Search results for: deep deterministic policy gradient (DDPG)
6297 Native Point Defects in ZnO
Authors: A. M. Gsiea, J. P. Goss, P. R. Briddon, Ramadan. M. Al-habashi, K. M. Etmimi, Khaled. A. S. Marghani
Abstract:
Using first-principles methods based on density functional theory and pseudopotentials, we have performed a details study of native defects in ZnO. Native point defects are unlikely to be cause of the unintentional n-type conductivity. Oxygen vacancies, which considered most often been invoked as shallow donors, have high formation energies in n-type ZnO, in edition are a deep donors. Zinc interstitials are shallow donors, with high formation energies in n-type ZnO, and thus unlikely to be responsible on their own for unintentional n-type conductivity under equilibrium conditions, as well as Zn antisites which have higher formation energies than zinc interstitials. Zinc vacancies are deep acceptors with low formation energies for n-type and in which case they will not play role in p-type coductivity of ZnO. Oxygen interstitials are stable in the form of electrically inactive split interstitials as well as deep acceptors at the octahedral interstitial site under n-type conditions. Our results may provide a guide to experimental studies of point defects in ZnO.Keywords: DFT, native, n-type, ZnO
Procedia PDF Downloads 5936296 The Effect of Crack Size, Orientation and Number on the Elastic Modulus of a Cracked Body
Authors: Mark T. Hanson, Alan T. Varughese
Abstract:
Osteoporosis is a disease affecting bone quality which in turn can increase the risk of low energy fractures. Treatment of osteoporosis using Bisphosphonates has the beneficial effect of increasing bone mass while at the same time has been linked to the formation of atypical femoral fractures. This has led to the increased study of micro-fractures in bones of patients using Bisphosphonate treatment. One of the mechanics related issues which have been identified in this regard is the loss in stiffness of bones containing one or many micro-fractures. Different theories have been put forth using fracture mechanics to determine the effect of crack presence on elastic properties such as modulus. However, validation of these results in a deterministic way has not been forthcoming. The present analysis seeks to provide this deterministic evaluation of fracture’s effect on the elastic modulus. In particular, the effect of crack size, crack orientation and crack number on elastic modulus is investigated. In particular, the Finite Element method is used to explicitly determine the elastic modulus reduction caused by the presence of cracks in a representative volume element. Single cracks of various lengths and orientations are examined as well as cases of multiple cracks. Cracks in tension as well as under shear stress are considered. Although the focus is predominantly two-dimensional, some three-dimensional results are also presented. The results obtained show the explicit reduction in modulus caused by the parameters of crack size, orientation and number noted above. The present results allow the interpretation of the various theories which currently exist in the literature.Keywords: cracks, elastic, fracture, modulus
Procedia PDF Downloads 1096295 Comparison of Two Maintenance Policies for a Two-Unit Series System Considering General Repair
Authors: Seyedvahid Najafi, Viliam Makis
Abstract:
In recent years, maintenance optimization has attracted special attention due to the growth of industrial systems complexity. Maintenance costs are high for many systems, and preventive maintenance is effective when it increases operations' reliability and safety at a reduced cost. The novelty of this research is to consider general repair in the modeling of multi-unit series systems and solve the maintenance problem for such systems using the semi-Markov decision process (SMDP) framework. We propose an opportunistic maintenance policy for a series system composed of two main units. Unit 1, which is more expensive than unit 2, is subjected to condition monitoring, and its deterioration is modeled using a gamma process. Unit 1 hazard rate is estimated by the proportional hazards model (PHM), and two hazard rate control limits are considered as the thresholds of maintenance interventions for unit 1. Maintenance is performed on unit 2, considering an age control limit. The objective is to find the optimal control limits and minimize the long-run expected average cost per unit time. The proposed algorithm is applied to a numerical example to compare the effectiveness of the proposed policy (policy Ⅰ) with policy Ⅱ, which is similar to policy Ⅰ, but instead of general repair, replacement is performed. Results show that policy Ⅰ leads to lower average cost compared with policy Ⅱ.Keywords: condition-based maintenance, proportional hazards model, semi-Markov decision process, two-unit series systems
Procedia PDF Downloads 1236294 Applications of AI, Machine Learning, and Deep Learning in Cyber Security
Authors: Hailyie Tekleselase
Abstract:
Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data
Procedia PDF Downloads 1266293 Analysis of Policy Issues on Computer-Based Testing in Nigeria
Authors: Samuel Oye Bandele
Abstract:
A policy is a system of principles to guide activities and strategic decisions of an organisation in order to achieve stated objectives and meeting expected outcomes. A Computer Based Test (CBT) policy is therefore a statement of intent to drive the CBT programmes, and should be implemented as a procedure or protocol. Policies are hence generally adopted by an organization or a nation. The concern here, in this paper, is the consideration and analysis of issues that are significant to evolving the acceptable policy that will drive the new CBT innovation in Nigeria. Public examinations and internal examinations in higher educational institutions in Nigeria are gradually making a radical shift from Paper Based or Paper-Pencil to Computer-Based Testing. The need to make an objective and empirical analysis of Policy issues relating to CBT became expedient. The following are some of the issues on CBT evolution in Nigeria that were identified as requiring policy backing. Prominent among them are requirements for establishing CBT centres, purpose of CBT, types and acquisition of CBT equipment, qualifications of staff: professional, technical and regular, security plans and curbing of cheating during examinations, among others. The descriptive research design was employed based on a population consisting of Principal Officers (Policymakers), Staff (Teaching and non-Teaching-Policy implementors), and CBT staff ( Technical and Professional- Policy supports) and candidates (internal and external). A fifty-item researcher-constructed questionnaire on policy issues was employed to collect data from 600 subjects drawn from higher institutions in South West Nigeria, using the purposive and stratified random sampling techniques. Data collected were analysed using descriptive (frequency counts, means and standard deviation) and inferential (t-test, ANOVA, regression and Factor analysis) techniques. Findings from this study showed, among others, that the factor loadings had significantly weights on the organizational and National policy issues on CBT innovation in Nigeria.Keywords: computer-based testing, examination, innovation, paper-based testing, paper pencil based testing, policy issues
Procedia PDF Downloads 2486292 An Empirical Investigation of Uncertainty and the Lumpy Investment Channel of Monetary Policy
Authors: Min Fang, Jiaxi Yang
Abstract:
Monetary policy could be less effective at stimulating investment during periods of elevated volatility than during normal times. In this paper, we argue that elevated volatility leads to a decrease in extensive margin investment incentive so that nominal stimulus generates less aggregate investment. To do this, we first empirically document that high volatility weakens firms’ investment responses to monetary stimulus. Such effects depend on the lumpiness nature of the firm-level investment. The findings are that the channel exists for all of the physical investment, innovation investment, and organization investment.Keywords: investment, irreversibility, volatility, uncertainty, firm heterogeneity, monetary policy
Procedia PDF Downloads 1066291 Consumer Market of Agricultural Products and Agricultural Policy in Georgia
Authors: G. Erkomaishvili, M. Kobalava, T. Lazariashvili, M. Saghareishvili
Abstract:
The article discusses the consumer market of agricultural products and agricultural policy in Georgia. It is noted that development of the strategic areas of the agricultural sector needs a special support. These strategic areas should create the country's major export potential. It is important to develop strategies to access to the international markets, form extensive marketing network etc., which will become the basis for the promotion and revenue growth of the country. The Georgian agricultural sector, with the right state policy and support, can achieve success and gain access to the world market with competitive agricultural products. The paper discusses the current condition of agriculture, export and import of agricultural products and agricultural policy in Georgia. The conducted research concludes the information that there is an increasing demand on the green goods in the world market. Natural and climatic conditions of Georgia give a serious possibility of implementing it. The research presents an agricultural development strategy in Georgia and the findings and based on them recommendations are proposed.Keywords: agriculture, export-import of agricultural products, agricultural cooperative society, agricultural policy, agricultural insurance
Procedia PDF Downloads 3196290 Towards Renewable Energy: A Qualitative Study of Biofuel Development Policy in Indonesia
Authors: Arie Yanwar Kapriadi
Abstract:
This research is aiming to develop deeper understanding of the scale of power that shaped the biofuel policy. This research is important for the following reasons. Firstly, this research will enrich the body of literature within the field of political ecology, scale and environmental governance. Secondly, by focussing on energy transition policies, this research offers a critical perspective on how government policy, aimed at delivering low carbon sustainable energy systems, being scaled and implemented through multi variate stakeholders. Finally, the research could help the government of Indonesia as a policy evaluation on delivering low carbon sustainable energy systems at the macro level that (possibility) being unable to be delivered at different scale and instead being perceived differently by different stakeholders. Qualitative method is applied particularly an in depth interview with government officials as well as policy stakeholders outside of government and people in positions of responsibility with regards to policy delivery. There are 4 field study location where interview took place as well as sites visit to some biofuel refining facilities. There are some major companies which involve on the production and distribution of biofuel and its relation with biofuel feedstock industry as the source of data. The research investigates how the government biofuel policies correlated with other policy issues such as land reclassification and carbon emission reduction which also influenced plantations expansion as well as its impact on the local people. The preliminary result shows tension of power between governing authorities caused the Indonesian biofuel policy being unfocused which led to failing to meet its mandatory blending target despite the abundance of its feedstock.Keywords: biofuel, energy transition, renewable energy, political ecology
Procedia PDF Downloads 1976289 The Detection of Implanted Radioactive Seeds on Ultrasound Images Using Convolution Neural Networks
Authors: Edward Holupka, John Rossman, Tye Morancy, Joseph Aronovitz, Irving Kaplan
Abstract:
A common modality for the treatment of early stage prostate cancer is the implantation of radioactive seeds directly into the prostate. The radioactive seeds are positioned inside the prostate to achieve optimal radiation dose coverage to the prostate. These radioactive seeds are positioned inside the prostate using Transrectal ultrasound imaging. Once all of the planned seeds have been implanted, two dimensional transaxial transrectal ultrasound images separated by 2 mm are obtained through out the prostate, beginning at the base of the prostate up to and including the apex. A common deep neural network, called DetectNet was trained to automatically determine the position of the implanted radioactive seeds within the prostate under ultrasound imaging. The results of the training using 950 training ultrasound images and 90 validation ultrasound images. The commonly used metrics for successful training were used to evaluate the efficacy and accuracy of the trained deep neural network and resulted in an loss_bbox (train) = 0.00, loss_coverage (train) = 1.89e-8, loss_bbox (validation) = 11.84, loss_coverage (validation) = 9.70, mAP (validation) = 66.87%, precision (validation) = 81.07%, and a recall (validation) = 82.29%, where train and validation refers to the training image set and validation refers to the validation training set. On the hardware platform used, the training expended 12.8 seconds per epoch. The network was trained for over 10,000 epochs. In addition, the seed locations as determined by the Deep Neural Network were compared to the seed locations as determined by a commercial software based on a one to three months after implant CT. The Deep Learning approach was within \strikeout off\uuline off\uwave off2.29\uuline default\uwave default mm of the seed locations determined by the commercial software. The Deep Learning approach to the determination of radioactive seed locations is robust, accurate, and fast and well within spatial agreement with the gold standard of CT determined seed coordinates.Keywords: prostate, deep neural network, seed implant, ultrasound
Procedia PDF Downloads 1986288 Heart Ailment Prediction Using Machine Learning Methods
Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula
Abstract:
The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting
Procedia PDF Downloads 516287 Electricity Sector's Status in Lebanon and Portfolio Optimization for the Future Electricity Generation Scenarios
Authors: Nour Wehbe
Abstract:
The Lebanese electricity sector is at the heart of a deep crisis. Electricity in Lebanon is supplied by Électricité du Liban (EdL) which has to suffer from technical and financial deficiencies for decades and proved to be insufficient and deficient as the demand still exceeds the supply. As a result, backup generation is widespread throughout Lebanon. The sector costs massive government resources and, on top of it, consumers pay massive additional amounts for satisfying their electrical needs. While the developed countries have been investing in renewable energy for the past two decades, the Lebanese government realizes the importance of adopting such energy sourcing strategies for the upgrade of the electricity sector in the country. The diversification of the national electricity generation mix has increased considerably in Lebanon's energy planning agenda, especially that a detailed review of the energy potential in Lebanon has revealed a great potential of solar and wind energy resources, a considerable potential of biomass resource, and an important hydraulic potential in Lebanon. This paper presents a review of the energy status of Lebanon, and illustrates a detailed review of the EDL structure with the existing problems and recommended solutions. In addition, scenarios reflecting implementation of policy projects are presented, and conclusions are drawn on the usefulness of a proposed evaluation methodology and the effectiveness of the adopted new energy policy for the electrical sector in Lebanon.Keywords: EdL Electricite du Liban, portfolio optimization, electricity generation mix, mean-variance approach
Procedia PDF Downloads 2486286 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: Dua Hişam, Serhat İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting
Procedia PDF Downloads 696285 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques
Authors: Chinlun Lai, Lunjyh Jiang
Abstract:
Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.Keywords: baby care system, Internet of Things, deep learning, machine vision
Procedia PDF Downloads 2246284 Effects of Dividend Policy on Firm Profitability and Growth in Light of Present Economic Conditions
Authors: Madani Chahinaz
Abstract:
This study aims to shed light on the impact of dividend policy on corporate profitability and its relationship to growth, considering the economic developments taking place. The study was conducted on a sample of seven companies for the period from 2014 to 2020, based on a set of determinants to select variables affecting dividend distribution, where the descriptive analytical approach relied upon using graphical data models. The study concluded that companies that follow a well-studied dividend distribution policy enjoy higher profitability rates, which contributes to enhancing their growth in light of the economic developments taking place. There is also no statistically significant relationship between the variables of total asset growth and fixed asset growth and profitability. The study also concluded that there is statistical significance for the relationship between the sales volume growth variable, the self-financing ratio variable, and dividend distribution at a significance level of 0.05, as the random effects model was able to explain 68% of the changes in dividend distribution policy.Keywords: dividend distribution policy, profitability, growth, self-financing ratio
Procedia PDF Downloads 96283 Analysis on the Effectiveness of the "Three-Exemption" Policy Aimed at Promoting Unpaid Blood Donation in Zhejiang
Authors: Ni Tang, Jinping Zhang
Abstract:
An effective and sustainable volunteer team is needed to create a more available blood supply system. In order to promote the sustainable development of blood donation in Zhejiang Province, China, a “three-exemption” policy was proposed in 2014: blood donors who received the National Award for unpaid blood donation may government-invested and funded parks, scenic spots and other places for free, visit non-profit medical institutions for free outpatient fees, and be exempted from urban public transportation fees. As the policy has been in place for seven years, this study evaluated the effectiveness of the policy by comparing the increasing rate of blood donation in Hangzhou (capital city of Zhejiang) before and after the policy using the intermittent time series analysis. The blood donation in Anhui, a Province near Zhejiang, was also compared as a negative control. Blood donation data from 2012 to 2018 were obtained from the donation center's official websites. The increasing rate of blood donation volume since 2012 in Hangzhou is 34.37 units/month, and after 2014, the increasing rate additionally increases 71.69 (p=0.1442), which indicating a statistically non-significant change after the policy. While as a negative control, in Anhui, the increasing rate of blood donation volume since 2012 is -163.3 unit/month, and the increasing rate additionally increases 167.2 (p=5.63e-07) after 2014. The result shows that the three-exemption policy had a certain level of impact on encouraging volunteers to donate blood, but the effect was not substantial. One possible reason for the ineffectiveness of the policy might be a lack of public awareness of the policy. On the other hand, this policy mainly waived unnecessary life expenses, such as fares and scenic entrance fees, and requires a certain number of blood donations, registration procedures, and blood donation certificates. Perhaps, reducing life-related expenses such as oil, water and electricity, could better attract people to participate in blood donation. This current study on the three-exemption policy provides a new direction for promoting people's blood donation. Incentive policies may require greater publicity and incentives. In order to better ensure the operation of the blood donation system, other policies, especially incentive policies, should be further explored.Keywords: blood donation, policy, Zhejiang, unpaid blood donation, three-exemption policy
Procedia PDF Downloads 2106282 The Concerns and Recommendations of Informal and Professional Caregivers for COVID-19 Policy for Homecare and Long-Term Care For People with Dementia: A Qualitative Study
Authors: Hanneke J. A. Smaling, Mandy Visser
Abstract:
One way to reduce the risk of COVID-19 infection is by preventing close interpersonal contact with distancing measures. These social distancing measures presented challenges to the health and wellbeing of people with dementia and their informal and professional caregivers. This study describes the concerns and recommendations of informal and professional caregivers for COVID-19 policy for home care and long-term care for people with dementia during the first and second COVID-19 wave in the Netherlands. In this qualitative interview study, 20 informal caregivers and 20 professional caregivers from home care services and long-term care participated. Interviews were analyzed using an inductive thematic analysis approach. Both informal and professional caregivers worried about getting infected or infecting others with COVID-19, the consequences of the distancing measures, and quality of care. There was a general agreement that policy in the second wave was better informed compared to the first wave. At an organizational level, the policy was remarkably flexible. Recommendations were given for dementia care (need to offer meaningful activities, improve the organization of care, more support for informal caregivers), policy (national vs. locally organization, social isolation measures, visitor policy), and communication. Our study contributes to the foundation of future care decisions by (inter)national policymakers, politicians, and healthcare organizations during the course of the COVID-19 pandemic, underlining the need for balance between safety and autonomy for people with dementia.Keywords: covid-19, dementia, home care, long-term care, policy
Procedia PDF Downloads 1366281 Flow of a Second Order Fluid through Constricted Tube with Slip Velocity at Wall Using Integral Method
Authors: Nosheen Zareen Khan, Abdul Majeed Siddiqui, Muhammad Afzal Rana
Abstract:
The steady flow of a second order fluid through constricted tube with slip velocity at wall is modeled and analyzed theoretically. The governing equations are simplified by implying no slip in radial direction. Based on Karman Pohlhausen procedure polynomial solution for axial velocity profile is presented. An expressions for pressure gradient, shear stress, separation and reattachment points and radial velocity are also calculated. The effect of slip and no slip velocity on velocity, shear stress, pressure gradient are discussed and depicted graphically. It is noted that when Reynolds number increases velocity of the fluid decreases in both slip and no slip conditions. It is also found that the wall shear stress, separation and reattachment points are strongly effected by Reynolds number.Keywords: approximate solution, constricted tube, non-Newtonian fluids, Reynolds number
Procedia PDF Downloads 3986280 Detecting Cyberbullying, Spam and Bot Behavior and Fake News in Social Media Accounts Using Machine Learning
Authors: M. D. D. Chathurangi, M. G. K. Nayanathara, K. M. H. M. M. Gunapala, G. M. R. G. Dayananda, Kavinga Yapa Abeywardena, Deemantha Siriwardana
Abstract:
Due to the growing popularity of social media platforms at present, there are various concerns, mostly cyberbullying, spam, bot accounts, and the spread of incorrect information. To develop a risk score calculation system as a thorough method for deciphering and exposing unethical social media profiles, this research explores the most suitable algorithms to our best knowledge in detecting the mentioned concerns. Various multiple models, such as Naïve Bayes, CNN, KNN, Stochastic Gradient Descent, Gradient Boosting Classifier, etc., were examined, and the best results were taken into the development of the risk score system. For cyberbullying, the Logistic Regression algorithm achieved an accuracy of 84.9%, while the spam-detecting MLP model gained 98.02% accuracy. The bot accounts identifying the Random Forest algorithm obtained 91.06% accuracy, and 84% accuracy was acquired for fake news detection using SVM.Keywords: cyberbullying, spam behavior, bot accounts, fake news, machine learning
Procedia PDF Downloads 366279 How Does the Interaction between Environmental and Intellectual Property Rights Affect Environmental Innovation? A Study of Seven OECD Countries
Authors: Aneeq Sarwar
Abstract:
This study assesses the interaction between environmental and intellectual property policy on the rate of invention of environmental inventions and specifically tests for whether there is a synergy between stricter IP regimes and stronger environmental policies. The empirical analysis uses firm and industry-level data from seven OECD countries from 2009 to 2015. We also introduce a new measure of environmental inventions using a Natural Language Processing Topic Modelling technique. We find that intellectual property policy strictness demonstrates greater effectiveness in encouraging inventiveness in environmental inventions when used in combination with stronger environmental policies. This study contributes to existing literature in two ways. First, it devises a method for better identification of environmental technologies, we demonstrate how our method is more comprehensive than existing methods as we are better able to identify not only environmental inventions, but also major components of said inventions. Second, we test how various policy regimes affect the development of environmental technologies, we are the first study to examine the interaction of the environmental and intellectual property policy on firm level innovation.Keywords: environmental economics, economics of innovation, environmental policy, firm level
Procedia PDF Downloads 1566278 The Effect of a New Reimbursement Policy for Discharge Planning Service
Authors: Chueh Chi-An, Chan Hui-Ya
Abstract:
Background and Aim: National Health Insurance (NHI) Administration released a new reimbursement policy for hospital patients who received a superior discharge plan on April 1, 2016. Each case could be claimed 1,500 points for fee-of service with related documents. The policy is considered a solution to help reducing the crowding in the emergency department, the length of stay of hospital, unplanned readmission rate and unplanned ER visit. This study aim is to explore the effect of the new reimbursement policy for discharge planning service in a medical center. Methods: The discharge team explained to general wards the new policy and encouraged early assessment, communication and connecting to community care for patients. They stated the benefit from the policy and asked documenting for reimbursement claiming from April to May 2016. The imbursement fee of NHI declaration from June 2015 to October 2017 was collected. The indicators included hospital occupancy rate, hospital bed turnover rate, long-term hospitalization rate, and patients’ satisfaction were analyzed after the policy implemented. Results: The results showed that the amount of service declaration was increasing from 2 cases in February 2016 to 110 cases in October 2017, the application rate was increasing from 0.029% to 1.576% of all inpatient cases, and the average payment from NHI was around 148,500 NT dollars per month in 2017. There are no significant differences in the indicators among hospital occupancy rate, hospital bed turnover rate, long-term hospitalization rate, and patients’ satisfaction. Conclusion: To provide a good discharge plan require a specialized case manager, the new reimbursement policy is too complicated and the total fee-of-service hospital could claim is too limited to hiring one. The results suggest more strategies combine with the new reimbursement policy will be needed.Keywords: discharge planning, reimbursement, unplanned ER visit, readmission rate
Procedia PDF Downloads 1746277 A Novel Exploration/Exploitation Policy Accelerating Learning In Both Stationary And Non Stationary Environment Navigation Tasks
Authors: Wiem Zemzem, Moncef Tagina
Abstract:
In this work, we are addressing the problem of an autonomous mobile robot navigating in a large, unknown and dynamic environment using reinforcement learning abilities. This problem is principally related to the exploration/exploitation dilemma, especially the need to find a solution letting the robot detect the environmental change and also learn in order to adapt to the new environmental form without ignoring knowledge already acquired. Firstly, a new action selection strategy, called ε-greedy-MPA (the ε-greedy policy favoring the most promising actions) is proposed. Unlike existing exploration/exploitation policies (EEPs) such as ε-greedy and Boltzmann, the new EEP doesn’t only rely on the information of the actual state but also uses those of the eventual next states. Secondly, as the environment is large, an exploration favoring least recently visited states is added to the proposed EEP in order to accelerate learning. Finally, various simulations with ball-catching problem have been conducted to evaluate the ε-greedy-MPA policy. The results of simulated experiments show that combining this policy with the Qlearning method is more effective and efficient compared with the ε-greedy policy in stationary environments and the utility-based reinforcement learning approach in non stationary environments.Keywords: autonomous mobile robot, exploration/ exploitation policy, large, dynamic environment, reinforcement learning
Procedia PDF Downloads 4176276 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification
Authors: Ian Omung'a
Abstract:
Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision
Procedia PDF Downloads 936275 Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement
Authors: Maatoug Hassine, Mourad Hrizi
Abstract:
In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method.Keywords: geometric inverse source problem, heat equation, topological optimization, topological sensitivity, Kohn-Vogelius formulation
Procedia PDF Downloads 3006274 Connectomic Correlates of Cerebral Microhemorrhages in Mild Traumatic Brain Injury Victims with Neural and Cognitive Deficits
Authors: Kenneth A. Rostowsky, Alexander S. Maher, Nahian F. Chowdhury, Andrei Irimia
Abstract:
The clinical significance of cerebral microbleeds (CMBs) due to mild traumatic brain injury (mTBI) remains unclear. Here we use magnetic resonance imaging (MRI), diffusion tensor imaging (DTI) and connectomic analysis to investigate the statistical association between mTBI-related CMBs, post-TBI changes to the human connectome and neurological/cognitive deficits. This study was undertaken in agreement with US federal law (45 CFR 46) and was approved by the Institutional Review Board (IRB) of the University of Southern California (USC). Two groups, one consisting of 26 (13 females) mTBI victims and another comprising 26 (13 females) healthy control (HC) volunteers were recruited through IRB-approved procedures. The acute Glasgow Coma Scale (GCS) score was available for each mTBI victim (mean µ = 13.2; standard deviation σ = 0.4). Each HC volunteer was assigned a GCS of 15 to indicate the absence of head trauma at the time of enrollment in our study. Volunteers in the HC and mTBI groups were matched according to their sex and age (HC: µ = 67.2 years, σ = 5.62 years; mTBI: µ = 66.8 years, σ = 5.93 years). MRI [including T1- and T2-weighted volumes, gradient recalled echo (GRE)/susceptibility weighted imaging (SWI)] and gradient echo (GE) DWI volumes were acquired using the same MRI scanner type (Trio TIM, Siemens Corp.). Skull-stripping and eddy current correction were implemented. DWI volumes were processed in TrackVis (http://trackvis.org) and 3D Slicer (http://www.slicer.org). Tensors were fit to DWI data to perform DTI, and tractography streamlines were then reconstructed using deterministic tractography. A voxel classifier was used to identify image features as CMB candidates using Microbleed Anatomic Rating Scale (MARS) guidelines. For each peri-lesional DTI streamline bundle, the null hypothesis was formulated as the statement that there was no neurological or cognitive deficit associated with between-scan differences in the mean FA of DTI streamlines within each bundle. The statistical significance of each hypothesis test was calculated at the α = 0.05 level, subject to the family-wise error rate (FWER) correction for multiple comparisons. Results: In HC volunteers, the along-track analysis failed to identify statistically significant differences in the mean FA of DTI streamline bundles. In the mTBI group, significant differences in the mean FA of peri-lesional streamline bundles were found in 21 out of 26 volunteers. In those volunteers where significant differences had been found, these differences were associated with an average of ~47% of all identified CMBs (σ = 21%). In 12 out of the 21 volunteers exhibiting significant FA changes, cognitive functions (memory acquisition and retrieval, top-down control of attention, planning, judgment, cognitive aspects of decision-making) were found to have deteriorated over the six months following injury (r = -0.32, p < 0.001). Our preliminary results suggest that acute post-TBI CMBs may be associated with cognitive decline in some mTBI patients. Future research should attempt to identify mTBI patients at high risk for cognitive sequelae.Keywords: traumatic brain injury, magnetic resonance imaging, diffusion tensor imaging, connectomics
Procedia PDF Downloads 1706273 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets
Authors: Hui Zhang, Sherif Beskhyroun
Abstract:
Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames
Procedia PDF Downloads 996272 Economic Policy of Achieving National Competitive Advantage
Authors: Gulnaz Erkomaishvili, Eteri Kharaishvili, Marina Chavleishvili
Abstract:
The paper discusses the economic policy of increasing national competitiveness, the tools, and means which help the country to improve its competitiveness. The sectors of the economy, in which the country can achieve a competitive advantage, are studied. It is noted that the country’s economic policy plays an important role in obtaining and maintaining a competitive advantage - authority should take measures to ensure a high level of education; scientific and research activities should be funded by the state; foreign direct investments should be attracted mainly in science-intensive industries; adaptation with the latest scientific achievements of the modern world and deepening of scientific and technical cooperation. Stable business environment and export-oriented strategy is the basis for the country’s economic growth. The studies have shown that institutional reforms in Georgia are not enough to significantly improve the country's competitiveness.Keywords: competitiveness, economic policy, competitiveness improvement strategy, competitiveness of Georgia
Procedia PDF Downloads 1286271 Geochemical Characterization of Geothermal Waters in Albania, Preliminary Results
Authors: Aurela Jahja, Katarzyna Wątor, Arjan Beqiraj, Piotr Rusiniak, Nevton Kodhelaj
Abstract:
Albanian geological terrains represent an important node of the Alpine – Mediterranean mountain belt and are divided into several predominantly NNW - SSE striking geotectonic units, which, based on the presence or lack of Cretaceous transgression and magmatic rocks, belong to Internal or External Albanides. The internal (Korabi, Mirdita and Gashi) units are characterized by the Lower Cretaceous discordance and the presence of abundant magmatic rocks whereas in the external (Alps, Krasta-Cukali, Kruja, Ionian, Sazani and Peri Adriatic Depression) units an almost continuous sedimentation from Triassic to Paleogene is evidenced. The internal and external units show relevant differences in both geothermal and heat flow density values. The gradient values vary from 15-21.3 to 36 mK/m, while the heat flow density ranges from 42 to 60 mW/m2, in the external (Preadriatic Depression) and internal (ophiolitic belt) units, respectively. The geothermal fluids, which are found in natural springs and deep oil wells of Albania, are located in four thermo-mineral provinces: a) Peshkopi (Korabi) province; b) Kruja province; c) Preadriatic basin province, and d) South Ionian province. Thirteen geothermal waters were sampled from 11 natural springs and 2 deep wells, of which 6 springs and 2 wells from Kruja, 1 spring from Peshkopia, 2 springs from Preadriatic basin and 2 springs South Ionian province. Temperature, pH and Electrical Conductivity were measured in situ, while in laboratory were analyzed by ICP method major anions and cations and several trace elements (B, Li, Sr, Rb, I, Br, etc.). The measured values of temperature, pH and electrical conductivity range within 17-63°C, 6.26-7.92 and 724- 26856µS/cm intervals, respectively. The chemical type of the Albania thermal waters is variable. In the Kruja province prevail the Cl-SO4-NaCa and Cl-Na-Ca water types; while SO4-Ca, HCO3-Ca and Cl-HCO3-Na-Ca, and Cl-Na are found in the provinces of Peshkopi, Ionian and Preadriatic basin, respectively. In the Cl-SO4-HCO3 triangular diagram most of the geothermal waters are close to the chloride corner that belong to “mature waters”, typical of geothermal deep and hot fluids. Only samples from the Ionian province are located within the region of high bicarbonate concentration and they can be classified as peripheral waters that may have mixed with cold groundwater. In the Na-Ca-Mg and Na-K-Mg triangular diagram the majority of waters fall in the corner of sodium, suggesting that their cation ratios are controlled by mineral-solution equilibrium. There is a linear relationship between Cl and B which indicates the mixing of geothermal water with cold water, where the low-chlorine thermal waters from Ionian basin and Preadriatic depression provinces are distinguished by high-chlorine thermal waters from Kruja province. The Cl/Br molar ration of the thermal waters from Kruja province ranges from 1000 to 2660 and separates them from the thermal waters of Ionian basin and Preadriatic depression provinces having Cl/Br molar ratio lower than 650. The apparent increase of Cl/Br molar ratio that correlates with the increasing of the chloride, is probably related with dissolution of the Halite.Keywords: geothermal fluids, geotectonic units, natural springs, deep wells, mature waters, peripheral waters
Procedia PDF Downloads 2176270 Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms
Authors: Shaik Ayesha Fathima, Shaik Noor Jahan, Duvvada Rajeswara Rao
Abstract:
Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.Keywords: area calculation, atrous convolution, deep globe land cover classification, deepLabv3, land cover classification, resnet 50
Procedia PDF Downloads 1406269 The Effects of Time and Cyclic Loading to the Axial Capacity for Offshore Pile in Shallow Gas
Authors: Christian H. Girsang, M. Razi B. Mansoor, Noorizal N. Huang
Abstract:
An offshore platform was installed in 1977 at about 260km offshore West Malaysia at the water depth of 73.6m. Twelve (12) piles were installed with four (4) are skirt piles. The piles have 1.219m outside diameter and wall thickness of 31mm and were driven to 109m below seabed. Deterministic analyses of the pile capacity under axial loading were conducted using the current API (American Petroleum Institute) method and the four (4) CPT-based methods: the ICP (Imperial College Pile)-method, the NGI (Norwegian Geotechnical Institute)-Method, the UWA (University of Western Australia)-method and the Fugro-method. A statistical analysis of the model uncertainty associated with each pile capacity method was performed. There were two (2) piles analysed: Pile 1 and piles other than Pile 1, where Pile 1 is the pile that was most affected by shallow gas problems. Using the mean estimate of soil properties, the five (5) methods used for deterministic estimation of axial pile capacity in compression predict an axial capacity from 28 to 42MN for Pile 1 and 32 to 49MN for piles other than Pile 1. These values refer to the static capacity shortly after pile installation. They do not include the effects of cyclic loading during the design storm or time after installation on the axial pile capacity. On average, the axial pile capacity is expected to have increased by about 40% because of ageing since the installation of the platform in 1977. On the other hand, the cyclic loading effects during the design storm may reduce the axial capacity of the piles by around 25%. The study concluded that all piles have sufficient safety factor when the pile aging and cyclic loading effect are considered, as all safety factors are above 2.0 for maximum operating and storm loads.Keywords: axial capacity, cyclic loading, pile ageing, shallow gas
Procedia PDF Downloads 3456268 Remote Sensing through Deep Neural Networks for Satellite Image Classification
Authors: Teja Sai Puligadda
Abstract:
Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss
Procedia PDF Downloads 159