. These compounds were designed by software; their descriptors were computed using various tools, such as Gaussian, Chem3D, ChemSketch and MarvinSketch. Computational methods generated the best model based on its statistical parameters. The model’s applicability domain (AD) was elaborated. Furthermore, one compound has been proposed as efficient against HIV-1 protease with comparable biological activity to the existing ones; this drug candidate was evaluated using ADMET properties and Lipinski’s rule. Molecular Docking performed on Wild Type and Mutant Type HIV-1 proteases allowed the investigation of the interaction types displayed between the proteases and the ligands, Darunavir (DRV) and the new drug (ND). Molecular dynamics simulation was also used in order to investigate the complexes’ stability, allowing a comparative study of the performance of both ligands (DRV & ND). Our study suggested that the new molecule showed comparable results to that of Darunavir and may be used for further experimental studies. Our study may also be used as a pipeline to search and design new potential inhibitors of HIV-1 proteases.

Keywords: QSAR, ADMET properties, molecular docking, molecular dynamics simulation.

Procedia PDF Downloads 21
5782 Sex Differences in Age-Related AMPK-Sirt1 Axis Alteration in Human Heart

Authors: Maria Luisa Barcena De Arellano, Sofya Pozdniakova, Pavelas Karkacas, Anja Kuhl, Istvan Baczko, Yury Ladilov, Vera Regitz-Zagrosek

Abstract:

Introduction: Aging is associated with deterioration of the physiological function, leading to systemic inflammation and mitochondrial dysfunction that promote the development of cardiovascular diseases. Sex differences in aging-related cardiovascular diseases have been postulated. However, their precise mechanisms remain unclear. In the current study, we aimed to investigate the sex difference in the age-related alteration in Sirt1-AMPK signaling and its relation to the mitochondrial biogenesis and inflammation. Methods: Male and female human non-disease lateral left ventricular wall tissue (young (17–40 years; n= 7 male and 7 female) and old (50–68 years; n= 9 male and 8 female)) were used. qRT-PCR, western blot and immunohistochemistry assays were performed for expression analyses of Sirt1, AMPK, pAMPK, ac-Ku70, TFAM, PGC-1α, Sirt3, SOD2 and catalase. CD68 was used as a marker for macrophages and the ratio of IL-12:IL10 (pro-inflammatory phenotype (high IL-12/low IL-10) and anti-inflammatory phenotype (low IL-12/high IL-10) was used to examine the inflammatory stage in the heart. Results: Sirt1 expression was significantly higher in young females compared to young males, whereas in aged hearts Sirt1 expression was significantly downregulated in females, but not in males. In line with the Sirt1 downregulation in aged females, acetylation of nuclear Ku70, a direct target of Sirt1, in aged female hearts was significantly elevated. The activity of AMPK was significantly decreased in aged individuals, however no sex differences in the AMPK expression or activity were found in young or old individuals. The expression of mitochondrial proteins TOM40, SOD2 and Sirt3 was significantly higher in young females compared to young males, while in aged female hearts SOD2 and TOM40 were downregulated. In addition, the expression of catalase, a key cytosolic and mitochondrial anti-oxidative enzyme was significantly higher in young females and this female sex benefit was lost in aged hearts. In addition, the number of cardiac macrophages was significantly increased in old female, but not in male hearts. Consistently, the pro-inflammatory shift in old females was further confirmed by differences in the IL12/IL10 ratio in young female cardiac tissue in a favour of the anti-inflammatory mediator IL-10 (ratio 1:4) compared to young males (ratio 1:1). The anti-inflammatory environment in the heart was lost in aged females (ratio 1:1). Conclusion: Aging leads to the significant downregulation of Sirt1 expression and elevated acetylation of Ku70 in female, but not in male hearts. Furthermore, a beneficial upregulation of mitochondrial and anti-oxidative proteins in young females is lost with aging. Moreover, the malfunctions in the expression of Sirt1 and mitochondrial proteins in aged female hearts is accompanied by a significant pro-inflammatory shift. The study provides a molecular basis for the increased incidence of cardiovascular diseases in old women.

Keywords: inflammation, mitochondrial dysfunction, aging, Sirt1-AMPK axis

Procedia PDF Downloads 255
5781 TNF Receptor-Associated Factor 6 (TRAF6) Mediating the Angiotensin-Induced Non-Canonical TGFβ Pathway Activation and Differentiation of c-kit+ Cardiac Stem Cells

Authors: Qing Cao, Fei Wang, Yu-Qiang Wang, Li-Ya Huang, Tian-Tian Sang, Shu-Yan Chen

Abstract:

Aims: TNF Receptor-Associated Factor 6 (TRAF6) acts as a multifunctional regulator of the Transforming Growth Factor (TGF)-β signaling pathway, and mediates Smad-independent JNK and p38 activation via TGF-β. This study was performed to test the hypothesis that TGF-β/TRAF6 is essential for angiotensin-II (Ang II)-induced differentiation of rat c-kit+ Cardiac Stem Cells (CSCs). Methods and Results: c-kit+ CSCs were isolated from neonatal Sprague Dawley (SD) rats, and their c-kit status was confirmed with immunofluorescence staining. A TGF-β type I receptor inhibitor (SB431542) or the small interfering RNA (siRNA)-mediated knockdown of TRAF6 were used to investigate the role of TRAF6 in TGF-β signaling. Rescue of TRAF6 siRNA transfected cells with a 3'UTR deleted siRNA insensitive construct was conducted to rule out the off target effects of the siRNA. TRAF6 dominant negative (TRAF6DN) vector was constructed and used to infect c-kit+ CSCs, and western blotting was used to assess the expression of TRAF6, JNK, p38, cardiac-specific proteins, and Wnt signaling proteins. Physical interactions between TRAF6 and TGFβ receptors were studied by coimmunoprecipitation. Cardiac differentiation was suppressed in the absence of TRAF6. Forced expression of TRAF6 enhanced the expression of TGF-β-activated kinase1 (TAK1), and inhibited Wnt signaling. Furthermore, TRAF6 increased the expression of cardiac-specific proteins (cTnT and Cx-43) but inhibited the expression of Wnt3a. Conclusions: Our data suggest that TRAF6 plays an important role in Ang II induced differentiation of c-kit+ CSCs via the non-canonical signaling pathway.

Keywords: cardiac stem cells, differentiation, TGF-β, TRAF6, ubiquitination, Wnt

Procedia PDF Downloads 390
5780 Anti-Aging Effects of Two Agricultural Plant Extracts and Their Underlying Mechanism

Authors: Shwu-Ling Peng, Chiung-Man Tsai, Chia-Jui Weng

Abstract:

Chronic micro-inflammation is a hallmark of many aging-related neurodegenerative and metabolic syndrome-driven diseases. In high glucose (HG) environment, reactive oxygen species (ROS) is generated and the ROS induced inflammation, cytokines secretion, DNA damage, and cell cycle arrest to lead to cellular senescence. Water chestnut shell (WCS) is a plant hull which containing polyphenolic compounds and showed antioxidant and anticancer activities. Orchid, which containing a natural polysaccharide compound, possesses many physiological activities including anti-inflammatory and neuroprotective effects. These agricultural plants might be able to reduce oxidative stress and inflammation. This study was used HG-induced human normal dermal fibroblasts (HG-HNDFs) as an in vitro model to disclose the effects of water extract of Phalaenopsis orchid flower (WEPF) and ethanol extract of water chestnut shell (EEWCS) on the anti-aging and their underlying molecular mechanisms. The toxicity of extracts on human normal dermal fibroblasts (HNDFs) was determined by MTT method. The senescence of cells was assayed by β-galactosidase (SA-β-gal) kit. ROS and nitrate production was analyzed by Intracellular ROS contents and ELISA, respectively. Western blotting was used to detect the proteins in cells. The results showed that the exposure of HNDFs to HG (30 mM) for 72 h were caused cellular senescence and arrested cells at G0/G1 phase. Indeed, the treatment of HG-HNDFs with WEPF (200 μg/ml) and EEWCS (10 μg/ml) significantly released cell cycle arrest and promoted cell proliferation. The G1/S phase transition regulatory proteins such as protein retinoblastoma (pRb), p53, and p16ᴵᴺᴷ⁴ᵃ depressed by WEPF and EEWCS were also observed. Additionally, the treatment of WEPF and EEWCS increased the activity of HO-1 through upregulating Nrf2 as well as decreased the ROS and NO of HG-HNDFs. Therefore, the senescence marker protein-30 (SMP30) in cells was diminished. In conclusion, the WEPF and EEWCS might inhibit HG-induced aging of HNDFs by reducing oxidative stress and free radicals.

Keywords: agricultural plant extract, anti-aging, high glucose, Phalaenopsis orchid flower, water chestnut shell

Procedia PDF Downloads 139
5779 Application of Learning Media Based Augmented Reality on Molecular Geometry Concept

Authors: F. S. Irwansyah, I. Farida, Y. Maulana

Abstract:

Studying chemistry requires the ability to understand three levels of understanding in the form of macroscopic, submicroscopic and symbolic, but the lack of emphasis on the submicroscopic level leads to the understanding of chemical concepts becoming incomplete, due to the limitations of the tools capable of providing visualization of submicroscopic concepts. The purpose of this study describes the stages of making augmented reality learning media on the concept of molecular geometry and analyze the feasibility test result of augmented reality learning media on the concept of molecular geometry. This research uses Research and Development (R & D) method which produces a product of AR learning media on molecular geometry concept and test the effectiveness of the product. Research stages include concept analysis and learning indicators, design development, validation, feasibility, and limited testing. The stages of validation and limited trial are aimed to get feedback in the form of assessment, suggestion and improvement on learning aspect, material substance aspect, visual communication aspect and software engineering aspects and media feasibility in terms of media creation purpose to be used in learning. The results of the overall feasibility test obtained r-calculation 0,7-0,9 with the interpretation of high feasibility value, whereas the result of limited trial got the percentage of eligibility with the average value equal to 70,83-92,5%. This percentage indicates that AR's learning media product on the concept of molecular geometry, deserves to be used as a learning resource.

Keywords: android, augmented reality, chemical learning, geometry

Procedia PDF Downloads 203
5778 First-Principles Study of Inter-Cage Interactions in Inorganic Molecular Crystals

Authors: Abdul Majid, Alia Jabeen, Nimra Zulifqar

Abstract:

The inorganic molecular crystal (IMCs) due to their unusual structure has grabbed a lot of attention due to anisotropy in crystal structure. The IMCs consist of the molecular structures joined together via weak forces. Therefore, a difference between the bonding between the inter-cage and intra-cage interactions exists. To look closely at the bonding and interactions, we investigated interactions between two cages of Sb2O3 structure. The interactions were characterized via Extended Transition State-Natural Orbital for Chemical Valence-method (ETS-NOCV), Natural Bond Orbitals (NBO) and Quantum Theory of Atoms in Molecules (QTAIM). The results revealed strong intra-cage covalent bonding while weak van der Waals (vdWs) interactions along inter-cages exits. This structure cannot be termed as layered material although they have anisotropy in bonding and presence of weak vdWs interactions but its bulk is termed as inorganic layered clusters. This is due to the fact that the free standing sheet/films with these materials are not possible. This type of structures may be the most feasible to be used for the system to deal with high pressures and stress bearing materials.

Keywords: inorganic molecular crystals, density functional theory, cages, interactions

Procedia PDF Downloads 80
5777 Preparation of Flurbiprofen Derivative for Enhanced Brain Penetration

Authors: Jungkyun Im

Abstract:

Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective for relieving pain and reducing inflammation. They are nonselective inhibitors of two isoforms of COX, cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), and thereby inhibiting the production of hormone-like lipid compounds such as, prostaglandins and thromboxanes which cause inflammation, pain, fever, platelet aggregation, etc. In addition, recently there are many research articles reporting the neuroprotective effect of NSAIDs in neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). However, the clinical use of NSAIDs in these diseases is limited by low brain distribution. Therefore, in order to assist the in-depth investigation on the pharmaceutical mechanism of flurbiprofen in neuroprotection and to make flurbiprofen a more potent drug to prevent or alleviate neurodegenerative diseases, delivery of flurbiprofen to brain should be effective and sufficient amount of flurbiprofen must penetrate the BBB thus gaining access into the patient’s brain. We have recently developed several types of guanidine-rich molecular carriers with high molecular weights and good water solubility that readily cross the blood-brain barrier (BBB) and display efficient distributions in the mouse brain. The G8 (having eight guanidine groups) molecular carrier based on D-sorbitol was found to be very effective in delivering anticancer drugs to a mouse brain. In the present study, employing the same molecular carrier, we prepared the flurbiprofen conjugate and studied its BBB permeation by mouse tissue distribution study. Flurbiprofen was attached to a molecular carrier with a fluorescein probe and multiple terminal guanidiniums. The conjugate was found to internalize into live cells and readily cross the BBB to enter the mouse brain. Our novel synthetic flurbiprofen conjugate will hopefully delivery NSAIDs into brain, and is therefore applicable to the neurodegenerative diseases treatment or prevention.

Keywords: flurbiprofen, drug delivery, molecular carrier, organic synthesis

Procedia PDF Downloads 227
5776 Gas Aggregation and Nanobubbles Stability on Substrates Influenced by Surface Wettability: A Molecular Dynamics Study

Authors: Tsu-Hsu Yen

Abstract:

The interfacial gas adsorption presents a frequent challenge and opportunity for micro-/nano-fluidic operation. In this study, we investigate the wettability, gas accumulation, and nanobubble formation on various homogeneous surface conditions by using MD simulation, including a series of 3D and quasi-2D argon-water-solid systems simulation. To precisely determine the wettability on various substrates, several indicators were calculated. Among these wettability indicators, the water PMF (potential of mean force) has the most correlation tendency with interfacial water molecular orientation than depletion layer width and droplet contact angle. The results reveal that the aggregation of argon molecules on substrates not only depending on the level of hydrophobicity but also determined by the competition between gas-solid and water-solid interaction as well as water molecular structure near the surface. In addition, the surface nanobubble is always observed coexisted with the gas enrichment layer. The water structure adjacent to water-gas and water-solid interfaces also plays an important factor in gas out-flux and gas aggregation, respectively. The quasi-2D simulation shows that only a slight difference in the curved argon-water interface from the plane interface which suggests no noticeable obstructing effect on gas outflux from the gas-water interfacial water networks.

Keywords: gas aggregation, interfacial nanobubble, molecular dynamics simulation, wettability

Procedia PDF Downloads 103
5775 Effect of Low Temperature on Structure and RNA Binding of E.coli CspA: A Molecular Dynamics Based Study

Authors: Amit Chaudhary, B. S. Yadav, P. K. Maurya, A. M., S. Srivastava, S. Singh, A. Mani

Abstract:

Cold shock protein A (CspA) is major cold inducible protein present in Escherichia coli. The protein is involved in stabilizing secondary structure of RNA by working as chaperone during cold temperature. Two RNA binding motifs play key role in the stabilizing activity. This study aimed to investigate implications of low temperature on structure and RNA binding activity of E. coli CspA. Molecular dynamics simulations were performed to compare the stability of the protein at 37°C and 10 °C. The protein was mutated at RNA binding motifs and docked with RNA to assess the stability of both complexes. Results suggest that CspA as well as CspA-RNA complex is more stable at low temperature. It was also confirmed that RNP1 and RNP2 play key role in RNA binding.

Keywords: CspA, homology modelling, mutation, molecular dynamics simulation

Procedia PDF Downloads 366
5774 Breeding Performance and Egg Quality of Red Jungle Fowl (Gallus Gallus L.) Mated with Native Hens (Gallus galus domesticus) in Selected Areas of Leyte under Confinement System

Authors: Francisco F. Buctot Jr.

Abstract:

This study was conducted to assess the breeding performance and egg quality traits of Red Jungle Fowls in selected areas of Leyte mated to Native hens under confinement system. A total of six Red Jungle Fowl roosters, two native roosters and 16 native hens were randomly assigned to four treatments with eight replications; each composed of one rooster and two hens randomly laid out in a Randomized Complete Block Design set up. Result on egg weight showed highly significant difference at p<0.01 and revealed heaviest weight (39.0 g) and lightest weight (35.75 g) on Native x Native and Baybay RJF x Native, respectively. While comparable number of eggs per clutch, fertility and hatchability rates, yolk and albumen weights, shell weight, egg length and width, egg shape index and yolk color score were obtained.

Keywords: egg clutch, egg shape index, native chicken, hatchability rate

Procedia PDF Downloads 357
5773 Analysis of CO₂ Capture Products from Carbon Capture and Utilization Plant

Authors: Bongjae Lee, Beom Goo Hwang, Hye Mi Park

Abstract:

CO₂ capture products manufactured through Carbon Capture and Utilization (CCU) Plant that collect CO₂ directly from power plants require accurate measurements of the amount of CO₂ captured. For this purpose, two tests were carried out on the weight loss test. And one was analyzed using a carbon dioxide quantification device. First, the ignition loss analysis was performed by measuring the weight of the sample at 550°C after the first conversation and then confirming the loss when ignited at 950°C. Second, in the thermogravimetric analysis, the sample was divided into two sections of 40 to 500°C and 500 to 800°C to confirm the reduction. The results of thermal weight loss analysis and thermogravimetric analysis were confirmed to be almost similar. However, the temperature of the ignition loss analysis method was 950°C, which was 150°C higher than that of the thermogravimetric method at a temperature of 800°C, so that the difference in the amount of weight loss was 3 to 4% higher by the heat loss analysis method. In addition, the tendency that the CO₂ content increases as the reaction time become longer is similarly confirmed. Third, the results of the wet titration method through the carbon dioxide quantification device were found to be significantly lower than the weight loss method. Therefore, based on the results obtained through the above three analysis methods, we will establish a method to analyze the accurate amount of CO₂. Acknowledgements: This work was supported by the Korea Institute of Energy Technology Evaluation and planning (No. 20152010201850).

Keywords: carbon capture and utilization, CCU, CO2, CO2 capture products, analysis method

Procedia PDF Downloads 208
5772 Hydrothermal Synthesis of Octahedral Molecular Sieve from Mn Oxide Residues

Authors: Irlana C. do Mar, Thayna A. Ferreira, Dayane S. Rezende, Bruno A. M. Figueira, José M. R. Mercury

Abstract:

This work presents a low-cost Mn starting material to synthesis manganese oxide octahedral molecular sieve with Mg²⁺ in the tunnel (Mg-OMS-1), based on the Mn residues from Carajás Mineral Province (Amazon, Brazil). After hydrothermal and cation exchange procedures, the Mn residues transformed to a single phase, Mg-OMS-1. The raw material and the synthesis processes were analyzed by means of X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Infrared spectroscopy (FTIR). The tunnel structure was synthesized hydrothermally at 180 °C for three days without impurities. According to the XRD analysis, the formation of crystalline Mg-OMS-1 was identified through reflections at 9.8º, 12º and 18º (2θ), as well as a thermal stability around 300 ºC. The SEM analysis indicated that the final product presents good crystallinity with a homogeneous size. In addition, an intense and diagnostic FTIR band was identified at 515 cm⁻¹ related to the MnO₆ octahedral stretching vibrations.

Keywords: Mn residues , Octahedral Molecular Sieve, Synthesis, Characterization

Procedia PDF Downloads 185
5771 Prediction of Heavy-Weight Impact Noise and Vibration of Floating Floor Using Modified Impact Spectrum

Authors: Ju-Hyung Kim, Dae-Ho Mun, Hong-Gun Park

Abstract:

When an impact is applied to a floating floor, noise and vibration response of high-frequency range is reduced effectively, while amplifies the response at low-frequency range. This means floating floor can make worse noise condition when heavy-weight impact is applied. The amplified response is the result of interaction between finishing layer (mortar plate) and concrete slab. Because an impact force is not directly delivered to concrete slab, the impact force waveform or spectrum can be changed. In this paper, the changed impact spectrum was derived from several floating floor vibration tests. Based on the measured data, numerical modeling can describe the floating floor response, especially at low-frequency range. As a result, heavy-weight impact noise can be predicted using modified impact spectrum.

Keywords: floating floor, heavy-weight impact, prediction, vibration

Procedia PDF Downloads 363
5770 Naturally Occurring Chemicals in Biopesticides' Resistance Control through Molecular Topology

Authors: Riccardo Zanni, Maria Galvez-Llompart, Ramon Garcia-Domenech, Jorge Galvez

Abstract:

Biopesticides, such as naturally occurring chemicals, pheromones, fungi, bacteria and insect predators are often a winning choice in crop protection because of their environmental friendly profile. They are considered to have lower toxicity than traditional pesticides. After almost a century of pesticides use, resistances to traditional insecticides are wide spread, while those to bioinsecticides have raised less attention, and resistance management is frequently neglected. This seems to be a crucial mistake since resistances have already occurred for many marketed biopesticides. With an eye to the future, we present here a selection of new natural occurring chemicals as potential bioinsecticides. The molecules were selected using a consolidated mathematical paradigm called molecular topology. Several QSAR equations were depicted and subsequently applied for the virtual screening of hundred thousands molecules of natural origin, which resulted in the selection of new potential bioinsecticides. The most innovative aspect of this work does not only reside in the importance of the identification of new molecules overcoming biopesticides’ resistances, but on the possibility to promote shared knowledge in the field of green chemistry through this unique in silico discipline named molecular topology.

Keywords: green chemistry, QSAR, molecular topology, biopesticide

Procedia PDF Downloads 303