Search results for: load estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4488

Search results for: load estimation

3978 Estimation of Missing Values in Aggregate Level Spatial Data

Authors: Amitha Puranik, V. S. Binu, Seena Biju

Abstract:

Missing data is a common problem in spatial analysis especially at the aggregate level. Missing can either occur in covariate or in response variable or in both in a given location. Many missing data techniques are available to estimate the missing data values but not all of these methods can be applied on spatial data since the data are autocorrelated. Hence there is a need to develop a method that estimates the missing values in both response variable and covariates in spatial data by taking account of the spatial autocorrelation. The present study aims to develop a model to estimate the missing data points at the aggregate level in spatial data by accounting for (a) Spatial autocorrelation of the response variable (b) Spatial autocorrelation of covariates and (c) Correlation between covariates and the response variable. Estimating the missing values of spatial data requires a model that explicitly account for the spatial autocorrelation. The proposed model not only accounts for spatial autocorrelation but also utilizes the correlation that exists between covariates, within covariates and between a response variable and covariates. The precise estimation of the missing data points in spatial data will result in an increased precision of the estimated effects of independent variables on the response variable in spatial regression analysis.

Keywords: spatial regression, missing data estimation, spatial autocorrelation, simulation analysis

Procedia PDF Downloads 382
3977 Integration of Smart Grid Technologies with Smart Phones for Energy Monitoring and Management

Authors: Arjmand Khaliq, Pemra Sohaib

Abstract:

There is increasing trend of use of smart devices in the present age. The growth of computing techniques and advancement in hardware has also brought the use of sensors and smart devices to a high degree during the course of time. So use of smart devices for control, management communication and optimization has become very popular. This paper gives proposed methodology which involves sensing and switching unite for load, two way communications between utility company and smart phones of consumers using cellular techniques and price signaling resulting active participation of user in energy management .The goal of this proposed control methodology is active participation of user in energy management with accommodation of renewable energy resource. This will provide load adjustment according to consumer’s choice, increased security and reliability for consumer, switching of load according to consumer need and monitoring and management of energy.

Keywords: cellular networks, energy management, renewable energy source, smart grid technology

Procedia PDF Downloads 414
3976 Comparative Review of Models for Forecasting Permanent Deformation in Unbound Granular Materials

Authors: Shamsulhaq Amin

Abstract:

Unbound granular materials (UGMs) are pivotal in ensuring long-term quality, especially in the layers under the surface of flexible pavements and other constructions. This study seeks to better understand the behavior of the UGMs by looking at popular models for predicting lasting deformation under various levels of stresses and load cycles. These models focus on variables such as the number of load cycles, stress levels, and features specific to materials and were evaluated on the basis of their ability to accurately predict outcomes. The study showed that these factors play a crucial role in how well the models work. Therefore, the research highlights the need to look at a wide range of stress situations to more accurately predict how much the UGMs bend or shift. The research looked at important factors, like how permanent deformation relates to the number of times a load is applied, how quickly this phenomenon happens, and the shakedown effect, in two different types of UGMs: granite and limestone. A detailed study was done over 100,000 load cycles, which provided deep insights into how these materials behave. In this study, a number of factors, such as the level of stress applied, the number of load cycles, the density of the material, and the moisture present were seen as the main factors affecting permanent deformation. It is vital to fully understand these elements for better designing pavements that last long and handle wear and tear. A series of laboratory tests were performed to evaluate the mechanical properties of materials and acquire model parameters. The testing included gradation tests, CBR tests, and Repeated load triaxial tests. The repeated load triaxial tests were crucial for studying the significant components that affect deformation. This test involved applying various stress levels to estimate model parameters. In addition, certain model parameters were established by regression analysis, and optimization was conducted to improve outcomes. Afterward, the material parameters that were acquired were used to construct graphs for each model. The graphs were subsequently compared to the outcomes obtained from the repeated load triaxial testing. Additionally, the models were evaluated to determine if they demonstrated the two inherent deformation behaviors of materials when subjected to repetitive load: the initial phase, post-compaction, and the second phase volumetric changes. In this study, using log-log graphs was key to making the complex data easier to understand. This method made the analysis clearer and helped make the findings easier to interpret, adding both precision and depth to the research. This research provides important insight into picking the right models for predicting how these materials will act under expected stress and load conditions. Moreover, it offers crucial information regarding the effect of load cycle and permanent deformation as well as the shakedown effect on granite and limestone UGMs.

Keywords: permanent deformation, unbound granular materials, load cycles, stress level

Procedia PDF Downloads 43
3975 The Nonlinear Research on Rotational Stiffness of Cuplock Joint

Authors: Liuyu Zhang, Di Mo, Qiang Yan, Min Liu

Abstract:

As the important equipment in the construction field, cuplock scaffold plays an important role in the construction process. As a scaffold connecting member, cuplock joint is of great importance. In order to explore the rotational stiffness nonlinear characteristics changing features of different structural forms of cuplock joint in different tightening torque condition under different conditions of load, ANSYS is used to establish four kinds of cuplock joint models with different forces to simulate the real force situation. By setting the different load conditions which means the cuplock is loaded at a certain distance from the cuplock joint in a certain direction until the cuplock is damaged and considering the gap between the cross bar joint and the vertical bar, the differences in the influence of the structural form and tightening torque on the rotation stiffness of the cuplock under different load conditions are compared. It is significantly important to improve the accuracy of calculating bearing capacity and stability of the cuplock steel pipe scaffold.

Keywords: cuplock joint, highway tunnel, non-linear characteristics, rotational stiffness, scaffold stability, theoretical analysis

Procedia PDF Downloads 124
3974 Influence of Different Ripening Agents on the Shelf-Life and Microbial Load of Organic and Inorganic Musaceae, during the Ripening Process, and the Health Implication for Food Security

Authors: Wisdom Robert Duruji

Abstract:

Local farmers and fruit processors in developing countries of West Africa use different ripening agents to accelerate the ripening process of plantain and banana. This study reports on the influence of different ripening agents on the shelf-life and microbial load of organic and inorganic plantain (Musa paradisiaca) and banana (Musa sapientum) during ripening process and the health implication for food security in Nigeria. The experiment consisted of four treatments, namely: Calcium carbide, Irvingia gabonensis fruits, Newbouldia laevis leaves and a control, where no ripening agent was applied to the fingers of plantain and banana. The unripe and ripened plantain and banana were subjected to microbial analysis by isolating their micro flora (Bacteria, Yeast and Mould) using pour plate method. Microbes present in the samples were enumerated, characterized and classified to genera and species. The result indicated that the microbial load of inorganic plantain from (Urban day) open market in Ile-Ife increased from 8.00 for unripe to 12.11 cfu/g for ripened; and the microbial load of organic plantain from Obafemi Awolowo University Teaching and Research Farm (OAUTRF) increased from 6.00 for unripe to 11.60 cfu/g for ripened. Also, the microbial load of inorganic banana from (Urban day) open market in Ile-Ife increased from 8.00 for unripe to 11.50 cfu/g for ripened; while the microbial load of organic banana from OAUTRF increased from 6.50 for unripe to 9.40 cfu/g for ripened. The microbial effects of the ripening agents increased from 10.00 for control to 16.00 cfu/g for treated (ripened) organic and inorganic plantain; while that of organic and inorganic banana increased from 7.50 for control to 14.50 cfu/g for ripened. Visual observation for the presence of fungal colonies and deterioration rates were monitored till seven days after the plantain and banana fingers have fully ripened. Inorganic plantain and banana from (Urban day) open market in Ile-Ife are more contaminated than organic plantain and banana fingers from OAUTRF. The ripening accelerators reduced the shelf life, increased senescence, and microbial load of plantain and banana. This study concluded that organic Agriculture is better and microbial friendlier than inorganic farming.

Keywords: organic agriculture, food security, Musaceae, calcium carbide, Irvingia gabonensis, Newbouldia laevis

Procedia PDF Downloads 588
3973 Relevancy Measures of Errors in Displacements of Finite Elements Analysis Results

Authors: A. B. Bolkhir, A. Elshafie, T. K. Yousif

Abstract:

This paper highlights the methods of error estimation in finite element analysis (FEA) results. It indicates that the modeling error could be eliminated by performing finite element analysis with successively finer meshes or by extrapolating response predictions from an orderly sequence of relatively low degree of freedom analysis results. In addition, the paper eliminates the round-off error by running the code at a higher precision. The paper provides application in finite element analysis results. It draws a conclusion based on results of application of methods of error estimation.

Keywords: finite element analysis (FEA), discretization error, round-off error, mesh refinement, richardson extrapolation, monotonic convergence

Procedia PDF Downloads 497
3972 Experimental Investigation of Stain Removal Performance of Different Types of Top Load Washing Machines with Textile Mechanical Damage Consideration

Authors: Ehsan Tuzcuoğlu, Muhammed Emin Çoban, Songül Byraktar

Abstract:

One of the main targets of the washing machine is to remove any dirt and stains from the clothes. Especially, the stain removal is significantly important in the Far East market, where the high percentage of the consumers use the top load washing machines as washing appliance. They use all pretreatment methods (i.e. soaking, prewash, and heavy functions) to eliminate the stains from their clothes. Therefore, with this study it is aimed to study experimentally the stain removal performance of 3 different Top-Loading washing machines of the Far East market with 24 different types of stains which are mostly related to Far East culture. In the meanwhile, the mechanical damge on laundry is examined for each machine to see the mechanical effect of the related stain programs on the textile load of the machines. The test machines vary according to have a heater, moving part(s)on their impeller, and to be in different height/width ratio of the drum. The results indicate that decreasing the water level inside the washing machine might result in better soil removal as well as less textile damage. Beside this, the experimental results reveal that heating has the main effect on stain removal. Two-step (or delayed) heating and a lower amount of water can also be considered as the further parameters

Keywords: laundry, washing machine, top load washing machine, stain removal, textile damage, mechanical textile damage

Procedia PDF Downloads 125
3971 Comparative Study of Numerical and Analytical Buckling Analysis of a Steel Column with Various Slenderness Ratios

Authors: Lahlou Dahmani, Warda Mekiri, Ahmed Boudjemia

Abstract:

This scientific paper explores the comparison between the ultimate buckling load obtained through the Eurocode 3 methodology and the ultimate buckling load obtained through finite element simulations for steel columns under compression. The study aims to provide insights into the adequacy of the design rules proposed in Eurocode 3 for different slenderness ratios. The finite element simulations with the Ansys commercial program involve a geometrical and material non-linear analysis of the columns with imperfections. The loss of equilibrium is generally caused by the geometrically nonlinear effects where the column begins to buckle and lose its stability when the load reaches a certain critical value. The linear buckling analysis predicts the theoretical buckling strength of an elastic structure but the nonlinear one is more accurate with taking into account the initial imperfection.

Keywords: Ansys, linear buckling, eigen value, nonlinear buckling, slenderness ratio, Eurocode 3

Procedia PDF Downloads 21
3970 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation

Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo

Abstract:

The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.

Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation

Procedia PDF Downloads 187
3969 A Theorem Related to Sample Moments and Two Types of Moment-Based Density Estimates

Authors: Serge B. Provost

Abstract:

Numerous statistical inference and modeling methodologies are based on sample moments rather than the actual observations. A result justifying the validity of this approach is introduced. More specifically, it will be established that given the first n moments of a sample of size n, one can recover the original n sample points. This implies that a sample of size n and its first associated n moments contain precisely the same amount of information. However, it is efficient to make use of a limited number of initial moments as most of the relevant distributional information is included in them. Two types of density estimation techniques that rely on such moments will be discussed. The first one expresses a density estimate as the product of a suitable base density and a polynomial adjustment whose coefficients are determined by equating the moments of the density estimate to the sample moments. The second one assumes that the derivative of the logarithm of a density function can be represented as a rational function. This gives rise to a system of linear equations involving sample moments, the density estimate is then obtained by solving a differential equation. Unlike kernel density estimation, these methodologies are ideally suited to model ‘big data’ as they only require a limited number of moments, irrespective of the sample size. What is more, they produce simple closed form expressions that are amenable to algebraic manipulations. They also turn out to be more accurate as will be shown in several illustrative examples.

Keywords: density estimation, log-density, polynomial adjustments, sample moments

Procedia PDF Downloads 165
3968 Effect of Twin Cavities on the Axially Loaded Pile in Clay

Authors: Ali A. Al-Jazaairry, Tahsin T. Sabbagh

Abstract:

Presence of cavities in soil predictably induces ground deformation and changes in soil stress, which might influence adjacent existing pile foundations, though the effect of twin cavities on a nearby pile needs to be understood. This research is an attempt to identify the behaviour of piles subjected to axial load and embedded in cavitied clayey soil. A series of finite element modelling were conducted to investigate the performance of piled foundation located in such soils. The validity of the numerical simulation was evaluated by comparing it with available field test and alternative analytical model. The study involved many parameters such as twin cavities size, depth, spacing between cavities, and eccentricity of cavities from the pile axis on the pile performance subjected to axial load. The study involved many cases; in each case, a critical value has been found in which cavities’ presence has shown minimum impact on the behaviour of pile. Load-displacement relationships of the affecting parameters on the pile behaviour were presented to provide helpful information for designing piled foundation situated near twin underground cavities. It was concluded that the presence of the cavities within the soil mass reduces the ultimate capacity of pile. This reduction differs according to the size and location of the cavity.

Keywords: axial load, clay, finite element, pile, twin cavities, ultimate capacity

Procedia PDF Downloads 234
3967 The Investigation of Fiber Reinforcement Self-Compacting Concrete and Fiber Reinforcement Concrete

Authors: Orod Zarrin, Mohesn Ramezan Shirazi, Hassan Moniri

Abstract:

The use of pile foundations technique is developed to support structures and buildings on soft soil. The most important dynamic load that can affect the pile structure is earthquake vibrations. From the 1960s the comprehensive investigation of pile foundations during earthquake excitation indicate that, piles are subject to damage by affecting the superstructure integrity and serviceability. The main part of these research has been focused on the behavior of liquefiable soil and lateral spreading load on piles. During an earthquake, two types of stresses can damage the pile head, inertial load that is caused by superstructure and deformation which caused by the surrounding soil. Soil deformation and inertial load are associated with the acceleration developed in an earthquake. The acceleration amplitude at the ground surface depends on the magnitude of earthquakes, soil properties and seismic source distance. According to the investigation, the damage is between the liquefiable and non-liquefiable layers and also soft and stiff layers. This damage crushes the pile head by increasing the inertial load which is applied by the superstructure. On the other hand, the cracks on the piles due to the surrounding soil are directly related to the soil profile and causes cracks from small to large. And researchers have been listed the large cracks reason such as liquefaction, lateral spreading and inertial load. In the field of designing, elastic response of piles are always a challenge for designer in liquefaction soil, by allowing deflection at top of piles. Moreover, absence of plastic hinges in piles should be insured, because the damage in the piles is not observed directly. In this study, the performance and behavior of pile foundations during liquefaction and lateral spreading are investigated. And emphasize on the soil behavior in the liquefiable and non-liquefiable layers by different aspect of piles damage such as ranking, location and degree of damage are going to discuss.

Keywords: self-compacting concrete, fiber, tensile strength, post-cracking, direct and inverse technique

Procedia PDF Downloads 239
3966 Application of Electrochromic Glazing for Reducing Peak Cooling Loads

Authors: Ranojoy Dutta

Abstract:

HVAC equipment capacity has a direct impact on occupant comfort and energy consumption of a building. Glazing gains, especially in buildings with high window area, can be a significant contributor to the total peak load on the HVAC system, leading to over-sized systems that mostly operate at poor part load efficiency. In addition, radiant temperature, which largely drives occupant comfort in glazed perimeter zones, is often not effectively controlled despite the HVAC being designed to meet the air temperature set-point. This is due to short wave solar radiation transmitted through windows, that is not sensed by the thermostat until much later when the thermal mass in the room releases the absorbed solar heat to the indoor air. The implication of this phenomenon is increased cooling energy despite poor occupant comfort. EC glazing can significantly eliminate direct solar transmission through windows, reducing both the space cooling loads for the building and improving comfort for occupants near glazing. This paper will review the exact mechanism of how EC glazing would reduce the peak load under design day conditions, leading to reduced cooling capacity vs regular high-performance glazing. Since glazing heat transfer only affects the sensible load, system sizing will be evaluated both with and without the availability of a DOAS to isolate the downsizing potential of the primary cooling equipment when outdoor air is conditioned separately. Given the dynamic nature of glazing gains due to the sun’s movement, effective peak load mitigation with EC requires an automated control system that can predict solar movement and radiation levels so that the right tint state with the appropriate SHGC is utilized at any given time for a given façade orientation. Such an automated EC product will be evaluated for a prototype commercial office model situated in four distinct climate zones.

Keywords: electrochromic glazing, peak sizing, thermal comfort, glazing load

Procedia PDF Downloads 132
3965 Optimal Sensing Technique for Estimating Stress Distribution of 2-D Steel Frame Structure Using Genetic Algorithm

Authors: Jun Su Park, Byung Kwan Oh, Jin Woo Hwang, Yousok Kim, Hyo Seon Park

Abstract:

For the structural safety, the maximum stress calculated from the stress distribution of a structure is widely used. The stress distribution can be estimated by deformed shape of the structure obtained from measurement. Although the estimation of stress is strongly affected by the location and number of sensing points, most studies have conducted the stress estimation without reasonable basis on sensing plan such as the location and number of sensors. In this paper, an optimal sensing technique for estimating the stress distribution is proposed. This technique proposes the optimal location and number of sensing points for a 2-D frame structure while minimizing the error of stress distribution between analytical model and estimation by cubic smoothing splines using genetic algorithm. To verify the proposed method, the optimal sensor measurement technique is applied to simulation tests on 2-D steel frame structure. The simulation tests are performed under various loading scenarios. Through those tests, the optimal sensing plan for the structure is suggested and verified.

Keywords: genetic algorithm, optimal sensing, optimizing sensor placements, steel frame structure

Procedia PDF Downloads 533
3964 Forced Vibration of an Auxetic Cylindrical Shell Containing Fluid Under the Influence of Shock Load

Authors: Korosh Khorshidi

Abstract:

Due to the increasing use of different materials, such as auxetic structures, it is necessary to investigate mechanical phenomena, such as vibration, in structures made of these types of materials. This paper examines the forced vibrations of a three-layer cylindrical shell containing inviscid fluid under shock load. All three layers are made of aluminum, and the central layer is made of a re-entrant honeycomb cell structure. Using high-order shear deformation theories (HSDT) and Hamilton’s principle, the governing equations of the system have been extracted and solved by the Galerkin weighted residual method. The outputs of the Abaqus finite element software are used to validate the results. The system is investigated with both simple and clamped support conditions. Finally, this study investigates the influence of the geometrical parameters of the shell and the auxetic structure, as well as the type, intensity, duration, and location of the load, and the effect of the fluid on the dynamic and time responses.

Keywords: force vibration, cylindrical shell, auxetic structure, inviscid fluid

Procedia PDF Downloads 44
3963 Efficiency, Effectiveness, and Technological Change in Armed Forces: Indonesian Case

Authors: Citra Pertiwi, Muhammad Fikruzzaman Rahawarin

Abstract:

Government of Indonesia had committed to increasing its national defense the budget up to 1,5 percent of GDP. However, the budget increase does not necessarily allocate efficiently and effectively. Using Data Envelopment Analysis (DEA), the operational units of Indonesian Armed Forces are considered as a proxy to measure those two aspects. The bootstrap technique is being used as well to reduce uncertainty in the estimation. Additionally, technological change is being measured as a nonstationary component. Nearly half of the units are being estimated as fully efficient, with less than a third is considered as effective. Longer and larger sets of data might increase the robustness of the estimation in the future.

Keywords: bootstrap, effectiveness, efficiency, DEA, military, Malmquist, technological change

Procedia PDF Downloads 303
3962 Hydrodynamic Analysis of Journal Bearing Operating With Nanolubricants

Authors: R. Hariprakash, K. Prabhakaran Nair

Abstract:

In this paper, the static and dynamic characteristics of hydrodynamic journal bearings operating under nano lubricants are presented. Hydrodynamic journal bearings are used in turbo machines of power plants to support heavy load. In power plants, bearings are getting failure because of its inability to support the heavy load due to various reasons. Failures of bearings make the power plant to be shutdown. The load carrying capacity of journal bearing mainly depends upon the viscosity of the lubricants. The addition of nano particles on commercially available lubricant may enhance the viscosity of lubricant and in turn, change the performance characteristics. In the literature, though many studies have been carried out for the hydrodynamic bearing operating under Newtonian and non-Newtonian lubricants, studies on hydrodynamic bearings operating under nano lubricants is scarce. Thus, it is felt that there is a need to recompute the performance characteristics of journal bearings operating under nano lubricants.

Keywords: hydrodynamic, journal, bearing, analysis

Procedia PDF Downloads 435
3961 Influence of Flexural Reinforcement on the Shear Strength of RC Beams Without Stirrups

Authors: Guray Arslan, Riza Secer Orkun Keskin

Abstract:

Numerical investigations were conducted to study the influence of flexural reinforcement ratio on the diagonal cracking strength and ultimate shear strength of reinforced concrete (RC) beams without stirrups. Three-dimensional nonlinear finite element analyses (FEAs) of the beams with flexural reinforcement ratios ranging from 0.58% to 2.20% subjected to a mid-span concentrated load were carried out. It is observed that the load-deflection and load-strain curves obtained from the numerical analyses agree with those obtained from the experiments. It is concluded that flexural reinforcement ratio has a significant effect on the shear strength and deflection capacity of RC beams without stirrups. The predictions of the diagonal cracking strength and ultimate shear strength of beams obtained by using the equations defined by a number of codes and researchers are compared with each other and with the experimental values.

Keywords: finite element, flexural reinforcement, reinforced concrete beam, shear strength

Procedia PDF Downloads 331
3960 Analysis of Electromechanical Torsional Vibration in Large-Power AC Drive System Based on Virtual Inertia Control

Authors: Jin Wang, Chunyi Zhu, Chongjian Li, Dapeng Zheng

Abstract:

A method based on virtual inertia for suppressing electromechanical torsional vibration of a large-power AC drive system is presented in this paper. The main drive system of the rolling mill is the research object, and a two-inertia elastic model is established to study the mechanism of electromechanical torsional vibration. The improvement is made based on the control of the load observer. The virtual inertia control ratio K is added to the speed forward channel, and the feedback loop adds 1-K to design virtual inertia control. The control method combines the advantages of the positive and negative feedback control of the load observer, can achieve the purpose of controlling the moment of inertia of the motor from the perspective of electrical control, and effectively suppress oscillation.

Keywords: electromechanical torsional vibration, large-power AC drive system, load observer, simulation design

Procedia PDF Downloads 126
3959 Implemented Cascade with Feed Forward by Enthalpy Balance Superheated Steam Temperature Control for a Boiler with Distributed Control System

Authors: Kanpop Saion, Sakreya Chitwong

Abstract:

Control of superheated steam temperature in the steam generation is essential for the efficiency safety and increment age of the boiler. Conventional cascade PID temperature control in the super heater is known to be efficient to compensate disturbance. However, the complex of thermal power plant due to nonlinearity, load disturbance and time delay of steam of superheater system is bigger than other control systems. The cascade loop with feed forward steam temperature control with energy balance compensator using thermodynamic model has been used for the compensation the complex structure of superheater. In order to improve the performance of steam temperature control. The experiment is implemented for 100% load steady and load changing state. The cascade with feed forward with energy balance steam temperature control has stabilized the system as well.

Keywords: cascade with feed forward, boiler, superheated steam temperature control, enthalpy balance

Procedia PDF Downloads 307
3958 Reduction of Dynamic Influences in Composite Rubber-Concrete Block Designed to Walls Construction

Authors: Maciej Major, Izabela Major

Abstract:

The aim of this paper is a numerical analysis of three-layered block design to walls construction subjected to the dynamic load. The block consists of the layers: concrete with rubber pads in shape of crosses, space filled with air and concrete with I-shape rubber pads. The main purpose of rubber inserts embedded during the production process is additional protection against the transversal dynamic load. For the analysis, as rubber, the Zahorski hyperelastic incompressible material model was assumed. A concentrated force as dynamic load applied to the external block surface was investigated. The results for the considered block observed as the stress distribution plot were compared to the results obtained for the solid concrete block. In order to estimate the percentage damping of proposed composite, rubber-concrete block in relation to the solid block the numerical analysis with the use of finite element method based on ADINA software was performed.

Keywords: dynamics, composite, rubber, Zahorski

Procedia PDF Downloads 242
3957 Studying the Structural Behaviour of RC Beams with Circular Openings of Different Sizes and Locations Using FE Method

Authors: Ali Shubbar, Hasanain Alwan, Ee Yu Phur, John McLoughlin, Ameer Al-khaykan

Abstract:

This paper aims to investigate the structural behaviour of RC beams with circular openings of different sizes and locations modelled using ABAQUS FEM software. Seven RC beams with the dimensions of 1200 mm×150 mm×150 mm were tested under three-point loading. Group A consists of three RC beams incorporating circular openings with diameters of 40 mm, 55 mm and 65 mm in the shear zone. However, Group B consists of three RC beams incorporating circular openings with diameters of 40 mm, 55 mm and 65 mm in the flexural zone. The final RC beam did not have any openings, to provide a control beam for comparison. The results show that increasing the diameter of the openings increases the maximum deflection and the ultimate failure load decreases relative to the control beam. In the shear zone, the presence of the openings caused an increase in the maximum deflection ranging between 4% and 22% and a decrease in the ultimate failure load of between 26% and 36% compared to the control beam. However, the presence of the openings in the flexural zone caused an increase in the maximum deflection of between 1.5% and 19.7% and a decrease in the ultimate failure load of between 6% and 13% relative to the control beam. In this study, the optimum location for placing circular openings was found to be in the flexural zone of the beam with a diameter of less than 30% of the depth of the beam.

Keywords: ultimate failure load, maximum deflection, shear zone and flexural zone

Procedia PDF Downloads 275
3956 Long-Term Structural Behavior of Resilient Materials for Reduction of Floor Impact Sound

Authors: Jung-Yoon Lee, Jongmun Kim, Hyo-Jun Chang, Jung-Min Kim

Abstract:

People’s tendency towards living in apartment houses is increasing in a densely populated country. However, some residents living in apartment houses are bothered by noise coming from the houses above. In order to reduce noise pollution, the communities are increasingly imposing a bylaw, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused on the specific long-time deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program consisted of testing nine floor sound insulation specimens subjected to sustained load for 45 days. Two main parameters were considered in the experimental investigation: three types of resilient materials and magnitudes of loads. The test results indicated that the structural behavior of the floor sound insulation systems under long-time load was quite different from that the systems under short-time load. The loading period increased the deflection of floor sound insulation systems and the increasing rate of the long-time deflection of the systems with ethylene vinyl acetate was smaller than that of the systems with low density ethylene polystyrene.

Keywords: resilient materials, floor sound insulation systems, long-time deflection, sustained load, noise pollution

Procedia PDF Downloads 269
3955 Building Information Modeling-Based Approach for Automatic Quantity Take-off and Cost Estimation

Authors: Lo Kar Yin, Law Ka Mei

Abstract:

Architectural, engineering, construction and operations (AECO) industry practitioners have been well adapting to the dynamic construction market from the fundamental training of its discipline. As further triggered by the pandemic since 2019, great steps are taken in virtual environment and the best collaboration is strived with project teams without boundaries. With adoption of Building Information Modeling-based approach and qualitative analysis, this paper is to review quantity take-off and cost estimation process through modeling techniques in liaison with suppliers, fabricators, subcontractors, contractors, designers, consultants and services providers in the construction industry value chain for automatic project cost budgeting, project cost control and cost evaluation on design options of in-situ reinforced-concrete construction and Modular Integrated Construction (MiC) at design stage, variation of works and cash flow/spending analysis at construction stage as far as practicable, with a view to sharing the findings for enhancing mutual trust and co-operation among AECO industry practitioners. It is to foster development through a common prototype of design and build project delivery method in NEC Engineering and Construction Contract (ECC) Options A and C.

Keywords: building information modeling, cost estimation, quantity take-off, modeling techniques

Procedia PDF Downloads 189
3954 The Analysis Fleet Operational Performance as an Indicator of Load and Haul Productivity

Authors: Linet Melisa Daubanes, Nhleko Monique Chiloane

Abstract:

The shovel-truck system is the most prevalent material handling system used in surface mining operations. Material handling entails the loading and hauling of material from production areas to dumping areas. The material handling process has operational delays that have a negative impact on the productivity of the load and haul fleet. Factors that may contribute to operational delays include shovel-truck mismatch, haul routes, machine breakdowns, extreme weather conditions, etc. The aim of this paper is to investigate factors that contribute to operational delays affecting the productivity of the load and haul fleet at the mine. Productivity is the measure of the effectiveness of producing products from a given quantity of units, the ratio of output to inputs. Productivity can be improved by producing more outputs with the same or fewer units and/or introducing better working methods etc. Several key performance indicators (KPI) for the evaluation of productivity will be discussed in this study. These KPIs include but are not limited to hauling conditions, bucket fill factor, cycle time, and utilization. The research methodology of this study is a combination of on-site time studies and observations. Productivity can be optimized by managing the factors that affect the operational performance of the haulage fleet.

Keywords: cycle time, fleet performance, load and haul, surface mining

Procedia PDF Downloads 199
3953 The Modelling of Real Time Series Data

Authors: Valeria Bondarenko

Abstract:

We proposed algorithms for: estimation of parameters fBm (volatility and Hurst exponent) and for the approximation of random time series by functional of fBm. We proved the consistency of the estimators, which constitute the above algorithms, and proved the optimal forecast of approximated time series. The adequacy of estimation algorithms, approximation, and forecasting is proved by numerical experiment. During the process of creating software, the system has been created, which is displayed by the hierarchical structure. The comparative analysis of proposed algorithms with the other methods gives evidence of the advantage of approximation method. The results can be used to develop methods for the analysis and modeling of time series describing the economic, physical, biological and other processes.

Keywords: mathematical model, random process, Wiener process, fractional Brownian motion

Procedia PDF Downloads 358
3952 Enhancing Athlete Training using Real Time Pose Estimation with Neural Networks

Authors: Jeh Patel, Chandrahas Paidi, Ahmed Hambaba

Abstract:

Traditional methods for analyzing athlete movement often lack the detail and immediacy required for optimal training. This project aims to address this limitation by developing a Real-time human pose estimation system specifically designed to enhance athlete training across various sports. This system leverages the power of convolutional neural networks (CNNs) to provide a comprehensive and immediate analysis of an athlete’s movement patterns during training sessions. The core architecture utilizes dilated convolutions to capture crucial long-range dependencies within video frames. Combining this with the robust encoder-decoder architecture to further refine pose estimation accuracy. This capability is essential for precise joint localization across the diverse range of athletic poses encountered in different sports. Furthermore, by quantifying movement efficiency, power output, and range of motion, the system provides data-driven insights that can be used to optimize training programs. Pose estimation data analysis can also be used to develop personalized training plans that target specific weaknesses identified in an athlete’s movement patterns. To overcome the limitations posed by outdoor environments, the project employs strategies such as multi-camera configurations or depth sensing techniques. These approaches can enhance pose estimation accuracy in challenging lighting and occlusion scenarios, where pose estimation accuracy in challenging lighting and occlusion scenarios. A dataset is collected From the labs of Martin Luther King at San Jose State University. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing different poses, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced pose detection model and lays the groundwork for future innovations in assistive enhancement technologies.

Keywords: computer vision, deep learning, human pose estimation, U-NET, CNN

Procedia PDF Downloads 59
3951 Nonlinear Response of Infinite Beams on a Multilayer Tensionless Extensible Geosynthetic – Reinforced Earth Bed under Moving Load

Authors: K. Karuppasamy

Abstract:

In this paper analysis of an infinite beam resting on multilayer tensionless extensible geosynthetic reinforced granular fill - poor soil system overlying soft soil strata under moving the load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear Winkler springs representing the underlying the very poor soil. The multilayer tensionless extensible geosynthetic layer has been assumed to deform such that at the interface the geosynthetic and the soil have some deformation. Nonlinear behavior of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Governing differential equations of the soil foundation system have been obtained and solved with the help of appropriate boundary conditions. The solution has been obtained by employing finite difference method by means of Gauss-Siedel iterative scheme. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil – foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. These parameters include the magnitude of applied load, the velocity of the load, damping, the ultimate resistance of the poor soil and granular fill layer. The range of values of parameters has been considered as per Indian Railways conditions. This study clearly observed that the comparisons of multilayer tensionless extensible geosynthetic reinforcement with poor foundation soil and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil – foundation system. However, for the considered range of velocity, the response has been found to be insensitive towards velocity. The ultimate resistance of granular fill layer has also been found to have no significant influence on the response of the system.

Keywords: infinite beams, multilayer tensionless extensible geosynthetic, granular layer, moving load and nonlinear behavior of poor soil

Procedia PDF Downloads 438
3950 Performance Evaluation of Task Scheduling Algorithm on LCQ Network

Authors: Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad

Abstract:

The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and distributed computing system. This paper deals with the problem of dynamic scheduling on a special type of multiprocessor architecture known as Linear Crossed Cube (LCQ) network. This proposed multiprocessor is a hybrid network which combines the features of both linear type of architectures as well as cube based architectures. Two standard dynamic scheduling schemes namely Minimum Distance Scheduling (MDS) and Two Round Scheduling (TRS) schemes are implemented on the LCQ network. Parallel tasks are mapped and the imbalance of load is evaluated on different set of processors in LCQ network. The simulations results are evaluated and effort is made by means of through analysis of the results to obtain the best solution for the given network in term of load imbalance left and execution time. The other performance matrices like speedup and efficiency are also evaluated with the given dynamic algorithms.

Keywords: dynamic algorithm, load imbalance, mapping, task scheduling

Procedia PDF Downloads 451
3949 Lateral Capacity of Helical-Pile Groups Subjected to Bearing Combined Loads

Authors: Hesham Hamdy Abdelmohsen, Ahmed Shawky Abdul Azizb, Mona Fawzy Aldaghma

Abstract:

Helical piles have earned considerable attention as an effective deep foundation alternative due to their rapid installation process and their dual purpose in compression and tension. These piles find common uses as foundations for structures like solar panels, wind turbines, offshore platforms, and some kinds of retaining walls. These structures usually transfer different combinations of loads to their helical-pile foundations in the form of axial and lateral loads. Extensive research has been conducted to investigate and understand the behavior of these piles under the influence of either axial or lateral loads. However, the impacts of loading patterns that may act on the helical piles as combinations of axial compression and lateral loads still need more efforts of research work. This paper presents the results of an experimental (Lab tests) and numerical (PLAXIS-3D) study performed on vertical helical-pile groups under the action of combined loads as axial compression (bearing loads), acting successively with lateral (horizontal) loads. The study aims to clarify the effects of key factors, like helix location and direction of lateral load, on the lateral capacity of helical-pile groups and, consequently, on group efficiency. Besides the variation of helix location and lateral load direction, three patterns of successive bearing combined loads were considered, in which the axial vertical compression load was either zero, V1 or V2, whereas the lateral horizontal loads were varied under each vertical compression load. The study concluded that the lateral capacity of the helical-pile group is significantly affected by helix location within the length of the pile shaft. The optimal lateral performance is achieved with helices at a depth ratio of H/L = 0.4. Furthermore, groups of rectangular plan distribution exhibit greater lateral capacity if subjected to lateral horizontal load in the direction of its long axis. Additionally, the research emphasizes that the presence of vertical compression loading can enhance the lateral capacity of the group. This enhancement depends on the value of the vertical compression load, lateral load direction, and helix location, which highlights the complex interaction effect of these factors on the efficiency of helical-pile groups.

Keywords: helical piles, experimental, numerical, lateral loading, group efficiency

Procedia PDF Downloads 36