Search results for: contextual toxicity detection
4280 Bundle Block Detection Using Spectral Coherence and Levenberg Marquardt Neural Network
Authors: K. Padmavathi, K. Sri Ramakrishna
Abstract:
This study describes a procedure for the detection of Left and Right Bundle Branch Block (LBBB and RBBB) ECG patterns using spectral Coherence(SC) technique and LM Neural Network. The Coherence function finds common frequencies between two signals and evaluate the similarity of the two signals. The QT variations of Bundle Blocks are observed in lead V1 of ECG. Spectral Coherence technique uses Welch method for calculating PSD. For the detection of normal and Bundle block beats, SC output values are given as the input features for the LMNN classifier. Overall accuracy of LMNN classifier is 99.5 percent. The data was collected from MIT-BIH Arrhythmia database.Keywords: bundle block, SC, LMNN classifier, welch method, PSD, MIT-BIH, arrhythmia database
Procedia PDF Downloads 2814279 The Role of Foreign Investment in Fostering Economic Growth in Post War Countries
Authors: Khadija Amin
Abstract:
The significant contribution of foreign investment in promoting economic recovery, especially in countries recovering from conflict, is generally recognized. This study examines the influence of foreign investment on the economic development of countries that have had long-lasting internal conflicts. The study examines the complex correlation between foreign investment and economic progress using the production function framework based on endogenous growth theory. In addition to foreign investment, the research considers a range of factors that affect economic growth, such as trade dynamics, the spread of information, attempts to promote peace, changes in the labor market, and the accumulation of domestic capital. The study challenges common beliefs by revealing a statistically negligible negative association between GDP growth and foreign investment (FI) inflows in post-war economies. The existing literature highlights the positive impact of trade and foreign investment on economic growth. However, this study emphasizes that these impacts are complex and depend on various contextual factors such as trade policies, infrastructure development, domestic investment levels, human capital development, and macroeconomic stability. The results emphasize the crucial significance of foreign investment in stimulating development while also drawing attention to the intricacies of precisely assessing its economic consequences. Measuring the economic impact of foreign investment is a difficult task that requires detailed analysis considering many contextual elements and changing socioeconomic conditions.Keywords: economic grouths, foreign investment, trade policies, domestic investment
Procedia PDF Downloads 384278 Safe Zone: A Framework for Detecting and Preventing Drones Misuse
Authors: AlHanoof A. Alharbi, Fatima M. Alamoudi, Razan A. Albrahim, Sarah F. Alharbi, Abdullah M Almuhaideb, Norah A. Almubairik, Abdulrahman Alharby, Naya M. Nagy
Abstract:
Recently, drones received a rapid interest in different industries worldwide due to its powerful impact. However, limitations still exist in this emerging technology, especially privacy violation. These aircrafts consistently threaten the security of entities by entering restricted areas accidentally or deliberately. Therefore, this research project aims to develop drone detection and prevention mechanism to protect the restricted area. Until now, none of the solutions have met the optimal requirements of detection which are cost-effectiveness, high accuracy, long range, convenience, unaffected by noise and generalization. In terms of prevention, the existing methods are focusing on impractical solutions such as catching a drone by a larger drone, training an eagle or a gun. In addition, the practical solutions have limitations, such as the No-Fly Zone and PITBULL jammers. According to our study and analysis of previous related works, none of the solutions includes detection and prevention at the same time. The proposed solution is a combination of detection and prevention methods. To implement the detection system, a passive radar will be used to properly identify the drone against any possible flying objects. As for the prevention, jamming signals and forceful safe landing of the drone integrated together to stop the drone’s operation. We believe that applying this mechanism will limit the drone’s invasion of privacy incidents against highly restricted properties. Consequently, it effectively accelerates drones‘ usages at personal and governmental levels.Keywords: detection, drone, jamming, prevention, privacy, RF, radar, UAV
Procedia PDF Downloads 2114277 Enhanced Retrieval-Augmented Generation (RAG) Method with Knowledge Graph and Graph Neural Network (GNN) for Automated QA Systems
Authors: Zhihao Zheng, Zhilin Wang, Linxin Liu
Abstract:
In the research of automated knowledge question-answering systems, accuracy and efficiency are critical challenges. This paper proposes a knowledge graph-enhanced Retrieval-Augmented Generation (RAG) method, combined with a Graph Neural Network (GNN) structure, to automatically determine the correctness of knowledge competition questions. First, a domain-specific knowledge graph was constructed from a large corpus of academic journal literature, with key entities and relationships extracted using Natural Language Processing (NLP) techniques. Then, the RAG method's retrieval module was expanded to simultaneously query both text databases and the knowledge graph, leveraging the GNN to further extract structured information from the knowledge graph. During answer generation, contextual information provided by the knowledge graph and GNN is incorporated to improve the accuracy and consistency of the answers. Experimental results demonstrate that the knowledge graph and GNN-enhanced RAG method perform excellently in determining the correctness of questions, achieving an accuracy rate of 95%. Particularly in cases involving ambiguity or requiring contextual information, the structured knowledge provided by the knowledge graph and GNN significantly enhances the RAG method's performance. This approach not only demonstrates significant advantages in improving the accuracy and efficiency of automated knowledge question-answering systems but also offers new directions and ideas for future research and practical applications.Keywords: knowledge graph, graph neural network, retrieval-augmented generation, NLP
Procedia PDF Downloads 414276 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application
Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob
Abstract:
Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.Keywords: robotic vision, image processing, applications of robotics, artificial intelligent
Procedia PDF Downloads 974275 FMCW Doppler Radar Measurements with Microstrip Tx-Rx Antennas
Authors: Yusuf Ulaş Kabukçu, Si̇nan Çeli̇k, Onur Salan, Mai̇de Altuntaş, Mert Can Dalkiran, Gökseni̇n Bozdağ, Metehan Bulut, Fati̇h Yaman
Abstract:
This study presents a more compact implementation of the 2.4GHz MIT Coffee Can Doppler Radar for 2.6GHz operating frequency. The main difference of our prototype depends on the use of microstrip antennas which makes it possible to transport with a small robotic vehicle. We have designed our radar system with two different channels: Tx and Rx. The system mainly consists of Voltage Controlled Oscillator (VCO) source, low noise amplifiers, microstrip antennas, splitter, mixer, low pass filter, and necessary RF connectors with cables. The two microstrip antennas, one is element for transmitter and the other one is array for receiver channel, was designed, fabricated and verified by experiments. The system has two operation modes: speed detection and range detection. If the switch of the operation mode is ‘Off’, only CW signal transmitted for speed measurement. When the switch is ‘On’, CW is frequency-modulated and range detection is possible. In speed detection mode, high frequency (2.6 GHz) is generated by a VCO, and then amplified to reach a reasonable level of transmit power. Before transmitting the amplified signal through a microstrip patch antenna, a splitter used in order to compare the frequencies of transmitted and received signals. Half of amplified signal (LO) is forwarded to a mixer, which helps us to compare the frequencies of transmitted and received (RF) and has the IF output, or in other words information of Doppler frequency. Then, IF output is filtered and amplified to process the signal digitally. Filtered and amplified signal showing Doppler frequency is used as an input of audio input of a computer. After getting this data Doppler frequency is shown as a speed change on a figure via Matlab script. According to experimental field measurements the accuracy of speed measurement is approximately %90. In range detection mode, a chirp signal is used to form a FM chirp. This FM chirp helps to determine the range of the target since only Doppler frequency measured with CW is not enough for range detection. Such a FMCW Doppler radar may be used in border security of the countries since it is capable of both speed and range detection.Keywords: doppler radar, FMCW, range detection, speed detection
Procedia PDF Downloads 3984274 Application of the Mesoporous Silica Oxidants on Immunochromatography Detections
Authors: Chang, Ya-Ju, Hsieh, Pei-Hsin, Wu, Jui-Chuang, Chen-Yang, Yui Whei
Abstract:
A mesoporous silica material was prepared to apply to the lateral-flow immunochromatography for detecting a model biosample. The probe antibody is immobilized on the silica surface as the test line to capture its affinity antigen, which laterally flows through the chromatography strips. The antigen is labeled with nano-gold particles, such that the detection can be visually read out from the test line without instrument aids. The result reveals that the mesoporous material provides a vast area for immobilizing the detection probes. Biosening surfaces corresponding with a positive proportion of detection signals is obtained with the biosample loading.Keywords: mesoporous silica, immunochromatography, lateral-flow strips, biosensors, nano-gold particles
Procedia PDF Downloads 6094273 Ameliorative Effect of Curcuma Longa against Arsenic Induced Reproductive Toxicity in Charles Foster Rats
Authors: Shazia Naheed Akhter, Rekha Kumari
Abstract:
An estimated 70 million population are exposed to arsenic poisoning in India in recent times. Arsenic contamination in the groundwater has caused serious health hazards among the exposed population. In Bihar, the first district was Bhojpur, where arsenic causing health issues were reported in 2002. Presently, there are 18 districts that are reported arsenic poisoning in the groundwater. The exposed population is firstly diseased with various symptoms such as skin manifestations, loss of appetite, constipation, hormonal disorders, etc. The long duration exposure has led to cause infertility in the male subjects. The present study thus aims to develop the antidote against arsenic-induced male reproductive toxicity in animal models. The study was carried out on Charles Foster Rats after the approval from Institutional Animal Ethics Committee. A total of n=18 rats (12 weeks old) of an average weight of 160 ± 20 g were used for the study. The study group included n=6 control and n= 12 treated with sodium arsenite orally at the dose of 8mg/Kg b.w daily for 40 days. The n= 6 animals were dissected and the rest n=6 was administered orally with Curcuma longa rhizome ethanolic extract at the dose of 600mg/Kg b.w per day for 40 days. At the end of the entire experiment, all the animals were dissected out and their reproductive organs were taken out, especially epididymis for sperm counts, sperm motility, sperm mortality, sperm morphology. The blood samples were collected for the hormonal assay (testosterone and luteinizing hormone), as well as for hematological and biochemical analysis. The study showed a high magnitude of degeneration in the reproductive organs of the rats in the arsenic-treated group. There were degenerative fluctuations in the sperm counts, sperm motility, sperm mortality, sperm morphology and in the hormonal parameters, as well as in the hematological and biochemical parameters in the arsenic-treated rats. But, after the administration of Curcuma longa, there was significant amelioration in all these parameters. Therefore, the present study shows that Curcuma longa plays a vital role to combat arsenic-induced male reproductive toxicity.Keywords: sodium arsenite, Charles foster rats, ethanolic rhizome extract of curcuma longa, male reproductive toxicity, amelioration
Procedia PDF Downloads 2254272 Performance Comparison of Outlier Detection Techniques Based Classification in Wireless Sensor Networks
Authors: Ayadi Aya, Ghorbel Oussama, M. Obeid Abdulfattah, Abid Mohamed
Abstract:
Nowadays, many wireless sensor networks have been distributed in the real world to collect valuable raw sensed data. The challenge is to extract high-level knowledge from this huge amount of data. However, the identification of outliers can lead to the discovery of useful and meaningful knowledge. In the field of wireless sensor networks, an outlier is defined as a measurement that deviates from the normal behavior of sensed data. Many detection techniques of outliers in WSNs have been extensively studied in the past decade and have focused on classic based algorithms. These techniques identify outlier in the real transaction dataset. This survey aims at providing a structured and comprehensive overview of the existing researches on classification based outlier detection techniques as applicable to WSNs. Thus, we have identified key hypotheses, which are used by these approaches to differentiate between normal and outlier behavior. In addition, this paper tries to provide an easier and a succinct understanding of the classification based techniques. Furthermore, we identified the advantages and disadvantages of different classification based techniques and we presented a comparative guide with useful paradigms for promoting outliers detection research in various WSN applications and suggested further opportunities for future research.Keywords: bayesian networks, classification-based approaches, KPCA, neural networks, one-class SVM, outlier detection, wireless sensor networks
Procedia PDF Downloads 4974271 Detection and Tracking for the Protection of the Elderly and Socially Vulnerable People in the Video Surveillance System
Authors: Mobarok Hossain Bhuyain
Abstract:
Video surveillance processing has attracted various security fields transforming it into one of the leading research fields. Today's demand for detection and tracking of human mobility for security is very useful for human security, such as in crowded areas. Accordingly, video surveillance technology has seen a rapid advancement in recent years, with algorithms analyzing the behavior of people under surveillance automatically. The main motivation of this research focuses on the detection and tracking of the elderly and socially vulnerable people in crowded areas. Degenerate people are a major health concern, especially for elderly people and socially vulnerable people. One major disadvantage of video surveillance is the need for continuous monitoring, especially in crowded areas. To assist the security monitoring live surveillance video, image processing, and artificial intelligence methods can be used to automatically send warning signals to the monitoring officers about elderly people and socially vulnerable people.Keywords: human detection, target tracking, neural network, particle filter
Procedia PDF Downloads 1664270 Intrusion Detection in SCADA Systems
Authors: Leandros A. Maglaras, Jianmin Jiang
Abstract:
The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm.Keywords: cyber-security, SCADA systems, OCSVM, intrusion detection
Procedia PDF Downloads 5524269 Assessment of Toxic Impact of Metals on Different Instars of Silkworm, Bombyx Mori
Authors: Muhammad Dildar Gogi, Muhammad Arshad, Muhammad Ahsan Khan, M. Sufian, Ahmad Nawaz, Mubashir Iqbal, Muhammad Junaid Nisar, Waleed Afzal Naveed
Abstract:
Larvae of silkworm (Bombyx mori) exhibit very high mortality when reared on mulberry leaves collected from mulberry orchards which get contaminated with metallic/nonmetallic compounds through either drift-deposition or chemigation. There is need to screen out such metallic compound for their toxicity at their various concentrations. The present study was carried out to assess toxicity of metals in different instars of silkworm. Aqueous solutions of nine heavy-metal based salts were prepared by dissolving 50, 100, 150, 200, 250, 300, 350 and 400 mg of each salt in one liter of water and were applied on the mulberry leaves by leaf-dip methods. The results reveal that mortality in 1st, 2nd, 3rd, 4th and 5th instar larvae caused by each heavy metal salts increased with an increase in their concentrations. The 1st instar larvae were found more susceptible to metal salts followed by 2nd, 3rd, 4th and 5th instar larvae of silkworm. Overall, Nickel chloride proved more toxic for all larval instar as it demonstrated approximately 40-99% mortality. On the basis of LC2 and larval mortality, the order of toxicity of heavy metals against all five larval instar was Nickel chloride (LC₂ = 1.9-13.9 mg/L; & 15.0±1.2-69.2±1.7% mortality) followed by Chromium nitrate (LC₂ = 3.3-14.8 mg/L; & 13.3±1.4-62.4±2.8% mortality), Cobalt nitrate (LC₂ = 4.3-30.9; &11.4±0.07-54.9±2.0% mortality), Lead acetate (LC₂ =8.8-53.3 mg/L; & 9.5±1.3-46.4±2.9% mortality), Aluminum sulfate (LC₂ = 15.5-76.6 mg/L; & 8.4±0.08-42.1±2.8% mortality), Barium sulfide (LC₂ = 20.9-105.9; & 7.7±1.1-39.2±2.5% mortality), Copper sulfate (LC2 = 28.5-12.4 mg/L; & 7.3±0.06-37.1±2.4% mortality), Manganese chloride (LC₂ = 29.9-136.9 mg/L; & 6.8±0.09-35.3±1.6% mortality) and Zinc nitrate (LC₂ = 36.3-15 mg/L; & 6.2±1.2-32.1±1.9% mortality). Zinc nitrate @ 50 and 100 mg/L, Barium sulfide @ 50 mg/L, Manganese chloride @ 50 and 100 mg/L and Copper sulfate @ 50 mg/L proved safe for 5th instar larvae as these interaction attributed no mortality. All the heavy metal salts at a concentration of 50 mg/L demonstrated less than 10% mortality.Keywords: heavy-metals, larval-instars, lethal-concentration, mortality, silkworm
Procedia PDF Downloads 2194268 Genotoxicity Induced by Nanoparticles on Human Lymphoblast Cells (TK6)
Authors: Piyaporn Buaklang, Narisa Kengtrong Bordeerat
Abstract:
The use of nanoparticles is increasing worldwide and there are many nanotech-based daily products available in the market. The toxicity of nanoparticles results from their extremely small size which can be transported easily into the blood stream and other organs. We aimed to study the genotoxicity of two nanoparticles, Titanium dioxide (TiO2-NPs) and Zinc oxide (ZnO-NPs), in TK6 cells by micronucleus assay. The cells were tested at 8, 24, and 48 hours after exposed to 0.10, 0.25, 0.50 and 1.00 µg/mL of TiO2-NPs particles size < 25 nm and < 100 nm and to ZnO-NPs at 1, 10, 50, and 100 µg/mL, particles size < 50 nm and < 100 nm. At 24 hours of incubation transmission electron microscope (TEM) revealed that the nanoparticles TiO2-NPs at 1.00 µg/mL and ZnO-NPs at 10 µg/mL were able to be taken into the cells and induced the production of increasing amount of micronucleus in dose-dependent manner. The effect of the two nanoparticles on chromosome aberration indicated that TiO2-NPs and ZnO-NPs are genotoxic. In addition, the toxicity of TiO2-NPs was found to be 10 times more toxic than ZnO-NPs after 24 hours exposure. Analysis showed that the TiO2-NPs induced formation of micronucleus was both time and dose dependent, whereas the genotoxicity of ZnO-NPs was only dose dependent. In conclusion, TiO2-NPs and ZnO-NPs were able to transport through the cells membrane and directly genotoxic to TK6 cells in dose-dependent manner.Keywords: nanoparticles, genotoxicity, human lymphoblast cells (TK6), micronucleus
Procedia PDF Downloads 3014267 Acute Toxicity Studies of Total Alkaloids of Seeds of Datura stramonium in Female Rats: Effect on Liver and Kidney
Authors: Bouzidi Abdelouahab, Ghadjati Nadhra, Bettihi Sara, Mahdeb Nadia, Daamouche Z. El Youm
Abstract:
The effects of acute administration of TOTAL alkaloids, the main active principle of Datura stramonium, with toxic properties, were studied in female Albino-Wistar rats. After acute intraperitoneal administration of dose 120 mg kg-1 (≈1/3 DL50) of total alkaloids to the seeds of D. stramonium, there were no remarkable changes in general appearance and no deaths occurred in any experimental group. After 5 days a significant reduction was observed in total alkaloids of seeds. The Red Blood Cells (RBC), Hematocrit (HCT) and Hemoglobin (HGB) show significant changes in the treated groups. There were no statistical differences in Glutamic-pyruvic Transaminase (GPT), Alkaline Phosphatase (ALP), urea, glucose and total protein observed between groups. After 24 h Glutamic-Oxaloacetic Transaminase (GOT) and creatinine were significantly higher in the treated male rats than the control group histological examination of liver showed no histopathological changes.Keywords: datura stramonium, rat, liver, kidney, alkaloids, toxicity
Procedia PDF Downloads 4824266 Influence of Protein Malnutrition and Different Stressful Conditions on Aluminum-Induced Neurotoxicity in Rats: Focus on the Possible Protection Using Epigallocatechin-3-Gallate
Authors: Azza A. Ali, Asmaa Abdelaty, Mona G. Khalil, Mona M. Kamal, Karema Abu-Elfotuh
Abstract:
Background: Aluminium (Al) is known as a neurotoxin environmental pollutant that can cause certain diseases as Dementia, Alzheimer's disease, and Parkinsonism. It is widely used in antacid drugs as well as in food additives and toothpaste. Stresses have been linked to cognitive impairment; Social isolation (SI) may exacerbate memory deficits while protein malnutrition (PM) increases oxidative damage in cortex, hippocampus and cerebellum. The risk of cognitive decline may be lower by maintaining social connections. Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea and has antioxidant, anti-inflammatory and anti-atherogenic effects as well as health-promoting effects in CNS. Objective: To study the influence of different stressful conditions as social isolation, electric shock (EC) and inadequate Nutritional condition as PM on neurotoxicity induced by Al in rats as well as to investigate the possible protective effect of EGCG in these stressful and PM conditions. Methods: Rats were divided into two major groups; protected group which was daily treated during three weeks of the experiment by EGCG (10 mg/kg, IP) or non-treated. Protected and non-protected groups included five subgroups as following: One normal control received saline and four Al toxicity groups injected daily for three weeks by ALCl3 (70 mg/kg, IP). One of them served as Al toxicity model, two groups subjected to different stresses either by isolation as mild stressful condition (SI-associated Al toxicity model) or by electric shock as high stressful condition (EC- associated Al toxicity model). The last was maintained on 10% casein diet (PM -associated Al toxicity model). Isolated rats were housed individually in cages covered with black plastic. Biochemical changes in the brain as acetyl cholinesterase (ACHE), Aβ, brain derived neurotrophic factor (BDNF), inflammatory mediators (TNF-α, IL-1β), oxidative parameters (MDA, SOD, TAC) were estimated for all groups. Histopathological changes in different brain regions were also evaluated. Results: Rats exposed to Al for three weeks showed brain neurotoxicity and neuronal degenerations. Both mild (SI) and high (EC) stressful conditions as well as inadequate nutrition (PM) enhanced Al-induced neurotoxicity and brain neuronal degenerations; the enhancement induced by stresses especially in its higher conditions (ES) was more pronounced than that of inadequate nutritional conditions (PM) as indicated by the significant increase in Aβ, ACHE, MDA, TNF-α, IL-1β together with the significant decrease in SOD, TAC, BDNF. On the other hand, EGCG showed more pronounced protection against hazards of Al in both stressful conditions (SI and EC) rather than in PM .The protective effects of EGCG were indicated by the significant decrease in Aβ, ACHE, MDA, TNF-α, IL-1β together with the increase in SOD, TAC, BDNF and confirmed by brain histopathological examinations. Conclusion: Neurotoxicity and brain neuronal degenerations induced by Al were more severe with stresses than with PM. EGCG can protect against Al-induced brain neuronal degenerations in all conditions. Consequently, administration of EGCG together with socialization as well as adequate protein nutrition is advised especially on excessive Al-exposure to avoid the severity of its neuronal toxicity.Keywords: environmental pollution, aluminum, social isolation, protein malnutrition, neuronal degeneration, epigallocatechin-3-gallate, rats
Procedia PDF Downloads 3914265 Autonomous Vehicle Detection and Classification in High Resolution Satellite Imagery
Authors: Ali J. Ghandour, Houssam A. Krayem, Abedelkarim A. Jezzini
Abstract:
High-resolution satellite images and remote sensing can provide global information in a fast way compared to traditional methods of data collection. Under such high resolution, a road is not a thin line anymore. Objects such as cars and trees are easily identifiable. Automatic vehicles enumeration can be considered one of the most important applications in traffic management. In this paper, autonomous vehicle detection and classification approach in highway environment is proposed. This approach consists mainly of three stages: (i) first, a set of preprocessing operations are applied including soil, vegetation, water suppression. (ii) Then, road networks detection and delineation is implemented using built-up area index, followed by several morphological operations. This step plays an important role in increasing the overall detection accuracy since vehicles candidates are objects contained within the road networks only. (iii) Multi-level Otsu segmentation is implemented in the last stage, resulting in vehicle detection and classification, where detected vehicles are classified into cars and trucks. Accuracy assessment analysis is conducted over different study areas to show the great efficiency of the proposed method, especially in highway environment.Keywords: remote sensing, object identification, vehicle and road extraction, vehicle and road features-based classification
Procedia PDF Downloads 2324264 Iris Cancer Detection System Using Image Processing and Neural Classifier
Authors: Abdulkader Helwan
Abstract:
Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera
Procedia PDF Downloads 5034263 Fault Detection of Pipeline in Water Distribution Network System
Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee
Abstract:
Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform
Procedia PDF Downloads 5124262 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: Aisultan Shoiynbek, Darkhan Kuanyshbay, Paulo Menezes, Akbayan Bekarystankyzy, Assylbek Mukhametzhanov, Temirlan Shoiynbek
Abstract:
Speech emotion recognition (SER) has received increasing research interest in recent years. It is a common practice to utilize emotional speech collected under controlled conditions recorded by actors imitating and artificially producing emotions in front of a microphone. There are four issues related to that approach: emotions are not natural, meaning that machines are learning to recognize fake emotions; emotions are very limited in quantity and poor in variety of speaking; there is some language dependency in SER; consequently, each time researchers want to start work with SER, they need to find a good emotional database in their language. This paper proposes an approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describes the sequence of actions involved in the proposed approach. One of the first objectives in the sequence of actions is the speech detection issue. The paper provides a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To investigate the working capacity of the developed model, an analysis of speech detection and extraction from real tasks has been performed.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 264261 Path Planning for Collision Detection between two Polyhedra
Authors: M. Khouil, N. Saber, M. Mestari
Abstract:
This study aimed to propose, a different architecture of a Path Planning using the NECMOP. where several nonlinear objective functions must be optimized in a conflicting situation. The ability to detect and avoid collision is very important for mobile intelligent machines. However, many artificial vision systems are not yet able to quickly and cheaply extract the wealth information. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons linear and threshold logic, which simplified the actual implementation of all the networks proposed. This article represents a comprehensive algorithm that determine through the AMAXNET network a measure (a mini-maximum point) in a fixed time, which allows us to detect the presence of a potential collision.Keywords: path planning, collision detection, convex polyhedron, neural network
Procedia PDF Downloads 4384260 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX Through Fusion of Vision and 3+1D Millimeter Wave Radar
Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma
Abstract:
Unmanned Surface Vehicles (USVs) are valuable due to their ability to perform dangerous and time-consuming tasks on the water. Object detection tasks are significant in these applications. However, inherent challenges, such as the complex distribution of obstacles, reflections from shore structures, water surface fog, etc., hinder the performance of object detection of USVs. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. MMW radar is complementary to vision sensors, providing robust environmental information. The radar 3D point cloud is transferred to 2D radar pseudo image to unify radar and vision information format by utilizing the point transformer. We propose a multi-source object detection network (RV-YOLOX )based on radar-vision fusion for inland waterways environment. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.Keywords: inland waterways, YOLO, sensor fusion, self-attention
Procedia PDF Downloads 1244259 Heuristic of Style Transfer for Real-Time Detection or Classification of Weather Conditions from Camera Images
Authors: Hamed Ouattara, Pierre Duthon, Frédéric Bernardin, Omar Ait Aider, Pascal Salmane
Abstract:
In this article, we present three neural network architectures for real-time classification of weather conditions (sunny, rainy, snowy, foggy) from images. Inspired by recent advances in style transfer, two of these architectures -Truncated ResNet50 and Truncated ResNet50 with Gram Matrix and Attention- surpass the state of the art and demonstrate re-markable generalization capability on several public databases, including Kaggle (2000 images), Kaggle 850 images, MWI (1996 images) [1], and Image2Weather [2]. Although developed for weather detection, these architectures are also suitable for other appearance-based classification tasks, such as animal species recognition, texture classification, disease detection in medical images, and industrial defect identification. We illustrate these applications in the section “Applications of Our Models to Other Tasks” with the “SIIM-ISIC Melanoma Classification Challenge 2020” [3].Keywords: weather simulation, weather measurement, weather classification, weather detection, style transfer, Pix2Pix, CycleGAN, CUT, neural style transfer
Procedia PDF Downloads 44258 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.Keywords: anomaly detection, autoencoder, data centers, deep learning
Procedia PDF Downloads 1944257 An Enhanced SAR-Based Tsunami Detection System
Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah
Abstract:
Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.Keywords: detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter
Procedia PDF Downloads 3924256 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection
Procedia PDF Downloads 1584255 Multi-Institutional Report on Toxicities of Concurrent Nivolumab and Radiation Therapy
Authors: Neha P. Amin, Maliha Zainib, Sean Parker, Malcolm Mattes
Abstract:
Purpose/Objectives: Combination immunotherapy (IT) and radiation therapy (RT) is an actively growing field of clinical investigation due to promising findings of synergistic effects from immune-mediated mechanisms observed in preclinical studies and clinical data from case reports of abscopal effects. While there are many ongoing trials of combined IT-RT, there are still limited data on toxicity and outcome optimization regarding RT dose, fractionation, and sequencing of RT with IT. Nivolumab (NIVO), an anti-PD-1 monoclonal antibody, has been rapidly adopted in the clinic over the past 2 years, resulting in more patients being considered for concurrent RT-NIVO. Knowledge about the toxicity profile of combined RT-NIVO is important for both the patient and physician when making educated treatment decisions. The acute toxicity profile of concurrent RT-NIVO was analyzed in this study. Materials/Methods: A retrospective review of all consecutive patients who received NIVO from 1/2015 to 5/2017 at 4 separate centers within two separate institutions was performed. Those patients who completed a course of RT from 1 day prior to initial NIVO infusion through 1 month after last NIVO infusion were considered to have received concurrent therapy and included in the subsequent analysis. Descriptive statistics are reported for patient/tumor/treatment characteristics and observed acute toxicities within 3 months of RT completion. Results: Among 261 patients who received NIVO, 46 (17.6%) received concurrent RT to 67 different sites. The median f/u was 3.3 (.1-19.8) months, and 11/46 (24%) were still alive at last analysis. The most common histology, RT prescription, and treatment site included non-small cell lung cancer (23/46, 50%), 30 Gy in 10 fractions (16/67, 24%), and central thorax/abdomen (26/67, 39%), respectively. 79% (53/67) of irradiated sites were treated with 3D-conformal technique and palliative dose-fractionation. Grade 3, 4, and 5 toxicities were experienced by 11, 1, and 2 patients, respectively. However all grade 4 and 5 toxicities were outside of the irradiated area and attributed to the NIVO alone, and only 4/11 (36%) of the grade 3 toxicities were attributed to the RT-NIVO. The irradiated site in these cases included the brain [2/10 (20%)] and central thorax/abdomen [2/19 (10.5%)], including one unexpected grade 3 pancreatitides following stereotactic body RT to the left adrenal gland. Conclusions: Concurrent RT-NIVO is generally well tolerated, though with potentially increased rates of severe toxicity when irradiating the lung, abdomen, or brain. Pending more definitive data, we recommend counseling patients on the potentially increased rates of side effects from combined immunotherapy and radiotherapy to these locations. Future prospective trials assessing fractionation and sequencing of RT with IT will help inform combined therapy recommendations.Keywords: combined immunotherapy and radiation, immunotherapy, Nivolumab, toxicity of concurrent immunotherapy and radiation
Procedia PDF Downloads 3924254 Advanced Machine Learning Algorithm for Credit Card Fraud Detection
Authors: Manpreet Kaur
Abstract:
When legitimate credit card users are mistakenly labelled as fraudulent in numerous financial delated applications, there are numerous ethical problems. The innovative machine learning approach we have suggested in this research outperforms the current models and shows how to model a data set for credit card fraud detection while minimizing false positives. As a result, we advise using random forests as the best machine learning method for predicting and identifying credit card transaction fraud. The majority of victims of these fraudulent transactions were discovered to be credit card users over the age of 60, with a higher percentage of fraudulent transactions taking place between the specific hours.Keywords: automated fraud detection, isolation forest method, local outlier factor, ML algorithm, credit card
Procedia PDF Downloads 1144253 Reviewing the Effect of Healing Design on Mental Health Establishments in the Context of India
Authors: Aratrika Sarkar, Jayita Guha Niyogi
Abstract:
This paper focuses on the application of general healing design theories to modulate them into case-specific and contextual design considerations. Existing literature focuses on the relationship between architecture and mental health. Primary case studies are selected in India to focus on the effect of a specific location on design considerations. They are qualitatively analysed to further contextualise the inferences from the literature study. An academic project is cited as an example to apply the learnings from the study and understand the influence of various parameters on the design process for further conclusion. Literature studies, case studies and hypothetical design applications helped in finding the different ways of achieving the similar goal of a sensitive approach toward mental health. Along with salutogenic parameters, category of establishment, age group, location of the site and user preference plays a crucial role in the design process. Design of mental health establishments, especially in India, has to involve transparency between stakeholders and users. Owing to different climatic zones and diverse sociocultural traditions, the approach toward healing should adapt accordingly. It should be an effort towards striking a balance between contradictory elements of healing design and resolving the dilemmas with sensitivity and consensus. Lastly, the design should not force a person towards communication or companionship but rather let the person realise that naturally through the healing process.Keywords: contextual healing design, deinstitutionalisation, Indian mental healthcare establishments, environmental psychology, salutogenesis, therapeutic design
Procedia PDF Downloads 1084252 Application of Customized Bioaugmentation Inocula to Alleviate Ammonia Toxicity in CSTR Anaerobic Digesters
Authors: Yixin Yan, Miao Yan, Irini Angelidaki, Ioannis Fotidis
Abstract:
Ammonia, which derives from the degradation of urea and protein-substrates, is the major toxicant of the commercial anaerobic digestion reactors causing loses of up to 1/3 of their practical biogas production, which reflects directly on the overall revenue of the plants. The current experimental work is aiming to alleviate the ammonia inhibition in anaerobic digestion (AD) process by developing an innovative bioaugmentation method of ammonia tolerant methanogenic consortia. The ammonia tolerant consortia were cultured in batch reactors and immobilized together with biochar in agar (customized inocula). Three continuous stirred-tank reactors (CSTR), fed with the organic fraction of municipal solid waste at a hydraulic retention time of 15 days and operated at thermophilic (55°C) conditions were assessed. After an ammonia shock of 4 g NH4+-N L-1, the customized inocula were bioaugmented into the CSTR reactors to alleviate ammonia toxicity effect on AD process. Recovery rate of methane production and methanogenic activity will be assessed to evaluate the bioaugmentation performance, while 16s rRNA gene sequence will be used to reveal the difference of microbial community changes through bioaugmentation. At the microbial level, the microbial community structures of the four reactors will be analysed to find the mechanism of bioaugmentation. Changes in hydrogen formation potential will be used to predict direct interspecies electron transfer (DIET) between ammonia tolerant methanogens and syntrophic bacteria. This experimental work is expected to create bioaugmentation inocula that will be easy to obtain, transport, handled and bioaugment in AD reactors to efficiently alleviate the ammonia toxicity, without alternating any of the other operational parameters including the ammonia-rich feedstocks.Keywords: artisanal fishing waste, acidogenesis, volatile fatty acids, pH, inoculum/substrate ratio
Procedia PDF Downloads 1274251 Girls’ Education Policy and Practices in Three Selected Countries of Africa: Feminism, Educational Reform and Cultural Inflections in View
Authors: Endalew Fufa Kufi
Abstract:
One of the major concerns in educational provision and success determination is access to available opportunities. In that, girls’ access to education has been a point of concern, and more emphasis has come to be at the forefront regarding success. Researches have mostly been held on extremes such as equal access and success, but only a few works deal with process issues related to home and school interplay, issues of progress from lower to higher levels, and spatial conditions related to girls’ education. Hence, this survey assessed experiences in three countries of Africa: Ethiopia, Ghana, and Botswana regarding girls’ education in policy and practice as related to contextual matters in girls’ education. Contextual discourse analysis of qualitative design was used to materialize the study. From each country, five research works held 2010 onwards were purposively selected through criterion-sampling. On the policy aspect, workable documents were looked into. The findings denoted that educational access was of more stretch and generic nature, and the narration was dominated by institutional expectations, not identifying which group should benefit what. The researches largely dealt with either subject-specific dealings or access alone at large. Success studies, by far, dealt with a comparison of girls with boys rather than determinant-related projections. Moreover, the cultural representation of girls’ education had a very minimal part in both policy and researches. From that, it could be found that in-depth scrutiny on the individual, institutional, and leadership determinants of girls’ education would be necessary.Keywords: determinants, girls, education, feminism
Procedia PDF Downloads 295