Search results for: interactive layout design system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26898

Search results for: interactive layout design system

26388 Design and Analysis of Wireless Charging Lane for Light Rail Transit

Authors: Watcharet Kongwarakom, Tosaphol Ratniyomchai, Thanatchai Kulworawanichpong

Abstract:

This paper presents a design and analysis of wireless charging lane system (WCLS) for light rail transit (LRT) by considering the performance of wireless charging, traffic conditions and energy consumption drawn by the LRT system. The dynamic of the vehicle movement in terms of the vehicle speed profile during running on the WCLS, a dwell time during stopping at the station for taking the WCLS and the capacity of the WCLS in each section are taken into account to alignment design of the WCLS. This paper proposes a case study of the design of the WCLS into 2 sub-cases including continuous and discontinuous WCLS with the same distance of WCLS in total. The energy consumption by the LRT through the WCLS with the different designs of the WCLS is compared to find out the better configuration of those two cases by considering the best performance of the power transfer between the LRT and the WCLS.

Keywords: Light rail transit, Wireless charging lane, Energy consumption, Power transfer

Procedia PDF Downloads 146
26387 Mooring Analysis of Duct-Type Tidal Current Power System in Shallow Water

Authors: Chul H. Jo, Do Y. Kim, Bong K. Cho, Myeong J. Kim

Abstract:

The exhaustion of oil and the environmental pollution from the use of fossil fuel are increasing. Tidal current power (TCP) has been proposed as an alternative energy source because of its predictability and reliability. By applying a duct and single point mooring (SPM) system, a TCP device can amplify the generating power and keep its position properly. Because the generating power is proportional to cube of the current stream velocity, amplifying the current speed by applying a duct to a TCP system is an effective way to improve the efficiency of the power device. An SPM system can be applied at any water depth and is highly cost effective. Simple installation and maintenance procedures are also merits of an SPM system. In this study, we designed an SPM system for a duct-type TCP device for use in shallow water. Motions of the duct are investigated to obtain the response amplitude operator (RAO) as the magnitude of the transfer function. Parameters affecting the stability of the SPM system such as the fairlead departure angle, current velocity, and the number of clamp weights are analyzed and/or optimized. Wadam and OrcaFlex commercial software is used to design the mooring line.

Keywords: mooring design, parametric analysis, RAO (Response Amplitude Operator), SPM (Single Point Mooring)

Procedia PDF Downloads 280
26386 CDM-Based Controller Design for High-Frequency Induction Heating System with LLC Tank

Authors: M. Helaimi, R. Taleb, D. Benyoucef, B. Belmadani

Abstract:

This paper presents the design of a polynomial controller with coefficient diagram method (CDM). This controller is used to control the output power of high frequency resonant inverter with LLC tank. One of the most important problems associated with the proposed inverter is achieving ZVS operating during the induction heating process. To overcome this problem, asymmetrical voltage cancellation (AVC) control technique is proposed. The phased look loop (PLL) is used to track the natural frequency of the system. The small signal model of the system with the proposed control is obtained using extending describing function method (EDM). The validity of the proposed control is verified by simulation results.

Keywords: induction heating, AVC control, CDM, PLL, resonant inverter

Procedia PDF Downloads 654
26385 Micro-Oculi Facades as a Sustainable Urban Facade

Authors: Ok-Kyun Im, Kyoung Hee Kim

Abstract:

We live in an era that faces global challenges of climate changes and resource depletion. With the rapid urbanization and growing energy consumption in the built environment, building facades become ever more important in architectural practice and environmental stewardship. Furthermore, building facade undergoes complex dynamics of social, cultural, environmental and technological changes. Kinetic facades have drawn attention of architects, designers, and engineers in the field of adaptable, responsive and interactive architecture since 1980’s. Materials and building technologies have gradually evolved to address the technical implications of kinetic facades. The kinetic façade is becoming an independent system of the building, transforming the design methodology to sustainable building solutions. Accordingly, there is a need for a new design methodology to guide the design of a kinetic façade and evaluate its sustainable performance. The research objectives are two-fold: First, to establish a new design methodology for kinetic facades and second, to develop a micro-oculi façade system and assess its performance using the established design method. The design approach to the micro-oculi facade is comprised of 1) façade geometry optimization and 2) dynamic building energy simulation. The façade geometry optimization utilizes multi-objective optimization process, aiming to balance the quantitative and qualitative performances to address the sustainability of the built environment. The dynamic building energy simulation was carried out using EnergyPlus and Radiance simulation engines with scripted interfaces. The micro-oculi office was compared with an office tower with a glass façade in accordance with ASHRAE 90.1 2013 to understand its energy efficiency. The micro-oculi facade is constructed with an array of circular frames attached to a pair of micro-shades called a micro-oculus. The micro-oculi are encapsulated between two glass panes to protect kinetic mechanisms with longevity. The micro-oculus incorporates rotating gears that transmit the power to adjacent micro-oculi to minimize the number of mechanical parts. The micro-oculus rotates around its center axis with a step size of 15deg depending on the sun’s position while maximizing daylighting potentials and view-outs. A 2 ft by 2ft prototyping was undertaken to identify operational challenges and material implications of the micro-oculi facade. In this research, a systematic design methodology was proposed, that integrates multi-objectives of kinetic façade design criteria and whole building energy performance simulation within a holistic design process. This design methodology is expected to encourage multidisciplinary collaborations between designers and engineers to collaborate issues of the energy efficiency, daylighting performance and user experience during design phases. The preliminary energy simulation indicated that compared to a glass façade, the micro-oculi façade showed energy savings due to its improved thermal properties, daylighting attributes, and dynamic solar performance across the day and seasons. It is expected that the micro oculi façade provides a cost-effective, environmentally-friendly, sustainable, and aesthetically pleasing alternative to glass facades. Recommendations for future studies include lab testing to validate the simulated data of energy and optical properties of the micro-oculi façade. A 1:1 performance mock-up of the micro-oculi façade can suggest in-depth understanding of long-term operability and new development opportunities applicable for urban façade applications.

Keywords: energy efficiency, kinetic facades, sustainable architecture, urban facades

Procedia PDF Downloads 245
26384 Mathematical Modelling of Human Cardiovascular-Respiratory System Response to Exercise in Rwanda

Authors: Jean Marie Ntaganda, Froduald Minani, Wellars Banzi, Lydie Mpinganzima, Japhet Niyobuhungiro, Jean Bosco Gahutu, Vincent Dusabejambo, Immaculate Kambutse

Abstract:

In this paper, we present a nonlinear dynamic model for the interactive mechanism of the cardiovascular and respiratory system. The model is designed and analyzed for human during physical exercises. In order to verify the adequacy of the designed model, data collected in Rwanda are used for validation. We have simulated the impact of heart rate and alveolar ventilation as controls of cardiovascular and respiratory system respectively to steady state response of the main cardiovascular hemodynamic quantities i.e., systemic arterial and venous blood pressures, arterial oxygen partial pressure and arterial carbon dioxide partial pressure, to the stabilised values of controls. We used data collected in Rwanda for both male and female during physical activities. We obtained a good agreement with physiological data in the literature. The model may represent an important tool to improve the understanding of exercise physiology.

Keywords: exercise, cardiovascular/respiratory, hemodynamic quantities, numerical simulation, physical activity, sportsmen in Rwanda, system

Procedia PDF Downloads 232
26383 Microwave Security System in Museums: Design and Implementation

Authors: Dalia Elsheakh, Hala Elsadek

Abstract:

The objective of this paper is to propose a competitive microwave security system that can be applied with reasonable price at museums in Egypt, considering the priceless elements in 23 Egyptian museums countrywide and the lack of good recent security systems even in big ones. The system main goal is to detect valuable targets to ensure their presence in the pre-defined positions in order to protect them from being stolen. The system is based on real time microwave scanning for the required space volume through transmitting RF waves at consecutive angles and detecting the back scattered waves from required objects to detect their existence at pre-specified locations.

Keywords: microwave security system, object locating system, real time locating system (RTLS), antenna array, array electronic scanning

Procedia PDF Downloads 334
26382 Influence of Visual Merchandising Elements on Instant Purchase

Authors: Pooja Sharma, Renu Jain, Alka David

Abstract:

The primary goal of this research is to comprehend the many features of visual merchandising (VM) and impulsive or instant purchasing behavior. It aims to explain the link between visual merchandising and customer purchasing behavior. The reviews were compiled from research articles, professional journal articles, and the opinions of many authors. It also discusses the impact of different internal and external VM elements on instant purchasing. The visual merchandising elements are divided into two sections: interior element (inside the display, spaces, and layout, fixtures, mannequins, attention-grabbing device) and outside element (outside display, space, and layout, fixture, mannequins, attention-grabbing device) (Window Display, Exterior signs, Marquees, Entrance, color, and texture). By focusing on selected clothing stores from the four markets of Bhopal city, we discovered that the exterior elements (window display, color, and texture) and interior elements (mannequins like dummies and fixtures such as lighting) have a significant positive impact on instant buying among the elements of Visual merchandising.

Keywords: instant purchase, visual merchandising, instant buying behavior, consumer behavior, window display, fixtures, mannequins, marquees

Procedia PDF Downloads 102
26381 Functional Decomposition Based Effort Estimation Model for Software-Intensive Systems

Authors: Nermin Sökmen

Abstract:

An effort estimation model is needed for software-intensive projects that consist of hardware, embedded software or some combination of the two, as well as high level software solutions. This paper first focuses on functional decomposition techniques to measure functional complexity of a computer system and investigates its impact on system development effort. Later, it examines effects of technical difficulty and design team capability factors in order to construct the best effort estimation model. With using traditional regression analysis technique, the study develops a system development effort estimation model which takes functional complexity, technical difficulty and design team capability factors as input parameters. Finally, the assumptions of the model are tested.

Keywords: functional complexity, functional decomposition, development effort, technical difficulty, design team capability, regression analysis

Procedia PDF Downloads 278
26380 NSBS: Design of a Network Storage Backup System

Authors: Xinyan Zhang, Zhipeng Tan, Shan Fan

Abstract:

The first layer of defense against data loss is the backup data. This paper implements an agent-based network backup system used the backup, server-storage and server-backup agent these tripartite construction, and we realize the snapshot and hierarchical index in the NSBS. It realizes the control command and data flow separation, balances the system load, thereby improving the efficiency of the system backup and recovery. The test results show the agent-based network backup system can effectively improve the task-based concurrency, reasonably allocate network bandwidth, the system backup performance loss costs smaller and improves data recovery efficiency by 20%.

Keywords: agent, network backup system, three architecture model, NSBS

Procedia PDF Downloads 447
26379 Optimal Harmonic Filters Design of Taiwan High Speed Rail Traction System

Authors: Ying-Pin Chang

Abstract:

This paper presents a method for combining a particle swarm optimization with nonlinear time-varying evolution and orthogonal arrays (PSO-NTVEOA) in the planning of harmonic filters for the high speed railway traction system with specially connected transformers in unbalanced three-phase power systems. The objective is to minimize the cost of the filter, the filters loss, the total harmonic distortion of currents and voltages at each bus simultaneously. An orthogonal array is first conducted to obtain the initial solution set. The set is then treated as the initial training sample. Next, the PSO-NTVEOA method parameters are determined by using matrix experiments with an orthogonal array, in which a minimal number of experiments would have an effect that approximates the full factorial experiments. This PSO-NTVEOA method is then applied to design optimal harmonic filters in Taiwan High Speed Rail (THSR) traction system, where both rectifiers and inverters with IGBT are used. From the results of the illustrative examples, the feasibility of the PSO-NTVEOA to design an optimal passive harmonic filter of THSR system is verified and the design approach can greatly reduce the harmonic distortion. Three design schemes are compared that V-V connection suppressing the 3rd order harmonic, and Scott and Le Blanc connection for the harmonic improvement is better than the V-V connection.

Keywords: harmonic filters, particle swarm optimization, nonlinear time-varying evolution, orthogonal arrays, specially connected transformers

Procedia PDF Downloads 379
26378 Pod and Wavelets Application for Aerodynamic Design Optimization

Authors: Bonchan Koo, Junhee Han, Dohyung Lee

Abstract:

The research attempts to evaluate the accuracy and efficiency of a design optimization procedure which combines wavelets-based solution algorithm and proper orthogonal decomposition (POD) database management technique. Aerodynamic design procedure calls for high fidelity computational fluid dynamic (CFD) simulations and the consideration of large number of flow conditions and design constraints. Even with significant computing power advancement, current level of integrated design process requires substantial computing time and resources. POD reduces the degree of freedom of full system through conducting singular value decomposition for various field simulations. For additional efficiency improvement of the procedure, adaptive wavelet technique is also being employed during POD training period. The proposed design procedure was applied to the optimization of wing aerodynamic performance. Throughout the research, it was confirmed that the POD/wavelets design procedure could significantly reduce the total design turnaround time and is also able to capture all detailed complex flow features as in full order analysis.

Keywords: POD (Proper Orthogonal Decomposition), wavelets, CFD, design optimization, ROM (Reduced Order Model)

Procedia PDF Downloads 459
26377 Optimization and Simulation Models Applied in Engineering Planning and Management

Authors: Abiodun Ladanu Ajala, Wuyi Oke

Abstract:

Mathematical simulation and optimization models packaged within interactive computer programs provide a common way for planners and managers to predict the behaviour of any proposed water resources system design or management policy before it is implemented. Modeling presents a principal technique of predicting the behaviour of the proposed infrastructural designs or management policies. Models can be developed and used to help identify specific alternative plans that best meet those objectives. This study discusses various types of models, their development, architecture, data requirements, and applications in the field of engineering. It also outlines the advantages and limitations of each the optimization and simulation models presented. The techniques explored in this review include; dynamic programming, linear programming, fuzzy optimization, evolutionary algorithms and finally artificial intelligence techniques. Previous studies carried out using some of the techniques mentioned above were reviewed, and most of the results from different researches showed that indeed optimization and simulation provides viable alternatives and predictions which form a basis for decision making in building engineering structures and also in engineering planning and management.

Keywords: linear programming, mutation, optimization, simulation

Procedia PDF Downloads 574
26376 A Holistic Approach for Technical Product Optimization

Authors: Harald Lang, Michael Bader, A. Buchroithner

Abstract:

Holistic methods covering the development process as a whole – e.g. systems engineering – have established themselves in product design. However, technical product optimization, representing improvements in efficiency and/or minimization of loss, usually applies to single components of a system. A holistic approach is being defined based on a hierarchical point of view of systems engineering. This is subsequently presented using the example of an electromechanical flywheel energy storage system for automotive applications.

Keywords: design, product development, product optimization, systems engineering

Procedia PDF Downloads 616
26375 Design Optimisation of a Novel Cross Vane Expander-Compressor Unit for Refrigeration System

Authors: Y. D. Lim, K. S. Yap, K. T. Ooi

Abstract:

In recent years, environmental issue has been a hot topic in the world, especially the global warming effect caused by conventional non-environmentally friendly refrigerants has increased. Several studies of a more energy-efficient and environmentally friendly refrigeration system have been conducted in order to tackle the issue. In search of a better refrigeration system, CO2 refrigeration system has been proposed as a better option. However, the high throttling loss involved during the expansion process of the refrigeration cycle leads to a relatively low efficiency and thus the system is impractical. In order to improve the efficiency of the refrigeration system, it is suggested by replacing the conventional expansion valve in the refrigeration system with an expander. Based on this issue, a new type of expander-compressor combined unit, named Cross Vane Expander-Compressor (CVEC) was introduced to replace the compressor and the expansion valve of a conventional refrigeration system. A mathematical model was developed to calculate the performance of CVEC, and it was found that the machine is capable of saving the energy consumption of a refrigeration system by as much as 18%. Apart from energy saving, CVEC is also geometrically simpler and more compact. To further improve its efficiency, optimization study of the device is carried out. In this report, several design parameters of CVEC were chosen to be the variables of optimization study. This optimization study was done in a simulation program by using complex optimization method, which is a direct search, multi-variables and constrained optimization method. It was found that the main design parameters, which was shaft radius was reduced around 8% while the inner cylinder radius was remained unchanged at its lower limit after optimization. Furthermore, the port sizes were increased to their upper limit after optimization. The changes of these design parameters have resulted in reduction of around 12% in the total frictional loss and reduction of 4% in power consumption. Eventually, the optimization study has resulted in an improvement in the mechanical efficiency CVEC by 4% and improvement in COP by 6%.

Keywords: complex optimization method, COP, cross vane expander-compressor, CVEC, design optimization, direct search, energy saving, improvement, mechanical efficiency, multi variables

Procedia PDF Downloads 362
26374 Working Capital Management and Profitability of Uk Firms: A Contingency Theory Approach

Authors: Ishmael Tingbani

Abstract:

This paper adopts a contingency theory approach to investigate the relationship between working capital management and profitability using data of 225 listed British firms on the London Stock Exchange for the period 2001-2011. The paper employs a panel data analysis on a series of interactive models to estimate this relationship. The findings of the study confirm the relevance of the contingency theory. Evidence from the study suggests that the impact of working capital management on profitability varies and is constrained by organizational contingencies (environment, resources, and management factors) of the firm. These findings have implications for a more balanced and nuanced view of working capital management policy for policy-makers.

Keywords: working capital management, profitability, contingency theory approach, interactive models

Procedia PDF Downloads 325
26373 Early Phase Design Study of a Sliding Door with Multibody Simulations

Authors: Erkan Talay, Mustafa Yigit Yagci

Abstract:

For the systems like sliding door, designers should predict not only strength but also dynamic behavior of the system and this prediction usually becomes more critical if design has radical changes refer to previous designs. Also, sometimes physical tests could cost more than expected, especially for rail geometry changes, since this geometry affects design of the body. The aim of the study is to observe and understand the dynamics of the sliding door in virtual environment. For this, multibody dynamic model of the sliding door was built and then affects of various parameters like rail geometry, roller diameters, or center of mass detected. Also, a design of experiment study was performed to observe interactions of these parameters.

Keywords: design of experiment, minimum closing effort, multibody simulation, sliding door

Procedia PDF Downloads 127
26372 Practice on Design Knowledge Management and Transfer across the Life Cycle of a New-Built Nuclear Power Plant in China

Authors: Danying Gu, Xiaoyan Li, Yuanlei He

Abstract:

As a knowledge-intensive industry, nuclear industry highly values the importance of safety and quality. The life cycle of a NPP (Nuclear Power Plant) can last 100 years from the initial research and design to its decommissioning. How to implement the high-quality knowledge management and how to contribute to a more safe, advanced and economic NPP (Nuclear Power Plant) is the most important issue and responsibility for knowledge management. As the lead of nuclear industry, nuclear research and design institute has competitive advantages of its advanced technology, knowledge and information, DKM (Design Knowledge Management) of nuclear research and design institute is the core of the knowledge management in the whole nuclear industry. In this paper, the study and practice on DKM and knowledge transfer across the life cycle of a new-built NPP in China is introduced. For this digital intelligent NPP, the whole design process is based on a digital design platform which includes NPP engineering and design dynamic analyzer, visualization engineering verification platform, digital operation maintenance support platform and digital equipment design, manufacture integrated collaborative platform. In order to make all the design data and information transfer across design, construction, commissioning and operation, the overall architecture of new-built digital NPP should become a modern knowledge management system. So a digital information transfer model across the NPP life cycle is proposed in this paper. The challenges related to design knowledge transfer is also discussed, such as digital information handover, data center and data sorting, unified data coding system. On the other hand, effective delivery of design information during the construction and operation phase will contribute to the comprehensive understanding of design ideas and components and systems for the construction contractor and operation unit, largely increasing the safety, quality and economic benefits during the life cycle. The operation and maintenance records generated from the NPP operation process have great significance for maintaining the operating state of NPP, especially the comprehensiveness, validity and traceability of the records. So the requirements of an online monitoring and smart diagnosis system of NPP is also proposed, to help utility-owners to improve the safety and efficiency.

Keywords: design knowledge management, digital nuclear power plant, knowledge transfer, life cycle

Procedia PDF Downloads 266
26371 Design of Control Systems for Grid Interconnection and Power Control of a Grid Tie Inverter for Micro-Grid Application

Authors: Deepak Choudhary

Abstract:

COEP-Microgrid, a project by the students of College of Engineering Pune aims at establishing a micro grid in the college campus serving as a living laboratory for research and development of novel grid technologies. Proposed micro grid has an AC-bus and DC-bus, interconnected together with a tie line DC-AC converter. In grid-connected mode AC bus of microgrid is synchronized with utility grid. Synchronization with utility grid requires grid and AC bus to have synchronism in frequency, phase sequence and voltage. Power flow requires phase difference between grid and AC bus. Control System is required to effectively regulate power flow between the grid and AC bus. The grid synchronizing control system is composed of frequency and phase control for regulated power flow and voltage control system for reduction of reactive power flow. The control system involves automatic active power flow control. It takes the feedback of DC link Capacitor and changes the power angle accordingly. Control system incorporating voltage, phase and power control was developed for grid-tie inverter. This paper discusses the design, simulation and practical implementation of control system described in various micro grid scenarios.

Keywords: microgrid, Grid-tie inverter, voltage control, automatic power control

Procedia PDF Downloads 647
26370 The Design of Smart Tactile Textiles for Therapeutic Applications

Authors: Karen Hong

Abstract:

Smart tactile textiles are a series of textile-based products that incorporates smart embedded technology to be utilized as tactile therapeutic applications for 2 main groups of target users. The first group of users will be children with sensory processing disorder who are suffering from tactile sensory dysfunction. Children with tactile sensory issues may have difficulty tolerating the sensations generated from the touch of certain textures on the fabrics. A series of smart tactile textiles, collectively known as ‘Tactile Toys’ are developed as tactile therapy play objects, exposing children to different types of touch sensations within textiles, enabling them to enjoy tactile experiences together with interactive play which will help them to overcome fear of certain touch sensations. The second group of users will be the elderly or geriatric patients who are suffering from deteriorating sense of touch. One of the common consequences of aging is suffering from deteriorating sense of touch and a decline in motoric function. With the focus in stimulating the sense of touch for this particular group of end users, another series of smart tactile textiles, collectively known as ‘Tactile Aids’ are developed also as tactile therapy. This range of products can help to maintain touch sensitivity and at the same time allowing the elderly to enjoy interactive play to practice their hand-eye coordination and enhancing their motor skills. These smart tactile textile products are being designed and tested out by the end users and have proofed their efficacy as tactile therapy enabling the users to lead a better quality of life.

Keywords: smart textiles, embedded technology, tactile therapy, tactile aids, tactile toys

Procedia PDF Downloads 169
26369 A Development of a Weight-Balancing Control System Based On Android Operating System

Authors: Rattanathip Rattanachai, Piyachai Petchyen, Kunyanuth Kularbphettong

Abstract:

This paper describes the development of a Weight- Balancing Control System based on the Android Operating System and it provides recommendations on ways of balancing of user’s weight based on daily metabolism process and need so that user can make informed decisions on his or her weight controls. The system also depicts more information on nutrition details. Furthermore, it was designed to suggest to users what kinds of foods they should eat and how to exercise in the right ways. We describe the design methods and functional components of this prototype. To evaluate the system performance, questionnaires for system usability and Black Box Testing were used to measure expert and user satisfaction. The results were satisfactory as followed: Means for experts and users were 3.94 and 4.07 respectively.

Keywords: weight-balancing control, Android operating system, daily metabolism, black box testing

Procedia PDF Downloads 459
26368 Improving the Efficiency of Repacking Process with Lean Technique: The Study of Read With Me Group Company Limited

Authors: Jirayut Phetchuen, Jongkol Srithorn

Abstract:

The study examines the unloading and repacking process of Read With Me Group Company Limited. The research aims to improve the old work process and build a new efficient process with the Lean Technique and new machines for faster delivery without increasing the number of employees. Currently, two employees work based on five days on and off. However, workplace injuries have delayed the delivery time, especially the delivery to the neighboring countries. After the process improvement, the working space increased by 25%, the Process Lead Time decreased by 40%, the work efficiency increased by 175.82%, and the work injuries rate was reduced to zero.

Keywords: lean technique, plant layout design, U-shaped disassembly line, value stream mapping

Procedia PDF Downloads 90
26367 Modeling Dynamics and Control of Transversal Vibration of an Underactuated Flexible Plate Using Controlled Lagrangian Method

Authors: Mahmood Khalghollah, Mohammad Tavallaeinejad, Mohammad Eghtesad

Abstract:

The method of Controlled Lagrangian is an energy shaping control technique for under actuated Lagrangian systems. Energy shaping control design methods are appealing as they retain the underlying nonlinear dynamics and can provide stability results that hold over larger domain than can be obtained using linear design and analysis. In the present study, controlled lagrangian is employed for designing a controller in an under actuated rotating flexible plate system. In the system of rotating flexible plate, due to its nonlinear characteristics and coupled dynamics of rigid and flexible components, controller design is a known challenge. In this paper, controller objectives are considered to be vibration reduction of flexible component and position control of the tip of the plate. To achieve the goals, a method based on both kinetic and potential energy shaping is introduced. The stability of the closed-loop system is investigated and proved around its equilibrium points. Moreover, the proposed controller is shown to be robust against disturbance and plant uncertainties.

Keywords: controlled lagrangian, underactuated system, flexible rotating plate, disturbance

Procedia PDF Downloads 439
26366 Rule Based Architecture for Collaborative Multidisciplinary Aircraft Design Optimisation

Authors: Nickolay Jelev, Andy Keane, Carren Holden, András Sóbester

Abstract:

In aircraft design, the jump from the conceptual to preliminary design stage introduces a level of complexity which cannot be realistically handled by a single optimiser, be that a human (chief engineer) or an algorithm. The design process is often partitioned along disciplinary lines, with each discipline given a level of autonomy. This introduces a number of challenges including, but not limited to: coupling of design variables; coordinating disciplinary teams; handling of large amounts of analysis data; reaching an acceptable design within time constraints. A number of classical Multidisciplinary Design Optimisation (MDO) architectures exist in academia specifically designed to address these challenges. Their limited use in the industrial aircraft design process has inspired the authors of this paper to develop an alternative strategy based on well established ideas from Decision Support Systems. The proposed rule based architecture sacrifices possibly elusive guarantees of convergence for an attractive return in simplicity. The method is demonstrated on analytical and aircraft design test cases and its performance is compared to a number of classical distributed MDO architectures.

Keywords: Multidisciplinary Design Optimisation, Rule Based Architecture, Aircraft Design, Decision Support System

Procedia PDF Downloads 346
26365 The Impact of Online Learning on Visual Learners

Authors: Ani Demetrashvili

Abstract:

As online learning continues to reshape the landscape of education, questions arise regarding its efficacy for diverse learning styles, particularly for visual learners. This abstract delves into the impact of online learning on visual learners, exploring how digital mediums influence their educational experience and how educational platforms can be optimized to cater to their needs. Visual learners comprise a significant portion of the student population, characterized by their preference for visual aids such as diagrams, charts, and videos to comprehend and retain information. Traditional classroom settings often struggle to accommodate these learners adequately, relying heavily on auditory and written forms of instruction. The advent of online learning presents both opportunities and challenges in addressing the needs of visual learners. Online learning platforms offer a plethora of multimedia resources, including interactive simulations, virtual labs, and video lectures, which align closely with the preferences of visual learners. These platforms have the potential to enhance engagement, comprehension, and retention by presenting information in visually stimulating formats. However, the effectiveness of online learning for visual learners hinges on various factors, including the design of learning materials, user interface, and instructional strategies. Research into the impact of online learning on visual learners encompasses a multidisciplinary approach, drawing from fields such as cognitive psychology, education, and human-computer interaction. Studies employ qualitative and quantitative methods to assess visual learners' preferences, cognitive processes, and learning outcomes in online environments. Surveys, interviews, and observational studies provide insights into learners' preferences for specific types of multimedia content and interactive features. Cognitive tasks, such as memory recall and concept mapping, shed light on the cognitive mechanisms underlying learning in digital settings. Eye-tracking studies offer valuable data on attentional patterns and information processing during online learning activities. The findings from research on the impact of online learning on visual learners have significant implications for educational practice and technology design. Educators and instructional designers can use insights from this research to create more engaging and effective learning materials for visual learners. Strategies such as incorporating visual cues, providing interactive activities, and scaffolding complex concepts with multimedia resources can enhance the learning experience for visual learners in online environments. Moreover, online learning platforms can leverage the findings to improve their user interface and features, making them more accessible and inclusive for visual learners. Customization options, adaptive learning algorithms, and personalized recommendations based on learners' preferences and performance can enhance the usability and effectiveness of online platforms for visual learners.

Keywords: online learning, visual learners, digital education, technology in learning

Procedia PDF Downloads 24
26364 Conceptual Design of a Telecommunications Equipment Container for Humanitarian Logistics

Authors: S. Parisi, Ch. Achillas, D. Aidonis, D. Folinas, N. Moussiopoulos

Abstract:

Preparedness addresses the strategy in disaster management that allows the implementation of successful operational response immediately after a disaster. With speed as the main driver, product design for humanitarian aid purposes is a key factor of success in situations of high uncertainty and urgency. Within this context, a telecommunications container (TC) has been designed that belongs to a group of containers that serve the purpose of immediate response to global disasters. The TC includes all the necessary equipment to establish a telecommunication center in the destroyed area within the first 72 hours of humanitarian operations. The design focuses on defining the topology of the various parts of equipment by taking into consideration factors of serviceability, functionality, human-product interaction, universal design language, energy consumption, sustainability and the interrelationship with the other containers. The concept parametric design has been implemented with SolidWorks® CAD system.

Keywords: telecommunications container, design, case study, humanitarian logistics

Procedia PDF Downloads 447
26363 Thinking about Drawing: The Evolution of Architectural Education in China After 1949

Authors: Wang Yanze

Abstract:

Architectural design results from the interaction between space and drawing. Stemming from the Beaux-Arts architectural education, drawing kept its dominant position in teaching and learning process for centuries. However, this education system is being challenged in the present time due to the development of the times. Based on the architectural education of China after 1949, a brief introduction to the history of the evolution of the design concept and drawing is given in this paper. Illustrating with the reference to the students’ works in Nanjing Institute of Technology, the predecessor of Southeast University, in China, the paper analyses the relationship between concept and representation, as well as the participation of Space, the modernism discourse. This process contains the transmission of the character of architects, the renovation of drawing skills and the profound social background. With different purposes, the emphasis on representation tends to be combined with the operation on space, and the role of drawing in architectural design process also changes. Therefore, based on the continuity of the traditional architectural education system, the discussion on the “Drawing of Space” in contemporary education system is proposed.

Keywords: architectural education, beaux-arts, drawing, modernism

Procedia PDF Downloads 477
26362 The Management Information System for Convenience Stores: Case Study in 7 Eleven Shop in Bangkok

Authors: Supattra Kanchanopast

Abstract:

The purpose of this research is to develop and design a management information system for 7 eleven shop in Bangkok. The system was designed and developed to meet users’ requirements via the internet network by use of application software such as My SQL for database management, Apache HTTP Server for Web Server and PHP Hypertext Preprocessor for an interface between web server, database and users. The system was designed into two subsystems as the main system, or system for head office, and the branch system for branch shops. These consisted of three parts which are classified by user management as shop management, inventory management and Point of Sale (POS) management. The implementation of the MIS for the mini-mart shop, can lessen the amount of paperwork and reduce repeating tasks so it may decrease the capital of the business and support an extension of branches in the future as well.

Keywords: convenience store, the management information system, inventory management, 7 eleven shop

Procedia PDF Downloads 459
26361 mm-Wave Wearable Edge Computing Module Hosted by Printed Ridge Gap Waveguide Structures: A Physical Layer Study

Authors: Matthew Kostawich, Mohammed Elmorsy, Mohamed Sayed Sifat, Shoukry Shams, Mahmoud Elsaadany

Abstract:

6G communication systems represent the nominal future extension of current wireless technology, where its impact is extended to touch upon all human activities, including medical, security, and entertainment applications. As a result, human needs are allocated among the highest priority aspects of the system design and requirements. 6G communications is expected to replace all the current video conferencing with interactive virtual reality meetings involving high data-rate transmission merged with massive distributed computing resources. In addition, the current expansion of IoT applications must be mitigated with significant network changes to provide a reasonable Quality of Service (QoS). This directly implies a high demand for Human-Computer Interaction (HCI) through mobile computing modules in future wireless communication systems. This article proposes the utilization of a Printed Ridge Gap Waveguide (PRGW) to host the wearable nodes. To the best of our knowledge, we propose for the first time a physical layer analysis within the context of a complete architecture. A thorough study is provided on the impact of the distortion of the guiding structure on the overall system performance. The proposed structure shows small latency and small losses, highlighting its compatibility with future applications.

Keywords: ridge gap waveguide, edge computing module, 6G, multimedia IoT applications

Procedia PDF Downloads 57
26360 Integration of Polarization States and Color Multiplexing through a Singular Metasurface

Authors: Tarik Sipahi

Abstract:

Photonics research continues to push the boundaries of optical science, and the development of metasurface technology has emerged as a transformative force in this domain. The work presents the intricacies of a unified metasurface design tailored for efficient polarization and color control in optical systems. The proposed unified metasurface serves as a singular, nanoengineered optical element capable of simultaneous polarization modulation and color encoding. Leveraging principles from metamaterials and nanophotonics, this design allows for unprecedented control over the behavior of light at the subwavelength scale. The metasurface's spatially varying architecture enables seamless manipulation of both polarization states and color wavelengths, paving the way for a paradigm shift in optical system design. The advantages of this unified metasurface are diverse and impactful. By consolidating functions that traditionally require multiple optical components, the design streamlines optical systems, reducing complexity and enhancing overall efficiency. This approach is particularly promising for applications where compactness, weight considerations, and multifunctionality are crucial. Furthermore, the proposed unified metasurface design not only enhances multifunctionality but also addresses key challenges in optical system design, offering a versatile solution for applications demanding compactness and lightweight structures. The metasurface's capability to simultaneously manipulate polarization and color opens new possibilities in diverse technological fields. The research contributes to the evolution of optical science by showcasing the transformative potential of metasurface technology, emphasizing its role in reshaping the landscape of optical system architectures. This work represents a significant step forward in the ongoing pursuit of pushing the boundaries of photonics, providing a foundation for future innovations in compact and efficient optical devices.

Keywords: metasurface, nanophotonics, optical system design, polarization control

Procedia PDF Downloads 42
26359 Rotational Energy Recovery System

Authors: Vijayendra Anil Menon, Ashwath Narayan Murali

Abstract:

The present day vehicles do not reuse the energy expelled in running the vehicle. The energy used to run the vehicle is expelled immediately.This has remained a constant for many decades. With all the vehicles running on non-renewable resources like fossil fuels, there is an urgent need to improve efficiency of the vehicles until a reliable replacement for fossil fuels is found.Our design is based on the concept of Kinetic energy recovery systems. Though our design lies in principle with the KERS, our design can be used in day-to-day driving. With our design, efficiency of vehicles increases and fuel conservation is possible thereby reducing the carbon footprint.

Keywords: KERS, Battery, Wheels, Efficiency.

Procedia PDF Downloads 377