Search results for: current account
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11056

Search results for: current account

10546 Comparison between Classical and New Direct Torque Control Strategies of Induction Machine

Authors: Mouna Essaadi, Mohamed Khafallah, Abdallah Saad, Hamid Chaikhy

Abstract:

This paper presents a comparative analysis between conventional direct torque control (C_DTC), Modified direct torque control (M_DTC) and twelve sectors direct torque control (12_DTC).Those different strategies are compared by simulation in term of torque, flux and stator current performances. Finally, a summary of the comparative analysis is presented.

Keywords: C_DTC, M_DTC, 12_DTC, torque dynamic, stator current, flux, performances

Procedia PDF Downloads 597
10545 Aristotelian Techniques of Communication Used by Current Affairs Talk Shows in Pakistan for Creating Dramatic Effect to Trigger Emotional Relevance

Authors: Shazia Anwer

Abstract:

The current TV Talk Shows, especially on domestic politics in Pakistan are following the Aristotelian techniques, including deductive reasoning, three modes of persuasion, and guidelines for communication. The application of “Approximate Truth is also seen when Talk Show presenters create doubts against political personalities or national issues. Mainstream media of Pakistan, being a key carrier of narrative construction for the sake of the primary function of national consensus on regional and extended public diplomacy, is failing the purpose. This paper has highlighted the Aristotelian communication methodology, its purposes and its limitations for a serious discussion, and its connection to the mistrust among the Pakistani population regarding fake or embedded, funded Information. Data has been collected from 3 Pakistani TV Talk Shows and their analysis has been made by applying the Aristotelian communication method to highlight the core issues. Paper has also elaborated that current media education is impaired in providing transparent techniques to train the future journalist for a meaningful, thought-provoking discussion. For this reason, this paper has given an overview of HEC’s (Higher Education Commission) graduate-level Mass Com Syllabus for Pakistani Universities. The idea of ethos, logos, and pathos are the main components of TV Talk Shows and as a result, the educated audience is lacking trust in the mainstream media, which eventually generating feelings of distrust and betrayal in the society because productions look like the genre of Drama instead of facts and analysis thus the line between Current Affairs shows and Infotainment has become blurred. In the last section, practical implication to improve meaningfulness and transparency in the TV Talk shows has been suggested by replacing the Aristotelian communication method with the cognitive semiotic communication approach.

Keywords: Aristotelian techniques of communication, current affairs talk shows, drama, Pakistan

Procedia PDF Downloads 182
10544 Design and Development of Compact 1KW Floating Battery Discharge Regulator

Authors: A. Sreedevi, G. Anantaramu

Abstract:

The present space research organizations are striving towards the development of lighter, smaller, more efficient, low cost, and highly reliable power supply. Switch mode power supplies (SMPS) overcome the demerits of linear power supplies such as low efficiency, difficulties in thermal management, and in boosting the output voltage. Space applications require a constant DC voltage to supply its load. As the load varies, the battery terminal voltage tends to vary accordingly. To avoid this variation in the load terminal voltage, a DC-DC regulator is required. The conventional regulator for space applications is isolated boost topology. The proposed topology uses an interleaved push-pull converter with a current doubler secondary to reduce the EMI issues and increase efficiency. The proposed topology uses a floating technique where the converter derives power from the battery and generates only the voltage that is required to fill the gap between the bus and the battery voltage. The direct voltage sense and current loop provide tight regulation of output and better stability. Converter is designed with 50 kHz switching frequency using UC 1825 PWM controller employing both voltage and peak current mode control. Experimental tests have been carried out on the converter under different input and load conditions to validate the design. The experimental results showed that the efficiency was greater than 91%. Stability analysis is done using venable stability analyzer.

Keywords: push pull converter, current doubler, converter, PWM control

Procedia PDF Downloads 84
10543 Optimal Protection Coordination in Distribution Systems with Distributed Generations

Authors: Abdorreza Rabiee, Shahla Mohammad Hoseini Mirzaei

Abstract:

The advantages of distributed generations (DGs) based on renewable energy sources (RESs) leads to high penetration level of DGs in distribution network. With incorporation of DGs in distribution systems, the system reliability and security, as well as voltage profile, is improved. However, the protection of such systems is still challenging. In this paper, at first, the related papers are reviewed and then a practical scheme is proposed for coordination of OCRs in distribution system with DGs. The coordination problem is formulated as a nonlinear programming (NLP) optimization problem with the object function of minimizing total operating time of OCRs. The proposed method is studied based on a simple test system. The optimization problem is solved by General Algebraic Modeling System (GAMS) to calculate the optimal time dial setting (TDS) and also pickup current setting of OCRs. The results show the effectiveness of the proposed method and its applicability.

Keywords: distributed generation, DG, distribution network, over current relay, OCR, protection coordination, pickup current, time dial setting, TDS

Procedia PDF Downloads 112
10542 Understanding Indonesian Smallholder Dairy Farmers’ Decision to Adopt Multiple Farm: Level Innovations

Authors: Rida Akzar, Risti Permani, Wahida , Wendy Umberger

Abstract:

Adoption of farm innovations may increase farm productivity, and therefore improve market access and farm incomes. However, most studies that look at the level and drivers of innovation adoption only focus on a specific type of innovation. Farmers may consider multiple innovation options, and constraints such as budget, environment, scarcity of labour supply, and the cost of learning. There have been some studies proposing different methods to combine a broad variety of innovations into a single measurable index. However, little has been done to compare these methods and assess whether they provide similar information about farmer segmentation by their ‘innovativeness’. Using data from a recent survey of 220 dairy farm households in West Java, Indonesia, this study compares and considers different methods of deriving an innovation index, including expert-weighted innovation index; an index derived from the total number of adopted technologies; and an index of the extent of adoption of innovation taking into account both adoption and disadoption of multiple innovations. Second, it examines the distribution of different farming systems taking into account their innovativeness and farm characteristics. Results from this study will inform policy makers and stakeholders in the dairy industry on how to better design, target and deliver programs to improve and encourage farm innovation, and therefore improve farm productivity and the performance of the dairy industry in Indonesia.

Keywords: adoption, dairy, household survey, innovation index, Indonesia, multiple innovations dairy, West Java

Procedia PDF Downloads 315
10541 Coping Techniques, Repertoire, and Flexibility in Parental Adjustment to Pediatric Cancer

Authors: Michael Dolgin, Oz Hamtzani, Talma Kushnir

Abstract:

A literature review has shown that while parents of children with cancer experience increased levels of psychological distress associated with their child's medical condition, considerable variability in parental adjustment is evident. Of the factors that may account for this variability, little attention has been devoted to the simultaneous interaction of three coping constructs and their role in parental adjustment: (1) Coping techniques employed, (2) Repertoire of coping techniques, and (3) Flexibility in applying coping techniques. While these constructs have been studied individually in relation to adjustment in general, studies to date have not included them together within a single conceptual model and research design and evaluated them in a clinical population. The objective of the current study was to determine how these three coping technique constructs interact to impact parental adjustment to pediatric cancer. A cross-sectional sample of 145 parents of children in active cancer treatment completed standardized measures of coping techniques, repertoire, flexibility, and parental distress. A hierarchical multiple regression analysis demonstrated that 37% of the variance in parental distress was predicted by the use of avoidance-focused coping techniques [F(1,118)=69.843, p<.001], with an additional 3% predicted by coping repertoire [F(2,117)=7.63, p=.00] for a total of 40% variance explained. Coping flexibility was found to mediate the relationship between coping repertoire and parental distress. These findings suggest that coping techniques employed by parents (problem/emotion-focused vs. avoidance-focused), as well as coping repertoire, significantly impact parental adjustment. Flexibility in applying coping techniques within one’s coping repertoire further contributes to parental adjustment. Implications for further study and clinical intervention will be presented.

Keywords: coping techniques, repertoire, flexibility, adjustment

Procedia PDF Downloads 16
10540 Detailed Degradation-Based Model for Solid Oxide Fuel Cells Long-Term Performance

Authors: Mina Naeini, Thomas A. Adams II

Abstract:

Solid Oxide Fuel Cells (SOFCs) feature high electrical efficiency and generate substantial amounts of waste heat that make them suitable for integrated community energy systems (ICEs). By harvesting and distributing the waste heat through hot water pipelines, SOFCs can meet thermal demand of the communities. Therefore, they can replace traditional gas boilers and reduce greenhouse gas (GHG) emissions. Despite these advantages of SOFCs over competing power generation units, this technology has not been successfully commercialized in large-scale to replace traditional generators in ICEs. One reason is that SOFC performance deteriorates over long-term operation, which makes it difficult to find the proper sizing of the cells for a particular ICE system. In order to find the optimal sizing and operating conditions of SOFCs in a community, a proper knowledge of degradation mechanisms and effects of operating conditions on SOFCs long-time performance is required. The simplified SOFC models that exist in the current literature usually do not provide realistic results since they usually underestimate rate of performance drop by making too many assumptions or generalizations. In addition, some of these models have been obtained from experimental data by curve-fitting methods. Although these models are valid for the range of operating conditions in which experiments were conducted, they cannot be generalized to other conditions and so have limited use for most ICEs. In the present study, a general, detailed degradation-based model is proposed that predicts the performance of conventional SOFCs over a long period of time at different operating conditions. Conventional SOFCs are composed of Yttria Stabilized Zirconia (YSZ) as electrolyte, Ni-cermet anodes, and LaSr₁₋ₓMnₓO₃ (LSM) cathodes. The following degradation processes are considered in this model: oxidation and coarsening of nickel particles in the Ni-cermet anodes, changes in the pore radius in anode, electrolyte, and anode electrical conductivity degradation, and sulfur poisoning of the anode compartment. This model helps decision makers discover the optimal sizing and operation of the cells for a stable, efficient performance with the fewest assumptions. It is suitable for a wide variety of applications. Sulfur contamination of the anode compartment is an important cause of performance drop in cells supplied with hydrocarbon-based fuel sources. H₂S, which is often added to hydrocarbon fuels as an odorant, can diminish catalytic behavior of Ni-based anodes by lowering their electrochemical activity and hydrocarbon conversion properties. Therefore, the existing models in the literature for H₂-supplied SOFCs cannot be applied to hydrocarbon-fueled SOFCs as they only account for the electrochemical activity reduction. A regression model is developed in the current work for sulfur contamination of the SOFCs fed with hydrocarbon fuel sources. The model is developed as a function of current density and H₂S concentration in the fuel. To the best of authors' knowledge, it is the first model that accounts for impact of current density on sulfur poisoning of cells supplied with hydrocarbon-based fuels. Proposed model has wide validity over a range of parameters and is consistent across multiple studies by different independent groups. Simulations using the degradation-based model illustrated that SOFCs voltage drops significantly in the first 1500 hours of operation. After that, cells exhibit a slower degradation rate. The present analysis allowed us to discover the reason for various degradation rate values reported in literature for conventional SOFCs. In fact, the reason why literature reports very different degradation rates, is that literature is inconsistent in definition of how degradation rate is calculated. In the literature, the degradation rate has been calculated as the slope of voltage versus time plot with the unit of voltage drop percentage per 1000 hours operation. Due to the nonlinear profile of voltage over time, degradation rate magnitude depends on the magnitude of time steps selected to calculate the curve's slope. To avoid this issue, instantaneous rate of performance drop is used in the present work. According to a sensitivity analysis, the current density has the highest impact on degradation rate compared to other operating factors, while temperature and hydrogen partial pressure affect SOFCs performance less. The findings demonstrated that a cell running at lower current density performs better in long-term in terms of total average energy delivered per year, even though initially it generates less power than if it had a higher current density. This is because of the dominant and devastating impact of large current densities on the long-term performance of SOFCs, as explained by the model.

Keywords: degradation rate, long-term performance, optimal operation, solid oxide fuel cells, SOFCs

Procedia PDF Downloads 114
10539 Movable Airfoil Arm (MAA) and Ducting Effect to Increase the Efficiency of a Helical Turbine

Authors: Abdi Ismail, Zain Amarta, Riza Rifaldy Argaputra

Abstract:

The Helical Turbine has the highest efficiency in comparison with the other hydrokinetic turbines. However, the potential of the Helical Turbine efficiency can be further improved so that the kinetic energy of a water current can be converted into mechanical energy as much as possible. This paper explains the effects by adding a Movable Airfoil Arm (MAA) and ducting on a Helical Turbine. The first research conducted an analysis of the efficiency comparison between a Plate Arm Helical Turbine (PAHT) versus a Movable Arm Helical Turbine Airfoil (MAAHT) at various water current velocities. The first step is manufacturing a PAHT and MAAHT. The PAHT and MAAHT has these specifications (as a fixed variable): 80 cm in diameter, a height of 88 cm, 3 blades, NACA 0018 blade profile, a 10 cm blade chord and a 60o inclination angle. The MAAHT uses a NACA 0012 airfoil arm that can move downward 20o, the PAHT uses a 5 mm plate arm. At the current velocity of 0.8, 0.85 and 0.9 m/s, the PAHT respectively generates a mechanical power of 92, 117 and 91 watts (a consecutive efficiency of 16%, 17% and 11%). At the same current velocity variation, the MAAHT respectively generates 74, 60 and 43 watts (a consecutive efficiency of 13%, 9% and 5%). Therefore, PAHT has a better performance than the MAAHT. Using analysis from CFD (Computational Fluid Dynamics), the drag force of MAA is greater than the one generated by the plate arm. By using CFD analysis, the drag force that occurs on the MAA is more dominant than the lift force, therefore the MAA can be called a drag device, whereas the lift force that occurs on the helical blade is more dominant than the drag force, therefore it can be called a lift device. Thus, the lift device cannot be combined with the drag device, because the drag device will become a hindrance to the lift device rotation. The second research conducted an analysis of the efficiency comparison between a Ducted Helical Turbine (DHT) versus a Helical Turbine (HT) through experimental studies. The first step is manufacturing the DHT and HT. The Helical turbine specifications (as a fixed variable) are: 40 cm in diameter, a height of 88 cm, 3 blades, NACA 0018 blade profile, 10 cm blade chord and a 60o inclination angle. At the current speed of 0.7, 0.8, 0.9 and 1.1 m/s, the HT respectively generates a mechanical power of 72, 85, 93 and 98 watts (a consecutive efficiency of 38%, 30%, 23% and 13%). At the same current speed variation, the DHT generates a mechanical power of 82, 98, 110 and 134 watts (a consecutive efficiency of 43%, 34%, 27% and 18%), respectively. The usage of ducting causes the water current speed around the turbine to increase.

Keywords: hydrokinetic turbine, helical turbine, movable airfoil arm, ducting

Procedia PDF Downloads 354
10538 2106 kA/cm² Peak Tunneling Current Density in GaN-Based Resonant Tunneling Diode with an Intrinsic Oscillation Frequency of ~260GHz at Room Temperature

Authors: Fang Liu, JunShuai Xue, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun

Abstract:

Terahertz spectra is in great demand since last two decades for many photonic and electronic applications. III-Nitride resonant tunneling diode is one of the promising candidates for portable and compact THz sources. Room temperature microwave oscillator based on GaN/AlN resonant tunneling diode was reported in this work. The devices, grown by plasma-assisted molecular-beam epitaxy on free-standing c-plane GaN substrates, exhibit highly repeatable and robust negative differential resistance (NDR) characteristics at room temperature. To improve the interface quality at the active region in RTD, indium surfactant assisted growth is adopted to enhance the surface mobility of metal atoms on growing film front. Thanks to the lowered valley current associated with the suppression of threading dislocation scattering on low dislocation GaN substrate, a positive peak current density of record-high 2.1 MA/cm2 in conjunction with a peak-to-valley current ratio (PVCR) of 1.2 are obtained, which is the best results reported in nitride-based RTDs up to now considering the peak current density and PVCR values simultaneously. When biased within the NDR region, microwave oscillations are measured with a fundamental frequency of 0.31 GHz, yielding an output power of 5.37 µW. Impedance mismatch results in the limited output power and oscillation frequency described above. The actual measured intrinsic capacitance is only 30fF. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is estimated to be ~260GHz. This work demonstrates a microwave oscillator based on resonant tunneling effect, which can meet the demands of terahertz spectral devices, more importantly providing guidance for the fabrication of the complex nitride terahertz and quantum effect devices.

Keywords: GaN resonant tunneling diode, peak current density, microwave oscillation, intrinsic capacitance

Procedia PDF Downloads 110
10537 Bio-Heat Transfer in Various Transcutaneous Stimulation Models

Authors: Trevor E. Davis, Isaac Cassar, Yi-Kai Lo, Wentai Liu

Abstract:

This study models the use of transcutaneous electrical nerve stimulation on skin with a disk electrode in order to simulate tissue damage. The current density distribution above a disk electrode is known to be a dynamic and non-uniform quantity that is intensified at the edges of the disk. The non-uniformity is subject to change through using various electrode geometries or stimulation methods. One of these methods known as edge-retarded stimulation has shown to reduce this edge enhancement. Though progress has been made in modeling the behavior of a disk electrode, little has been done to test the validity of these models in simulating the actual heat transfer from the electrode. This simulation uses finite element software to couple the injection of current from a disk electrode to heat transfer described by the Pennesbioheat transfer equation. An example application of this model is studying an experimental form of stimulation, known as edge-retarded stimulation. The edge-retarded stimulation method will reduce the current density at the edges of the electrode. It is hypothesized that reducing the current density edge enhancement effect will, in turn, reduce temperature change and tissue damage at the edges of these electrodes. This study tests this hypothesis as a demonstration of the capabilities of this model. The edge-retarded stimulation proved to be safer after this simulation. It is shown that temperature change and the fraction of tissue necrosis is much greater in the square wave stimulation. These results bring implications for changes of procedures in transcutaneous electrical nerve stimulation and transcutaneous spinal cord stimulation as well.

Keywords: bioheat transfer, electrode, neuroprosthetics, TENS, transcutaneous stimulation

Procedia PDF Downloads 215
10536 Present and Future of Micromobility in the City of Medellin

Authors: Saul Emilio Rivero Mejia, Estefanya Marin Tabares, Carlos Andres Rodriguez Toro, Katherine Bolano Restrepo, Sarita Santa Cortes

Abstract:

Medellin is the Colombian city with the best public transportation system in the country, which is composed of two subway lines, five metro cables, two Bus Rapid Transit lines, and a streetcar. But despite the above, the Aburra Valley, the area in which the city is located, comparatively speaking, has a lower number of urban roads per inhabitant built, compared to the national average. In addition, since there is approximately one vehicle for every three inhabitants in Medellin, the problems of congestion and environmental pollution have become more acute over the years, and it has even been necessary to implement restrictive measures to the use of private vehicles on a permanent basis. In that sense, due to the limitations of physical space, the low public investment in road infrastructure, it is necessary to opt for mobility alternatives according to the above. Within the options for the city, there is what is known as micromobility. Micromobility is understood as those small and light means of transport used to travel short distances, which use electrical energy, such as skateboards and bicycles. These transport alternatives have a high potential for use by the city's young population, but this requires an adequate infrastructure and also state regulation. Taking into account the above, this paper will analyze the current state and future of micro mobility in the city of Medellin, making a prospective analysis, supported by a PEST (political, economic, social and technological) analysis. Based on the above, it is expected to identify the growth of demand for these alternative means and its impact on the mobility of the city in the medium and short term.

Keywords: electric, micromobility, transport, sustainable

Procedia PDF Downloads 106
10535 Arabic Text Representation and Classification Methods: Current State of the Art

Authors: Rami Ayadi, Mohsen Maraoui, Mounir Zrigui

Abstract:

In this paper, we have presented a brief current state of the art for Arabic text representation and classification methods. We decomposed Arabic Task Classification into four categories. First we describe some algorithms applied to classification on Arabic text. Secondly, we cite all major works when comparing classification algorithms applied on Arabic text, after this, we mention some authors who proposing new classification methods and finally we investigate the impact of preprocessing on Arabic TC.

Keywords: text classification, Arabic, impact of preprocessing, classification algorithms

Procedia PDF Downloads 446
10534 Foreign Policy and National Security Dilemma: Examining Nigerian Experience

Authors: Shuaibu Umar Abdul

Abstract:

The essence of any state as well as government is to ensure and advance the security of lives and property of its citizens. As a result, providing security in all spheres ranging from safeguarding the territorial integrity, security of lives and property of the citizens as well as economic emancipation have constitute the core objectives cum national interest of virtually all country’s foreign policy in the world. In view of this imperative above, Nigeria has enshrined in the early part of her 1999 constitution as amended, as its duty and responsibility as a state, to ensure security of lives and property of its citizens. Yet, it does not make any significant shift as it relates to the country’s fundamental security needs as exemplified by the current enormous security challenges that reduced the country’s fortune to the background in all ramifications. The study chooses realist paradigm as theoretical underpinning which emphasizes that exigency of the moment should always take priority in the pursuit of foreign policy. The study is historical, descriptive and narrative in method and character. Data for the study was sourced from secondary sources and analysed via content analysis. The study found out that it is lack of political will on the side of the government to guarantee a just and egalitarian society that will be of benefit to all citizens. This could be more appreciated when looking at the gaps between the theory in Nigerian foreign policy and the practice as exemplified by the action or inaction of the government to ensure security in the state. On this account, the study recommends that until the leaderships in Nigerian foreign policy recognized the need for political will and respect for constitutionalism to ensure security of its citizens and territory, otherwise achieving great Nigeria will remain an illusion.

Keywords: foreign policy, nation, national security, Nigeria, security

Procedia PDF Downloads 489
10533 Implementing an English Medium of Instruction Policy in Algerian Higher Education: A Study of Teachers’ Attitudes, Agency, and Professional Identity

Authors: Ikram Metalsi

Abstract:

English as a Medium of Instruction known as (EMI) is expanding rapidly in the world. A growing volume of research has been dedicated to investigating its implementation. However, considerably less attention has been given to understanding EMI in a context where its implementation has been discussed but not yet put into practice. One such context is Algeria, where talks about a possible implementation of EMI have been going on for some time. The present study examines the current discourses and university lecturers’ attitudes towards the potential implementation of EMI as well as investigating the current implicit and explicit language policies in scientific courses in Algerian state universities. The focus is specifically on Engineering departments, as this field has gained worldwide importance in EMI research (Macaro et al. 2018), and, traditionally, French has been the MOI for Engineering in Algerian universities. Using the ROADMAPPING framework (Dafouz and Smit 2016) and the mixed method research approach, the present work explores the language in education policy (LEP) and planning situation in Algeria, the current media of instruction as well as the status and use of the English language in the scientific courses of the tertiary sector. Finally, the current study explores the perceived challenges and benefits of the implementation of EMI programmes from teachers’ perspectives with a particular focus on agency and how this potential policy implementation and teachers’ perceptions of agency around it may reflexively influence their professional identity.

Keywords: media of instruction, language in education policy, lecturers attitudes, teacher agency, professional identity

Procedia PDF Downloads 78
10532 Study of Electrical Properties of An-Fl Based Organic Semiconducting Thin Film

Authors: A.G. S. Aldajani, N. Smida, M. G. Althobaiti, B. Zaidi

Abstract:

In order to exploit the good electrical properties of anthracene and the excellent properties of fluorescein, new hybrid material has been synthesized (An-Fl). Current-voltage measurements were done on a new single-layer ITO/An-FL/Al device of typically 100 nm thickness. Atypical diode behavior is observed with a turn-on voltage of 4.4 V, a dynamic resistance of 74.07 KΩ and a rectification ratio of 2.02 due to unbalanced transport. Results show also that the current-voltage characteristics present three different regimes of the power-law (J~Vᵐ) for which the conduction mechanism is well described with space-charge-limited current conduction mechanism (SCLC) with a charge carrier mobility of 2.38.10⁻⁵cm2V⁻¹S⁻¹. Moreover, the electrical transport properties of this device have been carried out using a dependent frequency study in the range (50 Hz–1.4 MHz) for different applied biases (from 0 to 6 V). At lower frequency, the σdc values increase with bias voltage rising, supporting that the mobile ion can hop successfully to its nearest vacant site. From σac and impedance measurements, the equivalent electrical circuit is evidenced, where the conductivity process is coherent with an exponential trap distribution caused by structural defects and/or chemical impurities.

Keywords: semiconducting polymer, conductivity, SCLC, impedance spectroscopy

Procedia PDF Downloads 161
10531 Understanding the Multilingualism of the Mauritian Multilingual Primary School Learner and Translanguaging: A Linguistic Ethnographic Study

Authors: Yesha Devi Mahadeo-Doorgakant

Abstract:

The Mauritian landscape is well-known for its multilingualism with the daily interaction of the number of languages that are used in the island; namely Kreol Morisien, the European languages (English and French) and the Oriental/Asian languages (Hindi, Arabic/Urdu, Tamil, Telegu, Marathi, Mandarin, etc.). However, within Mauritius’ multilingual educational system, English is the official medium of instruction while French is taught as compulsory subject till upper secondary and oriental languages are offered as optional languages at primary level. Usually, Mauritians choose one oriental language based on their ethnic/religious identity, when they start their primary schooling as an additional language to learn. In January 2012, Kreol Morisien, which is the considered the language of daily interaction of the majority of Mauritians, was introduced as an optional subject at primary level, taught at the same time as the oriental languages. The introduction of Kreol Morisien has spurred linguistic debates about the issue of multilingualism within the curriculum. Taking this into account, researchers have started pondering on the multilingual educational system of the country and questioning whether the current language curriculum caters for the complex everyday linguistic reality of the multilingual Mauritian learner, given most learners are embedded within an environment where the different languages interact with each other daily. This paper, therefore, proposes translanguaging as being a more befitting theoretical lens through which the multilingualism and the linguistic repertoire of Mauritian learners’ can best be understood.

Keywords: multilingualism, translanguaging, multilingual learner, linguistic ethnography

Procedia PDF Downloads 154
10530 Charge Transport in Biological Molecules

Authors: E. L. Albuquerque, U. L. Fulco, G. S. Ourique

Abstract:

The focus of this work is on the numerical investigation of the charge transport properties of the de novo-designed alpha3 polypeptide, as well as in its variants, all of them probed by gene engineering. The theoretical framework makes use of a tight-binding model Hamiltonian, together with ab-initio calculations within quantum chemistry simulation. The alpha3 polypeptide is a 21-residue with three repeats of the seven-residue amino acid sequence Leu-Glu-Thr-Leu-Ala-Lys-Ala, forming an alpha–helical bundle structure. Its variants are obtained by Ala→Gln substitution at the e (5th) and g (7th) position, respectively, of the alpha3 polypeptide amino acid sequence. Using transmission electron microscopy and atomic force microscopy, it was observed that the alpha3 polypeptide and one of its variant do have the ability to form fibrous assemblies, while the other does not. Our main aim is to investigate whether or not the biased alpha3 polypeptide and its variants can be also identified by quantum charge transport measurements through current-voltage (IxV) curves as a pattern to characterize their fibrous assemblies. It was observed that each peptide has a characteristic current pattern, which may be distinguished by charge transport measurements, suggesting that it might be a useful tool for the development of biosensors.

Keywords: charge transport properties, electronic transmittance, current-voltage characteristics, biological sensor

Procedia PDF Downloads 653
10529 Polydimethylsiloxane Applications in Interferometric Optical Fiber Sensors

Authors: Zeenat Parveen, Ashiq Hussain

Abstract:

This review paper consists of applications of PDMS (polydimethylsiloxane) materials for enhanced performance, optical fiber sensors in acousto-ultrasonic, mechanical measurements, current applications, sensing, measurements and interferometric optical fiber sensors. We will discuss the basic working principle of fiber optic sensing technology, various types of fiber optic and the PDMS as a coating material to increase the performance. Optical fiber sensing methods for detecting dynamic strain signals, including general sound and acoustic signals, high frequency signals i.e. ultrasonic/ultrasound, and other signals such as acoustic emission and impact induced dynamic strain. Optical fiber sensors have Industrial and civil engineering applications in mechanical measurements. Sometimes it requires different configurations and parameters of sensors. Optical fiber current sensors are based on Faraday Effect due to which we obtain better performance as compared to the conventional current transformer. Recent advancement and cost reduction has simulated interest in optical fiber sensing. Optical techniques are also implemented in material measurement. Fiber optic interferometers are used to sense various physical parameters including temperature, pressure and refractive index. There are four types of interferometers i.e. Fabry–perot, Mach-Zehnder, Michelson, and Sagnac. This paper also describes the future work of fiber optic sensors.

Keywords: fiber optic sensing, PDMS materials, acoustic, ultrasound, current sensor, mechanical measurements

Procedia PDF Downloads 367
10528 Influence of Temperature on Properties of MOSFETs

Authors: Azizi Cherifa, O. Benzaoui

Abstract:

The thermal aspects in the design of power circuits often deserve as much attention as pure electric components aspects as the operating temperature has a direct influence on their static and dynamic characteristics. MOSFET is fundamental in the circuits, it is the most widely used device in the current production of semiconductor components using their honorable performance. The aim of this contribution is devoted to the effect of the temperature on the properties of MOSFETs. The study enables us to calculate the drain current as function of bias in both linear and saturated modes. The effect of temperature is evaluated using a numerical simulation, using the laws of mobility and saturation velocity of carriers as a function of temperature.

Keywords: temperature, MOSFET, mobility, transistor

Procedia PDF Downloads 332
10527 International Classification of Primary Care as a Reference for Coding the Demand for Care in Primary Health Care

Authors: Souhir Chelly, Chahida Harizi, Aicha Hechaichi, Sihem Aissaoui, Leila Ben Ayed, Maha Bergaoui, Mohamed Kouni Chahed

Abstract:

Introduction: The International Classification of Primary Care (ICPC) is part of the morbidity classification system. It had 17 chapters, and each is coded by an alphanumeric code: the letter corresponds to the chapter, the number to a paragraph in the chapter. The objective of this study is to show the utility of this classification in the coding of the reasons for demand for care in Primary health care (PHC), its advantages and limits. Methods: This is a cross-sectional descriptive study conducted in 4 PHC in Ariana district. Data on the demand for care during 2 days in the same week were collected. The coding of the information was done according to the CISP. The data was entered and analyzed by the EPI Info 7 software. Results: A total of 523 demands for care were investigated. The patients who came for the consultation are predominantly female (62.72%). Most of the consultants are young with an average age of 35 ± 26 years. In the ICPC, there are 7 rubrics: 'infections' is the most common reason with 49.9%, 'other diagnoses' with 40.2%, 'symptoms and complaints' with 5.5%, 'trauma' with 2.1%, 'procedures' with 2.1% and 'neoplasm' with 0.3%. The main advantage of the ICPC is the fact of being a standardized tool. It is very suitable for classification of the reasons for demand for care in PHC according to their specificity, capacity to be used in a computerized medical file of the PHC. Its current limitations are related to the difficulty of classification of some reasons for demand for care. Conclusion: The ICPC has been developed to provide healthcare with a coding reference that takes into account their specificity. The CIM is in its 10th revision; it would gain from revision to revision to be more efficient to be generalized and used by the teams of PHC.

Keywords: international classification of primary care, medical file, primary health care, Tunisia

Procedia PDF Downloads 244
10526 Modelling and Detecting the Demagnetization Fault in the Permanent Magnet Synchronous Machine Using the Current Signature Analysis

Authors: Yassa Nacera, Badji Abderrezak, Saidoune Abdelmalek, Houassine Hamza

Abstract:

Several kinds of faults can occur in a permanent magnet synchronous machine (PMSM) systems: bearing faults, electrically short/open faults, eccentricity faults, and demagnetization faults. Demagnetization fault means that the strengths of permanent magnets (PM) in PMSM decrease, and it causes low output torque, which is undesirable for EVs. The fault is caused by physical damage, high-temperature stress, inverse magnetic field, and aging. Motor current signature analysis (MCSA) is a conventional motor fault detection method based on the extraction of signal features from stator current. a simulation model of the PMSM under partial demagnetization and uniform demagnetization fault was established, and different degrees of demagnetization fault were simulated. The harmonic analyses using the Fast Fourier Transform (FFT) show that the fault diagnosis method based on the harmonic wave analysis is only suitable for partial demagnetization fault of the PMSM and does not apply to uniform demagnetization fault of the PMSM.

Keywords: permanent magnet, diagnosis, demagnetization, modelling

Procedia PDF Downloads 42
10525 Defect Induced Enhanced Photoresponse in Graphene

Authors: Prarthana Gowda, Tushar Sakorikar, Siva K. Reddy, Darim B. Ferry, Abha Misra

Abstract:

Graphene, a two-dimensional carbon allotrope has demonstrated excellent electrical, mechanical and optical properties. A tunable band gap of grapheme demonstrated broad band absorption of light with a response time of picoseconds, however it suffers a fast recombination of the photo generated carriers. Many reports have explored to overcome this problem; in this presentation, we discuss defect induced enhanced photoresponse in a few layer graphene (FLG) due to exposure of infrared (IR) radiation. The two and four-fold enhancement in the photocurrent is achieved by addition of multiwalled carbon nano tubes (MWCNT) to an FLG surface and also creating the wrinkles in the FLG (WG) respectively. In our study, it is also inferred that the photo current generation is highly dependent on the morphological defects on the graphene. It is observed that the FLG (without defects) generates the photo current instantaneously, and after a prolonged exposure to the IR radiation decays the generation rate. Importantly, the presence of MWCNT on FLG enhances the stability and WG presented both stable as well as enhanced photo response.

Keywords: graphene, multiwalled carbon nano tubes, wrinkled graphene, photo detector, photo current

Procedia PDF Downloads 400
10524 Exploring the Effect of Accounting Information on Systematic Risk: An Empirical Evidence of Tehran Stock Exchange

Authors: Mojtaba Rezaei, Elham Heydari

Abstract:

This paper highlights the empirical results of analyzing the correlation between accounting information and systematic risk. This association is analyzed among financial ratios and systematic risk by considering the financial statement of 39 companies listed on the Tehran Stock Exchange (TSE) for five years (2014-2018). Financial ratios have been categorized into four groups and to describe the special features, as representative of accounting information we selected: Return on Asset (ROA), Debt Ratio (Total Debt to Total Asset), Current Ratio (current assets to current debt), Asset Turnover (Net sales to Total assets), and Total Assets. The hypotheses were tested through simple and multiple linear regression and T-student test. The findings illustrate that there is no significant relationship between accounting information and market risk. This indicates that in the selected sample, historical accounting information does not fully reflect the price of stocks.

Keywords: accounting information, market risk, systematic risk, stock return, efficient market hypothesis, EMH, Tehran stock exchange, TSE

Procedia PDF Downloads 115
10523 Influences of Slope Inclination on the Storage Capacity and Stability of Municipal Solid Waste Landfills

Authors: Feten Chihi, Gabriella Varga

Abstract:

The world's most prevalent waste management strategy is landfills. However, it grew more difficult due to a lack of acceptable waste sites. In order to develop larger landfills and extend their lifespan, the purpose of this article is to expand the capacity of the construction by varying the slope's inclination and to examine its effect on the safety factor. The capacity change with tilt is mathematically determined. Using a new probabilistic calculation method that takes into account the heterogeneity of waste layers, the safety factor for various slope angles is examined. To assess the effect of slope variation on the overall safety of landfills, over a hundred computations were performed for each angle. It has been shown that capacity increases significantly with increasing inclination. Passing from 1:3 to 2:3 slope angles and from 1:3 to 1:2 slope angles, the volume of garbage that can be deposited increases by 40 percent and 25 percent, respectively, of the initial volume. The results of the safety factor indicate that slopes of 1:3 and 1:2 are safe when the standard method (homogenous waste) is used for computation. Using the new approaches, a slope with an inclination of 2:3 can be deemed safe, despite the fact that the calculation does not account for the safety-enhancing effect of daily cover layers. Based on the study reported in this paper, the malty layered nonhomogeneous calculating technique better characterizes the safety factor. As it more closely resembles the actual state of landfills, the employed technique allows for more flexibility in design parameters. This work represents a substantial advance in limiting both safe and economical landfills.

Keywords: landfill, municipal solid waste, slope inclination, capacity, safety factor

Procedia PDF Downloads 173
10522 Risk Assessment in Construction of K-Span Buildings in United Arab Emirates (UAE)

Authors: Imtiaz Ali, Imam Mansoor

Abstract:

Investigations as a part of the academic study were undertaken to identify and evaluate the significant risks associated with the construction of K-span buildings in the region of UAE. Primary field data was collected through questionnaires obtaining specific open and close-ended questions from carefully selected construction firms, civil engineers and, construction manager regarding risks associated to K-span building construction. Historical data available for other regions of the same construction technique was available which was compared for identifying various non-critical and critical risk parameters by comparative evaluation techniques to come up with important risks and potential sources for their control and minimization in K-Span buildings that is increasing in the region. The associated risks have been determined with their Relative Importance Index (RII) values of which Risk involved in Change of Design required by Owners carries the highest value (RII=0.79) whereas, Delayed Payment by Owner to Contractor is one of the least (RII=0.42) value. The overall findings suggest that most relative risks as quantified originate or associated with the contractors. It may be concluded that project proponents undertaking K-span projects in planning and budgeting the cost and delays should take into account of risks on high account if changes in design are also required any delays in the material by the supplier would then be a major risk in K-span project delay. Since projects are, less costly, so owners have limited budgets, then they hire small contractors, which are not highly competent contractors. So study suggests that owner should be aware of these types of risks associated with the construction of K-span buildings in order to make it cost effective.

Keywords: k-span buildings, k-span construction, risk management, relative improvement index (RII)

Procedia PDF Downloads 357
10521 Post 2014 Afghanistan and Its Implications on Pakistan

Authors: Naad-E-Ali Sulehria

Abstract:

This paper unfolds the facts and findings of Afghan scenario particularly its implications on Pakistan. At present, the Post 2014 withdrawal of US and ISAF combat forces from Afghan land is one of the up-to-the-minute issues among analysts of international relations. Deliberating from the current situation of Afghanistan towards its future prospects and the elements vibrating Afghanistan's internal dynamics, as well as exploitation of its resources by other states and non-state actors, are discussed accordingly. Moreover, the reasons behind such a paradigm shift in US foreign policy are tried to be contemplated with first hand knowledge. It is investigated that 'what is the current image of Afghanistan in today's world?', 'what will be its future aspects?', and 'what sort of Afghanistan does Pakistan foresees' as the concerned area of discussion.

Keywords: Afghanistan, Pakistan, new great game, taliban

Procedia PDF Downloads 280
10520 Study of Suezmax Shuttle Tanker Energy Efficiency for Operations at the Brazilian Pre-Salt Region

Authors: Rodrigo A. Schiller, Rubens C. Da Silva, Kazuo Nishimoto, Claudio M. P. Sampaio

Abstract:

The need to reduce fossil fuels consumption due to the current scenario of trying to restrain global warming effects and reduce air pollution is dictating a series of transformations in shipping. This study introduces, at first, the changes of the regulatory framework concerning gas emissions control and fuel consumption efficiency on merchant ships. Secondly, the main operational procedures with high potential reduction of fuel consumption are discussed, with focus on existing vessels, using ship speed reduction procedure. This procedure shows the positive impacts on both operating costs reduction and also on energy efficiency increase if correctly applied. Finally, a numerical analysis of the fuel consumption variation with the speed was carried out for a Suezmax class oil tanker, which has been adapted to oil offloading operations for FPSOs in Brazilian offshore oil production systems. In this analysis, the discussions about the variations of vessel energy efficiency from small speed rate reductions and the possible applications of this improvement, taking into account the typical operating profile of the vessel in such a way to have significant economic impacts on the operation. This analysis also evaluated the application of two different numerical methods: one based only on regression equations produced by existing data, semi-empirical method, and another using a CFD simulations for estimating the hull shape parameters that are most relevant for determining fuel consumption, analyzing inaccuracies and impact on the final results.

Keywords: energy efficiency, offloading operations, speed reduction, Suezmax oil tanker

Procedia PDF Downloads 513
10519 Concept for Planning Sustainable Factories

Authors: T. Mersmann, P. Nyhuis

Abstract:

In the current economic climate, for many businesses it is generally no longer sufficient to pursue exclusively economic interests. Instead, integrating ecological and social goals into the corporate targets is becoming ever more important. However, the holistic integration of these new goals is missing from current factory planning approaches. This article describes the conceptual framework for a planning methodology for sustainable factories. To this end, the description of the key areas for action is followed by a description of the principal components for the systematization of sustainability for factories and their stakeholders. Finally, a conceptual framework is presented which integrates the components formulated into an established factory planning procedure.

Keywords: factory planning, stakeholder, systematization, sustainability

Procedia PDF Downloads 429
10518 Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves

Authors: Angel Pérez Sánchez

Abstract:

Background: Consider magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. Methodology: Brick used in the experiment: two parallel electric current cables attract each other if current goes in the same direction and its application at a microscopic level inside magnets. Significance: Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. Major findings: discover how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work.

Keywords: magnetic lines of force, magnetic field, magnetic attraction and repulsion, magnet split, magnetic monopole, magnetic lines of force as magnets, magnetic lines of force as waves

Procedia PDF Downloads 55
10517 Study of the Transport of Multivalent Metal Cations Through Cation-Exchange Membranes by Electrochemical Impedance Spectroscopy

Authors: V. Pérez-Herranz, M. Pinel, E. M. Ortega, M. García-Gabaldón

Abstract:

In the present work, Electrochemical Impedance Spectrocopy (EIS) is applied to study the transport of different metal cations through a cation-exchange membrane. This technique enables the identification of the ionic-transport characteristics and to distinguish between different transport mechanisms occurring at different current density ranges. The impedance spectra are dependent on the applied dc current density, on the type of cation and on the concentration. When the applied dc current density increases, the diameter of the impedance spectra loops increases because all the components of membrane system resistance increase. The diameter of the impedance plots decreases in the order of Na(I), Ni(II) and Cr(III) due to the increased interactions between the negatively charged sulfonic groups of the membrane and the cations with greater charge. Nyquist plots are shifted towards lower values of the real impedance, and its diameter decreases with the increase of concentration due to the decrease of the solution resistance.

Keywords: ion-exchange membranes, Electrochemical Impedance Spectrocopy, multivalent metal cations, membrane system

Procedia PDF Downloads 509