Search results for: classical text
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2272

Search results for: classical text

1762 Probing Language Models for Multiple Linguistic Information

Authors: Bowen Ding, Yihao Kuang

Abstract:

In recent years, large-scale pre-trained language models have achieved state-of-the-art performance on a variety of natural language processing tasks. The word vectors produced by these language models can be viewed as dense encoded presentations of natural language that in text form. However, it is unknown how much linguistic information is encoded and how. In this paper, we construct several corresponding probing tasks for multiple linguistic information to clarify the encoding capabilities of different language models and performed a visual display. We firstly obtain word presentations in vector form from different language models, including BERT, ELMo, RoBERTa and GPT. Classifiers with a small scale of parameters and unsupervised tasks are then applied on these word vectors to discriminate their capability to encode corresponding linguistic information. The constructed probe tasks contain both semantic and syntactic aspects. The semantic aspect includes the ability of the model to understand semantic entities such as numbers, time, and characters, and the grammatical aspect includes the ability of the language model to understand grammatical structures such as dependency relationships and reference relationships. We also compare encoding capabilities of different layers in the same language model to infer how linguistic information is encoded in the model.

Keywords: language models, probing task, text presentation, linguistic information

Procedia PDF Downloads 110
1761 Comparison of Parametric and Bayesian Survival Regression Models in Simulated and HIV Patient Antiretroviral Therapy Data: Case Study of Alamata Hospital, North Ethiopia

Authors: Zeytu G. Asfaw, Serkalem K. Abrha, Demisew G. Degefu

Abstract:

Background: HIV/AIDS remains a major public health problem in Ethiopia and heavily affecting people of productive and reproductive age. We aimed to compare the performance of Parametric Survival Analysis and Bayesian Survival Analysis using simulations and in a real dataset application focused on determining predictors of HIV patient survival. Methods: A Parametric Survival Models - Exponential, Weibull, Log-normal, Log-logistic, Gompertz and Generalized gamma distributions were considered. Simulation study was carried out with two different algorithms that were informative and noninformative priors. A retrospective cohort study was implemented for HIV infected patients under Highly Active Antiretroviral Therapy in Alamata General Hospital, North Ethiopia. Results: A total of 320 HIV patients were included in the study where 52.19% females and 47.81% males. According to Kaplan-Meier survival estimates for the two sex groups, females has shown better survival time in comparison with their male counterparts. The median survival time of HIV patients was 79 months. During the follow-up period 89 (27.81%) deaths and 231 (72.19%) censored individuals registered. The average baseline cluster of differentiation 4 (CD4) cells count for HIV/AIDS patients were 126.01 but after a three-year antiretroviral therapy follow-up the average cluster of differentiation 4 (CD4) cells counts were 305.74, which was quite encouraging. Age, functional status, tuberculosis screen, past opportunistic infection, baseline cluster of differentiation 4 (CD4) cells, World Health Organization clinical stage, sex, marital status, employment status, occupation type, baseline weight were found statistically significant factors for longer survival of HIV patients. The standard error of all covariate in Bayesian log-normal survival model is less than the classical one. Hence, Bayesian survival analysis showed better performance than classical parametric survival analysis, when subjective data analysis was performed by considering expert opinions and historical knowledge about the parameters. Conclusions: Thus, HIV/AIDS patient mortality rate could be reduced through timely antiretroviral therapy with special care on the potential factors. Moreover, Bayesian log-normal survival model was preferable than the classical log-normal survival model for determining predictors of HIV patients survival.

Keywords: antiretroviral therapy (ART), Bayesian analysis, HIV, log-normal, parametric survival models

Procedia PDF Downloads 196
1760 From Colonial Outpost to Cultural India: Folk Epics of India

Authors: Jyoti Brahma

Abstract:

Folk epics of India are found in various Indian languages. The study of folk epics and its importance in folkloristic study in India came into prominence only during the nineteenth century. The British administrators and missionaries collected and documented folk epics from various parts of the country. The paper is an attempt to investigate how colonial outpost appears to penetrate the interiors of Indian land and society and triggered off the Indian Renaissance. It takes into account the compositions of the epics of India and the attention it received during the nineteenth century, which in turn gave, rise to the national consciousness shaping the culture of India. Composed as oral traditions these folk epics are now seen as repositories of historical consciousness whereas in earlier times societies without literacy were said to be without history. So, there is an urgent need to re-examine the British impact on Indian literary traditions. The Bhakti poets through their nuanced responses in their efforts to change the behavior of Indian society gives us the perfect example of deferment in the clear cut distinction between the folk and the classical in the context of India. It evades a pure categorization and classification of the classical and constitutes part of the folk traditions of the cultural heritage of India. Therefore, the ethical question of what is ontologically known as ordinary discourse in the case of the “folk” forms metaphors and folk language gains importance once more. The paper also thus seeks simultaneously to outline the significant factors responsible for shaping the destiny of folklore in South India particularly the four political states of the Indian Union: Andhra Pradesh, Karnataka, Kerala and Tamil Nadu, what could be termed as South Indian “cultural zones”.

Keywords: colonial, folk, folklore, tradition

Procedia PDF Downloads 309
1759 On ‘Freaks’ and the Feminine in Margaret Atwood’s ‘Lusus Naturae’

Authors: Shahd Alshammari

Abstract:

This paper considers one of Margaret Atwood’s short stories ‘Lusus Naturae'. Through a critical lens that makes use of Julia Kristeva’s work on Powers of Horror and abjection, this paper suggests that the monstrous girl is the disabled woman, the abject in society. The monster is used as a metaphor for the unknown, the misunderstood, and the ‘different’ woman. Culturally Relevant Teaching (CRT) is a pedagogy that calls for making course material accessible and relevant to students. Through the study of literary texts, we are able to help create agency inside and outside the classroom. Stories are a necessary part of establishing connections across borders and boundaries. Stories are meant to raise awareness both inside and outside the classroom. The discussion is equally important, and the text is meant to facilitate relevant questions that the students need to consider when it comes to identity. Questions to consider are: what does it mean to be a ‘girl’ today, and what implications and consequences are at hand when you fail to perform this gendered identity? Gender is sometimes a fatal bond in the Middle East, and even more so, is the disability. In the case of our unnamed protagonist, she undergoes a process of un-becoming, a non-linear process of growing up. In a sense, it is a counter-Bildungsroman. The reading of this text emphasizes that a non-linear narrative is sometimes necessary for the female protagonist’s self-awareness and development. Discussion in class facilitates this sense of agency and questioning of gender and disability.

Keywords: disability, gender, literature, pedagogy

Procedia PDF Downloads 658
1758 The Use of Neuter in Oedipus Lines to Refer to Antigone in Phoenissae of Seneca

Authors: Cíntia Martins Sanches

Abstract:

In the first part of Phoenissae of Seneca, Antigone is a guide to Oedipus, and they leave Thebes: he is blind searching for death (inflicting the punishment himself wished on the killer of Laius, ie exile and death); she is trying to convince him to give up such punishment and bring him back to Thebes. Concerning Oedipus lines, we observed a high frequency of Latin neuter in the treatment the protagonist gave to his daughter Antigone. We considered in this study that such frequency may be related to the sanctification of the daughter, who is seen by him as an enlightened being and without defects, free of the human condition (which takes on the existence of failures by essence). This study, thus, puts forward an analysis of the passages the said feature is present, relating them to the effect of meaning found in each occurrence. As part of a doctorate, this study investigates the stylistic idiom of Seneca in the Oedipus and Phoenissae tragedies, aiming at translating both tragedies expressively. The concept of stylistic idiom concerns the stylistic affinity required for a translation to be equivalent to the source text. In this wise, this study inquires into how the Latin text is organized poetically, pointing out the expressive features frequently appearing in both dramas. The method we used is based on the Semiotics theory — observing how connotation, ie a language use in which prevails the poetic function, naturally polysemous, acts to achieve each expressive effect.

Keywords: antigone, neuter, Oedipus, Phoenissae, Seneca

Procedia PDF Downloads 288
1757 Ranking Priorities for Digital Health in Portugal: Aligning Health Managers’ Perceptions with Official Policy Perspectives

Authors: Pedro G. Rodrigues, Maria J. Bárrios, Sara A. Ambrósio

Abstract:

The digitalisation of health is a profoundly transformative economic, political, and social process. As is often the case, such processes need to be carefully managed if misunderstandings, policy misalignments, or outright conflicts between the government and a wide gamut of stakeholders with competing interests are to be avoided. Thus, ensuring open lines of communication where all parties know what each other’s concerns are is key to good governance, as well as efficient and effective policymaking. This project aims to make a small but still significant contribution in this regard in that we seek to determine the extent to which health managers’ perceptions of what is a priority for digital health in Portugal are aligned with official policy perspectives. By applying state-of-the-art artificial intelligence technology first to the indexed literature on digital health and then to a set of official policy documents on the same topic, followed by a survey directed at health managers working in public and private hospitals in Portugal, we obtain two priority rankings that, when compared, will allow us to produce a synthesis and toolkit on digital health policy in Portugal, with a view to identifying areas of policy convergence and divergence. This project is also particularly peculiar in the sense that sophisticated digital methods related to text analytics are employed to study good governance aspects of digitalisation applied to health care.

Keywords: digital health, health informatics, text analytics, governance, natural language understanding

Procedia PDF Downloads 64
1756 Leveraging Large Language Models to Build a Cutting-Edge French Word Sense Disambiguation Corpus

Authors: Mouheb Mehdoui, Amel Fraisse, Mounir Zrigui

Abstract:

With the increasing amount of data circulating over the Web, there is a growing need to develop and deploy tools aimed at unraveling semantic nuances within text or sentences. The challenges in extracting precise meanings arise from the complexity of natural language, while words usually have multiple interpretations depending on the context. The challenge of precisely interpreting words within a given context is what the task of Word Sense Disambiguation meets. It is a very old domain within the area of Natural Language Processing aimed at determining a word’s meaning that it is going to carry in a particular context, hence increasing the correctness of applications processing the language. Numerous linguistic resources are accessible online, including WordNet, thesauri, and dictionaries, enabling exploration of diverse contextual meanings. However, several limitations persist. These include the scarcity of resources for certain languages, a limited number of examples within corpora, and the challenge of accurately detecting the topic or context covered by text, which significantly impacts word sense disambiguation. This paper will discuss the different approaches to WSD and review corpora available for this task. We will contrast these approaches, highlighting the limitations, which will allow us to build a corpus in French, targeted for WSD.

Keywords: semantic enrichment, disambiguation, context fusion, natural language processing, multilingual applications

Procedia PDF Downloads 5
1755 The Role of Digital Text in School and Vernacular Literacies: Students Digital Practices at Cybercafés in Mexico

Authors: Guadalupe López-Bonilla

Abstract:

Students of all educational levels participate in literacy practices that may involve print or digital media. Scholars from the New Literacy Studies distinguish practices that fulfill institutional purposes such as those established at schools from literate practices aimed at doing other kinds of activities, such as reading instructions in order to play a video game; the first are known as institutional practices while the latter are considered vernacular literacies. When students perform these kinds of activities they engage with print and digital media according to the demands of the task. In this paper, it is aimed to discuss the results of a research project focusing on literacy practices of high school students at 10 urban cybercafés in Mexico. The main objective was to analyze the literacy practices of students performing both school tasks and vernacular literacies. The methodology included a focused ethnography with online and face to face observations of 10 high school students (5 male and 5 female) and interviews after performing each task. In the results, it is presented how students treat texts as open, dynamic and relational artifacts when engaging in vernacular literacies; while texts are conceived as closed, authoritarian and fixed documents when performing school activities. Samples of each type of activity are shown followed by a discussion of the pedagogical implications for improving school literacy.

Keywords: digital literacy, text, school literacy, vernacular practices

Procedia PDF Downloads 271
1754 Indenyl and Allyl Palladates: Synthesis, Bonding, and Anticancer Activity

Authors: T. Scattolin, E. Cavarzerani, F. Visentin, F. Rizzolio

Abstract:

Organopalladium compounds have recently attracted attention for their high stability even under physiological conditions and, above all, for their remarkable in vitro cytotoxicity towards cisplatin-resistant cell lines. Among the organopalladium derivatives, those bearing at least one N-heterocyclic carbene ligand (NHC) and the Pd(II)-η³-allyl fragment have exhibited IC₅₀ values in the micro and sub-micromolar range towards several cancer cell lines in vitro and in some cases selectivity towards cancerous vs. non-tumorigenic cells. Herein, a selection of allyl and indenyl palladates were synthesized using a solvent-free method consisting of grinding the corresponding palladium precursors with different saturated and unsaturated azolium salts. All compounds have been fully characterized by NMR, XRD and elemental analyses. The intramolecular H, Cl interaction has been elucidated and quantified using the Voronoi Deformation Density scheme. Most of the complexes showed excellent cytotoxicity towards ovarian cancer cell lines, with I₅₀ values comparable to or even lower than cisplatin. Interestingly, the potent anticancer activity was also confirmed in a high-serous ovarian cancer (HGSOC) patient-derived tumoroid, with a clear superiority of this class of compounds over classical platinum-based agents. Finally, preliminary enzyme inhibition studies of the synthesized palladate complexes against the model TrxR show that the compounds have high activity comparable to or even higher than auranofin and classical Au(I) NHC complexes. Based on such promising data, further in vitro and in vivo experiments and in-depth mechanistic studies are ongoing in our laboratories.

Keywords: anticancer activity, palladium complexes, organoids, indenyl and allyl ligands

Procedia PDF Downloads 94
1753 The Development, Composition, and Implementation of Vocalises as a Method of Technical Training for the Adult Musical Theatre Singer

Authors: Casey Keenan Joiner, Shayna Tayloe

Abstract:

Classical voice training for the novice singer has long relied on the guidance and instruction of vocalise collections, such as those written and compiled by Marchesi, Lütgen, Vaccai, and Lamperti. These vocalise collections purport to encourage healthy vocal habits and instill technical longevity in both aspiring and established singers, though their scope has long been somewhat confined to the classical idiom. For pedagogues and students specializing in other vocal genres, such as musical theatre and CCM (contemporary commercial music,) low-impact and pertinent vocal training aids are in short supply, and much of the suggested literature derives from classical methodology. While the tenants of healthy vocal production remain ubiquitous, specific stylistic needs and technical emphases differ from genre to genre and may require a specified extension of vocal acuity. As musical theatre continues to grow in popularity at both the professional and collegiate levels, the need for specialized training grows as well. Pedagogical literature geared specifically towards musical theatre (MT) singing and vocal production, while relatively uncommon, is readily accessible to the contemporary educator. Practitioners such as Norman Spivey, Mary Saunders Barton, Claudia Friedlander, Wendy Leborgne, and Marci Rosenberg continue to publish relevant research in the field of musical theatre voice pedagogy and have successfully identified many common MT vocal faults, their subsequent diagnoses, and their eventual corrections. Where classical methodology would suggest specific vocalises or training exercises to maintain corrected vocal posture following successful fault diagnosis, musical theatre finds itself without a relevant body of work towards which to transition. By analyzing the existing vocalise literature by means of a specialized set of parameters, including but not limited to melodic variation, rhythmic complexity, vowel utilization, and technical targeting, we have composed a set of vocalises meant specifically to address the training and conditioning of adult musical theatre voices. These vocalises target many pedagogical tenants in the musical theatre genre, including but not limited to thyroarytenoid-dominant production, twang resonance, lateral vowel formation, and “belt-mix.” By implementing these vocalises in the musical theatre voice studio, pedagogues can efficiently communicate proper musical theatre vocal posture and kinesthetic connection to their students, regardless of age or level of experience. The composition of these vocalises serves MT pedagogues on both a technical level as well as a sociological one. MT is a relative newcomer on the collegiate stage and the academization of musical theatre methodologies has been a slow and arduous process. The conflation of classical and MT techniques and training methods has long plagued the world of voice pedagogy and teachers often find themselves in positions of “cross-training,” that is, teaching students of both genres in one combined voice studio. As MT continues to establish itself on academic platforms worldwide, genre-specific literature and focused studies are both rare and invaluable. To ensure that modern students receive exacting and definitive training in their chosen fields, it becomes increasingly necessary for genres such as musical theatre to boast specified literature and a collection of musical theatre-specific vocalises only aids in this effort. This collection of musical theatre vocalises is the first of its kind and provides genre-specific studios with a basis upon which to grow healthy, balanced voices built for the harsh conditions of the modern theatre stage.

Keywords: voice pedagogy, targeted methodology, musical theatre, singing

Procedia PDF Downloads 156
1752 A Study of Algebraic Structure Involving Banach Space through Q-Analogue

Authors: Abdul Hakim Khan

Abstract:

The aim of the present paper is to study the Banach Space and Combinatorial Algebraic Structure of R. It is further aimed to study algebraic structure of set of all q-extension of classical formula and function for 0 < q < 1.

Keywords: integral functions, q-extensions, q numbers of metric space, algebraic structure of r and banach space

Procedia PDF Downloads 579
1751 Myanmar Character Recognition Using Eight Direction Chain Code Frequency Features

Authors: Kyi Pyar Zaw, Zin Mar Kyu

Abstract:

Character recognition is the process of converting a text image file into editable and searchable text file. Feature Extraction is the heart of any character recognition system. The character recognition rate may be low or high depending on the extracted features. In the proposed paper, 25 features for one character are used in character recognition. Basically, there are three steps of character recognition such as character segmentation, feature extraction and classification. In segmentation step, horizontal cropping method is used for line segmentation and vertical cropping method is used for character segmentation. In the Feature extraction step, features are extracted in two ways. The first way is that the 8 features are extracted from the entire input character using eight direction chain code frequency extraction. The second way is that the input character is divided into 16 blocks. For each block, although 8 feature values are obtained through eight-direction chain code frequency extraction method, we define the sum of these 8 feature values as a feature for one block. Therefore, 16 features are extracted from that 16 blocks in the second way. We use the number of holes feature to cluster the similar characters. We can recognize the almost Myanmar common characters with various font sizes by using these features. All these 25 features are used in both training part and testing part. In the classification step, the characters are classified by matching the all features of input character with already trained features of characters.

Keywords: chain code frequency, character recognition, feature extraction, features matching, segmentation

Procedia PDF Downloads 320
1750 Teaching Tolerance in the Language Classroom through a Text

Authors: Natalia Kasatkina

Abstract:

In an ever-increasing globalization, one’s grasp of diversity and tolerance has never been more indispensable, and it is a vital duty for all those in the field of foreign language teaching to help children cultivate such values. The present study explores the role of DIVERSITY and TOLERANCE in the language classroom and elementary, middle, and high school students’ perceptions of these two concepts. It draws on several theoretical domains of language acquisition, cultural awareness, and school psychology. Relying on these frameworks, the major findings are synthesized, and a paradigm of teaching tolerance through language-teaching is formulated. Upon analysing how tolerant our children are with ‘others’ in and outside the classroom, we have concluded that intolerance and aggression towards the ‘other’ increase with age, and that a feeling of supremacy over migrants and a sense of fear towards them begin to manifest more apparently when the students are in high school. In addition, we have also found that children in elementary school do not exhibit such prejudiced thoughts and behavior, which leads us to the believe that tolerance as well as intolerance are learned. Therefore, it is within our reach to teach our children to be open-minded and accepting. We have used the novel ‘Uncle Tom’s Cabin’ by Harriet Beecher Stowe as a springboard for lessons which are not only targeted at shedding light on the role of language in the modern world, but also aim to stimulate an awareness of cultural diversity. We equally strive to conduct further cross-cultural research in order to solidify the theory behind this study, and thus devise a language-based curriculum which would encourage tolerance through the examination of various literary texts.

Keywords: literary text, tolerance, EFL classroom, word-association test

Procedia PDF Downloads 292
1749 Multimodal Content: Fostering Students’ Language and Communication Competences

Authors: Victoria L. Malakhova

Abstract:

The research is devoted to multimodal content and its effectiveness in developing students’ linguistic and intercultural communicative competences as an indefeasible constituent of their future professional activity. Description of multimodal content both as a linguistic and didactic phenomenon makes the study relevant. The objective of the article is the analysis of creolized texts and the effect they have on fostering higher education students’ skills and their productivity. The main methods used are linguistic text analysis, qualitative and quantitative methods, deduction, generalization. The author studies texts with full and partial creolization, their features and role in composing multimodal textual space. The main verbal and non-verbal markers and paralinguistic means that enhance the linguo-pragmatic potential of creolized texts are covered. To reveal the efficiency of multimodal content application in English teaching, the author conducts an experiment among both undergraduate students and teachers. This allows specifying main functions of creolized texts in the process of language learning, detecting ways of enhancing students’ competences, and increasing their motivation. The described stages of using creolized texts can serve as an algorithm for work with multimodal content in teaching English as a foreign language. The findings contribute to improving the efficiency of the academic process.

Keywords: creolized text, English language learning, higher education, language and communication competences, multimodal content

Procedia PDF Downloads 111
1748 Classical and Bayesian Inference of the Generalized Log-Logistic Distribution with Applications to Survival Data

Authors: Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa

Abstract:

A generalized log-logistic distribution with variable shapes of the hazard rate was introduced and studied, extending the log-logistic distribution by adding an extra parameter to the classical distribution, leading to greater flexibility in analysing and modeling various data types. The proposed distribution has a large number of well-known lifetime special sub-models such as; Weibull, log-logistic, exponential, and Burr XII distributions. Its basic mathematical and statistical properties were derived. The method of maximum likelihood was adopted for estimating the unknown parameters of the proposed distribution, and a Monte Carlo simulation study is carried out to assess the behavior of the estimators. The importance of this distribution is that its tendency to model both monotone (increasing and decreasing) and non-monotone (unimodal and bathtub shape) or reversed “bathtub” shape hazard rate functions which are quite common in survival and reliability data analysis. Furthermore, the flexibility and usefulness of the proposed distribution are illustrated in a real-life data set and compared to its sub-models; Weibull, log-logistic, and BurrXII distributions and other parametric survival distributions with 3-parmaeters; like the exponentiated Weibull distribution, the 3-parameter lognormal distribution, the 3- parameter gamma distribution, the 3-parameter Weibull distribution, and the 3-parameter log-logistic (also known as shifted log-logistic) distribution. The proposed distribution provided a better fit than all of the competitive distributions based on the goodness-of-fit tests, the log-likelihood, and information criterion values. Finally, Bayesian analysis and performance of Gibbs sampling for the data set are also carried out.

Keywords: hazard rate function, log-logistic distribution, maximum likelihood estimation, generalized log-logistic distribution, survival data, Monte Carlo simulation

Procedia PDF Downloads 202
1747 On Lie-Central Derivations and Almost Inner Lie-Derivations of Leibniz Algebras

Authors: Natalia Pacheco Rego

Abstract:

The Liezation functor is a map from the category of Leibniz algebras to the category of Lie algebras, which assigns a Leibniz algebra to the Lie algebra given by the quotient of the Leibniz algebra by the ideal spanned by the square elements of the Leibniz algebra. This functor is left adjoint to the inclusion functor that considers a Lie algebra as a Leibniz algebra. This environment fits in the framework of central extensions and commutators in semi-abelian categories with respect to a Birkhoff subcategory, where classical or absolute notions are relative to the abelianization functor. Classical properties of Leibniz algebras (properties relative to the abelianization functor) were adapted to the relative setting (with respect to the Liezation functor); in general, absolute properties have the corresponding relative ones, but not all absolute properties immediately hold in the relative case, so new requirements are needed. Following this line of research, it was conducted an analysis of central derivations of Leibniz algebras relative to the Liezation functor, called as Lie-derivations, and a characterization of Lie-stem Leibniz algebras by their Lie-central derivations was obtained. In this paper, we present an overview of these results, and we analyze some new properties concerning Lie-central derivations and almost inner Lie-derivations. Namely, a Leibniz algebra is a vector space equipped with a bilinear bracket operation satisfying the Leibniz identity. We define the Lie-bracket by [x, y]lie = [x, y] + [y, x] , for all x, y . The Lie-center of a Leibniz algebra is the two-sided ideal of elements that annihilate all the elements in the Leibniz algebra through the Lie-bracket. A Lie-derivation is a linear map which acts as a derivative with respect to the Lie-bracket. Obviously, usual derivations are Lie-derivations, but the converse is not true in general. A Lie-derivation is called a Lie-central derivation if its image is contained in the Lie-center. A Lie-derivation is called an almost inner Lie-derivation if the image of an element x is contained in the Lie-commutator of x and the Leibniz algebra. The main results we present in this talk refer to the conditions under which Lie-central derivation and almost inner Lie-derivations coincide.

Keywords: almost inner Lie-derivation, Lie-center, Lie-central derivation, Lie-derivation

Procedia PDF Downloads 135
1746 An Evolutionary Approach for QAOA for Max-Cut

Authors: Francesca Schiavello

Abstract:

This work aims to create a hybrid algorithm, combining Quantum Approximate Optimization Algorithm (QAOA) with an Evolutionary Algorithm (EA) in the place of traditional gradient based optimization processes. QAOA’s were first introduced in 2014, where, at the time, their algorithm performed better than the traditional best known classical algorithm for Max-cut graphs. Whilst classical algorithms have improved since then and have returned to being faster and more efficient, this was a huge milestone for quantum computing, and their work is often used as a benchmarking tool and a foundational tool to explore variants of QAOA’s. This, alongside with other famous algorithms like Grover’s or Shor’s, highlights to the world the potential that quantum computing holds. It also presents the reality of a real quantum advantage where, if the hardware continues to improve, this could constitute a revolutionary era. Given that the hardware is not there yet, many scientists are working on the software side of things in the hopes of future progress. Some of the major limitations holding back quantum computing are the quality of qubits and the noisy interference they generate in creating solutions, the barren plateaus that effectively hinder the optimization search in the latent space, and the availability of number of qubits limiting the scale of the problem that can be solved. These three issues are intertwined and are part of the motivation for using EAs in this work. Firstly, EAs are not based on gradient or linear optimization methods for the search in the latent space, and because of their freedom from gradients, they should suffer less from barren plateaus. Secondly, given that this algorithm performs a search in the solution space through a population of solutions, it can also be parallelized to speed up the search and optimization problem. The evaluation of the cost function, like in many other algorithms, is notoriously slow, and the ability to parallelize it can drastically improve the competitiveness of QAOA’s with respect to purely classical algorithms. Thirdly, because of the nature and structure of EA’s, solutions can be carried forward in time, making them more robust to noise and uncertainty. Preliminary results show that the EA algorithm attached to QAOA can perform on par with the traditional QAOA with a Cobyla optimizer, which is a linear based method, and in some instances, it can even create a better Max-Cut. Whilst the final objective of the work is to create an algorithm that can consistently beat the original QAOA, or its variants, due to either speedups or quality of the solution, this initial result is promising and show the potential of EAs in this field. Further tests need to be performed on an array of different graphs with the parallelization aspect of the work commencing in October 2023 and tests on real hardware scheduled for early 2024.

Keywords: evolutionary algorithm, max cut, parallel simulation, quantum optimization

Procedia PDF Downloads 60
1745 Alphabet Recognition Using Pixel Probability Distribution

Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay

Abstract:

Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.

Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix

Procedia PDF Downloads 389
1744 Improving Topic Quality of Scripts by Using Scene Similarity Based Word Co-Occurrence

Authors: Yunseok Noh, Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park

Abstract:

Scripts are one of the basic text resources to understand broadcasting contents. Since broadcast media wields lots of influence over the public, tools for understanding broadcasting contents are more required. Topic modeling is the method to get the summary of the broadcasting contents from its scripts. Generally, scripts represent contents descriptively with directions and speeches. Scripts also provide scene segments that can be seen as semantic units. Therefore, a script can be topic modeled by treating a scene segment as a document. Because scripts consist of speeches mainly, however, relatively small co-occurrences among words in the scene segments are observed. This causes inevitably the bad quality of topics based on statistical learning method. To tackle this problem, we propose a method of learning with additional word co-occurrence information obtained using scene similarities. The main idea of improving topic quality is that the information that two or more texts are topically related can be useful to learn high quality of topics. In addition, by using high quality of topics, we can get information more accurate whether two texts are related or not. In this paper, we regard two scene segments are related if their topical similarity is high enough. We also consider that words are co-occurred if they are in topically related scene segments together. In the experiments, we showed the proposed method generates a higher quality of topics from Korean drama scripts than the baselines.

Keywords: broadcasting contents, scripts, text similarity, topic model

Procedia PDF Downloads 318
1743 Agency Beyond Metaphysics of Subjectivity

Authors: Erik Kuravsky

Abstract:

One of the problems with a post-structuralist account of agency is that it appears to reject the freedom of an acting subject, thus seeming to deny the very phenomenon of agency. However, this is only a problem if we think that human beings can be agents exclusively in terms of being subjects, that is, if we think agency subjectively. Indeed, we tend to understand traditional theories of human freedom (e.g., Plato’s or Kant’s) in terms of a peculiar ability of the subject. The paper suggests to de-subjectivize agency with the help of Heidegger’s later thought. To do it, ir argues that classical theories of agency may indeed be interpreted as subject-oriented (sometimes even by their authors), but do not have to be read as such. Namely, the claim is that what makes agency what it is, what is essential in agency, is not its belonginess to a subject, but its ontological configuration. We may say that agency “happens,” and that there is a very specific ontological characteristics to this happening. The argument of the paper is that we can find these characteristic in the classical accounts of agency and that these characteristics are sufficient to distinguish human freedom from other natural phenomena. In particular, it offers to think agency not as one of human characteristics, but as an ontological event in which human beings take part. Namely, agency is a (non-human) characteristic of the different modes in which the experienceable existence of beings is determined by Being. To be an agent then is to participate in such ontological determination. What enables this participation is the ways human beings non-thematically understand the ontological difference. For example, for Plato, one acts freely only if one is led by an idea of the good, while for Kant the imperative for free action is categorial. The agency of an agent is thus dependent on the differentiation between ideas/categories and beings met in experience – one is “free” from contingent sensibility in terms of what is different from it ontologically. In this light, modern dependence on subjectivity is evident in the fact that the ontological difference is thought as belonging to one’s thinking, consciousness etc. That is, it is taken subjectively. A non-subjective account of agency, on the other hand, requires thinking this difference as belonging to Being itself, and thinking human beings as a medium within which occurs the non-human force of ontological differentiation.

Keywords: Heidegger, freedom, agency, poststructuralism

Procedia PDF Downloads 196
1742 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics

Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.

Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network

Procedia PDF Downloads 17
1741 Treating Voxels as Words: Word-to-Vector Methods for fMRI Meta-Analyses

Authors: Matthew Baucum

Abstract:

With the increasing popularity of fMRI as an experimental method, psychology and neuroscience can greatly benefit from advanced techniques for summarizing and synthesizing large amounts of data from brain imaging studies. One promising avenue is automated meta-analyses, in which natural language processing methods are used to identify the brain regions consistently associated with certain semantic concepts (e.g. “social”, “reward’) across large corpora of studies. This study builds on this approach by demonstrating how, in fMRI meta-analyses, individual voxels can be treated as vectors in a semantic space and evaluated for their “proximity” to terms of interest. In this technique, a low-dimensional semantic space is built from brain imaging study texts, allowing words in each text to be represented as vectors (where words that frequently appear together are near each other in the semantic space). Consequently, each voxel in a brain mask can be represented as a normalized vector sum of all of the words in the studies that showed activation in that voxel. The entire brain mask can then be visualized in terms of each voxel’s proximity to a given term of interest (e.g., “vision”, “decision making”) or collection of terms (e.g., “theory of mind”, “social”, “agent”), as measured by the cosine similarity between the voxel’s vector and the term vector (or the average of multiple term vectors). Analysis can also proceed in the opposite direction, allowing word cloud visualizations of the nearest semantic neighbors for a given brain region. This approach allows for continuous, fine-grained metrics of voxel-term associations, and relies on state-of-the-art “open vocabulary” methods that go beyond mere word-counts. An analysis of over 11,000 neuroimaging studies from an existing meta-analytic fMRI database demonstrates that this technique can be used to recover known neural bases for multiple psychological functions, suggesting this method’s utility for efficient, high-level meta-analyses of localized brain function. While automated text analytic methods are no replacement for deliberate, manual meta-analyses, they seem to show promise for the efficient aggregation of large bodies of scientific knowledge, at least on a relatively general level.

Keywords: FMRI, machine learning, meta-analysis, text analysis

Procedia PDF Downloads 448
1740 A Systematic Review: Prevalence and Risk Factors of Low Back Pain among Waste Collection Workers

Authors: Benedicta Asante, Brenna Bath, Olugbenga Adebayo, Catherine Trask

Abstract:

Background: Waste Collection Workers’ (WCWs) activities contribute greatly to the recycling sector and are an important component of the waste management industry. As the recycling sector evolves, reports of injuries and fatal accidents in the industry demand notice particularly common and debilitating musculoskeletal disorders such as low back pain (LBP). WCWs are likely exposed to diverse work-related hazards that could contribute to LBP. However, to our knowledge there has never been a systematic review or other synthesis of LBP findings within this workforce. The aim of this systematic review was to determine the prevalence and risk factors of LBP among WCWs. Method: A comprehensive search was conducted in Ovid Medline, EMBASE, and Global Health e-publications with search term categories ‘low back pain’ and ‘waste collection workers’. Articles were screened at title, abstract, and full-text stages by two reviewers. Data were extracted on study design, sampling strategy, socio-demographic, geographical region, and exposure definition, definition of LBP, risk factors, response rate, statistical techniques, and LBP prevalence. Risk of bias (ROB) was assessed based on Hoy Damien’s ROB scale. Results: The search of three databases generated 79 studies. Thirty-two studies met the study inclusion criteria for both title and abstract; thirteen full-text articles met the study criteria at the full-text stage. Seven articles (54%) reported prevalence within 12 months of LBP between 42-82% among WCW. The major risk factors for LBP among WCW included: awkward posture; lifting; pulling; pushing; repetitive motions; work duration; and physical loads. Summary data and syntheses of findings was presented in trend-lines and tables to establish the several prevalence periods based on age and region distribution. Public health implications: LBP is a major occupational hazard among WCWs. In light of these risks and future growth in this industry, further research should focus on more detail ergonomic exposure assessment and LBP prevention efforts.

Keywords: low back pain, scavenger, waste collection workers, waste pickers

Procedia PDF Downloads 327
1739 A BERT-Based Model for Financial Social Media Sentiment Analysis

Authors: Josiel Delgadillo, Johnson Kinyua, Charles Mutigwe

Abstract:

The purpose of sentiment analysis is to determine the sentiment strength (e.g., positive, negative, neutral) from a textual source for good decision-making. Natural language processing in domains such as financial markets requires knowledge of domain ontology, and pre-trained language models, such as BERT, have made significant breakthroughs in various NLP tasks by training on large-scale un-labeled generic corpora such as Wikipedia. However, sentiment analysis is a strong domain-dependent task. The rapid growth of social media has given users a platform to share their experiences and views about products, services, and processes, including financial markets. StockTwits and Twitter are social networks that allow the public to express their sentiments in real time. Hence, leveraging the success of unsupervised pre-training and a large amount of financial text available on social media platforms could potentially benefit a wide range of financial applications. This work is focused on sentiment analysis using social media text on platforms such as StockTwits and Twitter. To meet this need, SkyBERT, a domain-specific language model pre-trained and fine-tuned on financial corpora, has been developed. The results show that SkyBERT outperforms current state-of-the-art models in financial sentiment analysis. Extensive experimental results demonstrate the effectiveness and robustness of SkyBERT.

Keywords: BERT, financial markets, Twitter, sentiment analysis

Procedia PDF Downloads 152
1738 Historical Geography of Lykaonia Region

Authors: Asuman Baldiran, Erdener Pehlivan

Abstract:

In this study, the root of the name Lykaonia and the geographical area defined as Lykaonia Region are mentioned. In this context, information concerning the settlements of Paleolithic Age, Neolithic Age and Chalcolithic Age are given place. Particularly the settlements belonging to Classical Age are localized and brief information about the history of these settlements is provided. In the light of this information, roads of Antique period in the region are evaluated.

Keywords: ancient cities, central anatolia, historical geography, Lykaonia region

Procedia PDF Downloads 378
1737 PaSA: A Dataset for Patent Sentiment Analysis to Highlight Patent Paragraphs

Authors: Renukswamy Chikkamath, Vishvapalsinhji Ramsinh Parmar, Christoph Hewel, Markus Endres

Abstract:

Given a patent document, identifying distinct semantic annotations is an interesting research aspect. Text annotation helps the patent practitioners such as examiners and patent attorneys to quickly identify the key arguments of any invention, successively providing a timely marking of a patent text. In the process of manual patent analysis, to attain better readability, recognising the semantic information by marking paragraphs is in practice. This semantic annotation process is laborious and time-consuming. To alleviate such a problem, we proposed a dataset to train machine learning algorithms to automate the highlighting process. The contributions of this work are: i) we developed a multi-class dataset of size 150k samples by traversing USPTO patents over a decade, ii) articulated statistics and distributions of data using imperative exploratory data analysis, iii) baseline Machine Learning models are developed to utilize the dataset to address patent paragraph highlighting task, and iv) future path to extend this work using Deep Learning and domain-specific pre-trained language models to develop a tool to highlight is provided. This work assists patent practitioners in highlighting semantic information automatically and aids in creating a sustainable and efficient patent analysis using the aptitude of machine learning.

Keywords: machine learning, patents, patent sentiment analysis, patent information retrieval

Procedia PDF Downloads 90
1736 Mining User-Generated Contents to Detect Service Failures with Topic Model

Authors: Kyung Bae Park, Sung Ho Ha

Abstract:

Online user-generated contents (UGC) significantly change the way customers behave (e.g., shop, travel), and a pressing need to handle the overwhelmingly plethora amount of various UGC is one of the paramount issues for management. However, a current approach (e.g., sentiment analysis) is often ineffective for leveraging textual information to detect the problems or issues that a certain management suffers from. In this paper, we employ text mining of Latent Dirichlet Allocation (LDA) on a popular online review site dedicated to complaint from users. We find that the employed LDA efficiently detects customer complaints, and a further inspection with the visualization technique is effective to categorize the problems or issues. As such, management can identify the issues at stake and prioritize them accordingly in a timely manner given the limited amount of resources. The findings provide managerial insights into how analytics on social media can help maintain and improve their reputation management. Our interdisciplinary approach also highlights several insights by applying machine learning techniques in marketing research domain. On a broader technical note, this paper illustrates the details of how to implement LDA in R program from a beginning (data collection in R) to an end (LDA analysis in R) since the instruction is still largely undocumented. In this regard, it will help lower the boundary for interdisciplinary researcher to conduct related research.

Keywords: latent dirichlet allocation, R program, text mining, topic model, user generated contents, visualization

Procedia PDF Downloads 187
1735 Examining Reading Comprehension Skills Based on Different Reading Comprehension Frameworks and Taxonomies

Authors: Seval Kula-Kartal

Abstract:

Developing students’ reading comprehension skills is an aim that is difficult to accomplish and requires to follow long-term and systematic teaching and assessment processes. In these processes, teachers need tools to provide guidance to them on what reading comprehension is and which comprehension skills they should develop. Due to a lack of clear and evidence-based frameworks defining reading comprehension skills, especially in Turkiye, teachers and students mostly follow various processes in the classrooms without having an idea about what their comprehension goals are and what those goals mean. Since teachers and students do not have a clear view of comprehension targets, strengths, and weaknesses in students’ comprehension skills, the formative feedback processes cannot be managed in an effective way. It is believed that detecting and defining influential comprehension skills may provide guidance both to teachers and students during the feedback process. Therefore, in the current study, some of the reading comprehension frameworks that define comprehension skills operationally were examined. The aim of the study is to develop a simple and clear framework that can be used by teachers and students during their teaching, learning, assessment, and feedback processes. The current study is qualitative research in which documents related to reading comprehension skills were analyzed. Therefore, the study group consisted of recourses and frameworks which made big contributions to theoretical and operational definitions of reading comprehension. A content analysis was conducted on the resources included in the study group. To determine the validity of the themes and sub-categories revealed as the result of content analysis, three educational assessment experts were asked to examine the content analysis results. The Fleiss’ Cappa coefficient revealed that there is consistency among themes and categories defined by three different experts. The content analysis of the reading comprehension frameworks revealed that comprehension skills could be examined under four different themes. The first and second themes focus on understanding information given explicitly or implicitly within a text. The third theme includes skills used by the readers to make connections between their personal knowledge and the information given in the text. Lastly, the fourth theme focus on skills used by readers to examine the text with a critical view. The results suggested that fundamental reading comprehension skills can be examined under four themes. Teachers are recommended to use these themes in their reading comprehension teaching and assessment processes. Acknowledgment: This research is supported by Pamukkale University Scientific Research Unit within the project, whose title is Developing A Reading Comprehension Rubric.

Keywords: reading comprehension, assessing reading comprehension, comprehension taxonomies, educational assessment

Procedia PDF Downloads 82
1734 Attempts for the Synthesis of Indol-Ring Fluorinated Tryptophan Derivatives to Enhance the Activity of Antimicrobial Peptides

Authors: Anita K. Kovacs, Peter Hegyes, Zsolt Bozso, Gabor Toth

Abstract:

Fluorination has been used extensively by the pharmaceutical industry as a strategy to improve the pharmacokinetics of drugs due to its effectiveness in increasing the potency of antimicrobial peptides (AMPs). Multiple-fluorinated indole-ring-containing tryptophan derivatives have the potential of having better antimicrobial activity than the widely used mono-fluorinated indole-ring containing tryptophan derivatives, but they are not available commercially. Therefore, our goal is to synthesize multiple-fluorinated indole-ring containing tryptophan derivatives to incorporate them into AMPs to enhance their antimicrobial activity. During our work, we are trying several methods (classical organic synthesis, enzymic synthesis, and solid phase peptide synthesis) for the synthesis of the said compounds, with mixed results. With classical organic synthesis (four different routes), we did not get the desired results. The reaction of serin with substituted indole in the presence of acetic anhydride led to racemic tryptophane; with the reaction of protected serin with indole in the presence of nickel complex was unsuccessful; the reaction of serin containing protected dipeptide with disuccinimidyl carbonate we achieved a tryptophane containing dipeptide, its chiral purity is being examined; the reaction of alcohol with substituted indole in the presence of copper complex was successful, but it was only a test reaction, we could not reproduce the same result with serine. The undergoing tryptophan-synthase method has shown some potential, but our work has not been finished yet. The successful synthesis of the desired multiple-fluorinated indole-ring-containing tryptophan will be followed by solid phase peptide synthesis in order to incorporate it into AMPs to enhance their antimicrobial activity. The successful completion of these phases will mean the possibility of manufacturing new, effective AMPs.

Keywords: halogenation, fluorination, tryptophan, enhancement of antimicrobial activity

Procedia PDF Downloads 96
1733 Colorectal Resection in Endometriosis: A Study on Conservative Vascular Approach

Authors: A. Zecchin, E. Vallicella, I. Alberi, A. Dalle Carbonare, A. Festi, F. Galeone, S. Garzon, R. Raffaelli, P. Pomini, M. Franchi

Abstract:

Introduction: Severe endometriosis is a multiorgan disease, that involves bowel in 31% of cases. Disabling symptoms and deep infiltration can lead to bowel obstruction: surgical bowel treatment may be needed. In these cases, colorectal segment resection is usually performed by inferior mesenteric artery ligature, as radically as for oncological surgery. This study was made on surgery based on intestinal vascular axis’ preservation. It was assessed postoperative complications risks (mainly rate of dehiscence of intestinal anastomoses), and results were compared with the ones found in literature about classical colorectal resection. Materials and methods: This was a retrospective study based on 62 patients with deep infiltrating endometriosis of the bowel, which undergo segmental resection with intestinal vascular axis preservation, between 2013 and 2016. It was assessed complications related to the intervention both during hospitalization and 30-60 days after resection. Particular attention was paid to the presence of anastomotic dehiscence. 52 patients were finally telephonically interviewed in order to investigate the presence or absence of intestinal constipation. Results and Conclusion: Segmental intestinal resection performed in this study ensured a more conservative vascular approach, with lower rate of anastomotic dehiscence (1.6%) compared to classical literature data (10.0% to 11.4% ). No complications were observed regarding spontaneous recovery of intestinal motility and bladder emptying. Constipation in some patients, even after years of intervention, is not assessable in the absence of a preoperative constipation state assessment.

Keywords: anastomotic dehiscence, deep infiltrating endometriosis, colorectal resection, vascular axis preservation

Procedia PDF Downloads 204