Search results for: binary shuffled frog leaping algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4193

Search results for: binary shuffled frog leaping algorithm

3683 Evolution under Length Constraints for Convolutional Neural Networks Architecture Design

Authors: Ousmane Youme, Jean Marie Dembele, Eugene Ezin, Christophe Cambier

Abstract:

In recent years, the convolutional neural networks (CNN) architectures designed by evolution algorithms have proven to be competitive with handcrafted architectures designed by experts. However, these algorithms need a lot of computational power, which is beyond the capabilities of most researchers and engineers. To overcome this problem, we propose an evolution architecture under length constraints. It consists of two algorithms: a search length strategy to find an optimal space and a search architecture strategy based on a genetic algorithm to find the best individual in the optimal space. Our algorithms drastically reduce resource costs and also keep good performance. On the Cifar-10 dataset, our framework presents outstanding performance with an error rate of 5.12% and only 4.6 GPU a day to converge to the optimal individual -22 GPU a day less than the lowest cost automatic evolutionary algorithm in the peer competition.

Keywords: CNN architecture, genetic algorithm, evolution algorithm, length constraints

Procedia PDF Downloads 129
3682 LEDs Based Indoor Positioning by Distances Derivation from Lambertian Illumination Model

Authors: Yan-Ren Chen, Jenn-Kaie Lain

Abstract:

This paper proposes a novel indoor positioning algorithm based on visible light communications, implemented by light-emitting diode fixtures. In the proposed positioning algorithm, distances between light-emitting diode fixtures and mobile terminal are derived from the assumption of ideal Lambertian optic radiation model, and Trilateration positioning method is proceeded immediately to get the coordinates of mobile terminal. The proposed positioning algorithm directly obtains distance information from the optical signal modeling, and therefore, statistical distribution of received signal strength at different positions in interior space has no need to be pre-established. Numerically, simulation results have shown that the proposed indoor positioning algorithm can provide accurate location coordinates estimation.

Keywords: indoor positioning, received signal strength, trilateration, visible light communications

Procedia PDF Downloads 414
3681 Finite Element Method for Solving the Generalized RLW Equation

Authors: Abdel-Maksoud Abdel-Kader Soliman

Abstract:

The General Regularized Long Wave (GRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the Fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm.

Keywords: generalized RLW equation, solitons, quartic b-spline, nonlinear partial differential equations, difference equations

Procedia PDF Downloads 489
3680 Drivers of Land Degradation in Trays Ecosystem as Modulated under a Changing Climate: Case Study of Côte d'Ivoire

Authors: Kadio Valere R. Angaman, Birahim Bouna Niang

Abstract:

Land degradation is a serious problem in developing countries, including Cote d’Ivoire, which has its economy focused on agriculture. It occurs in all kinds of ecosystems over the world. However, the drivers of land degradation vary from one region to another and from one ecosystem to another. Thus, identifying these drivers is an essential prerequisite to developing and implementing appropriate policies to reverse the trend of land degradation in the country, especially in the trays ecosystem. Using the binary logistic model with primary data obtained through 780 farmers surveyed, we analyze and identify the drivers of land degradation in the trays ecosystem. The descriptive statistics show that 52% of farmers interviewed have stated facing land degradation in their farmland. This high rate shows the extent of land degradation in this ecosystem. Also, the results obtained from the binary logit regression reveal that land degradation is significantly influenced by a set of variables such as sex, education, slope, erosion, pesticide, agricultural activity, deforestation, and temperature. The drivers identified are mostly local; as a result, the government must implement some policies and strategies that facilitate and incentive the adoption of sustainable land management practices by farmers to reverse the negative trend of land degradation.

Keywords: drivers, land degradation, trays ecosystem, sustainable land management

Procedia PDF Downloads 146
3679 K-Means Clustering-Based Infinite Feature Selection Method

Authors: Seyyedeh Faezeh Hassani Ziabari, Sadegh Eskandari, Maziar Salahi

Abstract:

Infinite Feature Selection (IFS) algorithm is an efficient feature selection algorithm that selects a subset of features of all sizes (including infinity). In this paper, we present an improved version of it, called clustering IFS (CIFS), by clustering the dataset in advance. To do so, first, we apply the K-means algorithm to cluster the dataset, then we apply IFS. In the CIFS method, the spatial and temporal complexities are reduced compared to the IFS method. Experimental results on 6 datasets show the superiority of CIFS compared to IFS in terms of accuracy, running time, and memory consumption.

Keywords: feature selection, infinite feature selection, clustering, graph

Procedia PDF Downloads 129
3678 An Observer-Based Direct Adaptive Fuzzy Sliding Control with Adjustable Membership Functions

Authors: Alireza Gholami, Amir H. D. Markazi

Abstract:

In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.

Keywords: adaptive algorithm, fuzzy systems, membership functions, observer

Procedia PDF Downloads 207
3677 Alkali Activation of Fly Ash, Metakaolin and Slag Blends: Fresh and Hardened Properties

Authors: Weiliang Gong, Lissa Gomes, Lucile Raymond, Hui Xu, Werner Lutze, Ian L. Pegg

Abstract:

Alkali-activated materials, particularly geopolymers, have attracted much interest in academia. Commercial applications are on the rise, as well. Geopolymers are produced typically by a reaction of one or two aluminosilicates with an alkaline solution at room temperature. Fly ash is an important aluminosilicate source. However, using low-Ca fly ash, the byproduct of burning hard or black coal reacts and sets slowly at room temperature. The development of mechanical durability, e.g., compressive strength, is slow as well. The use of fly ashes with relatively high contents ( > 6%) of unburned carbon, i.e., high loss on ignition (LOI), is particularly disadvantageous as well. This paper will show to what extent these impediments can be mitigated by mixing the fly ash with one or two more aluminosilicate sources. The fly ash used here is generated at the Orlando power plant (Florida, USA). It is low in Ca ( < 1.5% CaO) and has a high LOI of > 6%. The additional aluminosilicate sources are metakaolin and blast furnace slag. Binary fly ash-metakaolin and ternary fly ash-metakaolin-slag geopolymers were prepared. Properties of geopolymer pastes before and after setting have been measured. Fresh mixtures of aluminosilicates with an alkaline solution were studied by Vicat needle penetration, rheology, and isothermal calorimetry up to initial setting and beyond. The hardened geopolymers were investigated by SEM/EDS and the compressive strength was measured. Initial setting (fluid to solid transition) was indicated by a rapid increase in yield stress and plastic viscosity. The rheological times of setting were always smaller than the Vicat times of setting. Both times of setting decreased with increasing replacement of fly ash with blast furnace slag in a ternary fly ash-metakaolin-slag geopolymer system. As expected, setting with only Orlando fly ash was the slowest. Replacing 20% fly ash with metakaolin shortened the set time. Replacing increasing fractions of fly ash in the binary system by blast furnace slag (up to 30%) shortened the time of setting even further. The 28-day compressive strength increased drastically from < 20 MPa to 90 MPa. The most interesting finding relates to the calorimetric measurements. The use of two or three aluminosilicates generated significantly more heat (20 to 65%) than the calculated from the weighted sum of the individual aluminosilicates. This synergetic heat contributes or may be responsible for most of the increase of compressive strength of our binary and ternary geopolymers. The synergetic heat effect may be also related to increased incorporation of calcium in sodium aluminosilicate hydrate to form a hybrid (N,C)A-S-H) gel. The time of setting will be correlated with heat release and maximum heat flow.

Keywords: alkali-activated materials, binary and ternary geopolymers, blends of fly ash, metakaolin and blast furnace slag, rheology, synergetic heats

Procedia PDF Downloads 116
3676 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: biometric characters, facial recognition, neural network, OpenCV

Procedia PDF Downloads 258
3675 An Improved Discrete Version of Teaching–Learning-Based ‎Optimization for Supply Chain Network Design

Authors: Ehsan Yadegari

Abstract:

While there are several metaheuristics and exact approaches to solving the Supply Chain Network Design (SCND) problem, there still remains an unfilled gap in using the Teaching-Learning-Based Optimization (TLBO) algorithm. The algorithm has demonstrated desirable results with problems with complicated combinational optimization. The present study introduces a Discrete Self-Study TLBO (DSS-TLBO) with priority-based solution representation that can solve a supply chain network configuration model to lower the total expenses of establishing facilities and the flow of materials. The network features four layers, namely suppliers, plants, distribution centers (DCs), and customer zones. It is designed to meet the customer’s demand through transporting the material between layers of network and providing facilities in the best economic Potential locations. To have a higher quality of the solution and increase the speed of TLBO, a distinct operator was introduced that ensures self-adaptation (self-study) in the algorithm based on the four types of local search. In addition, while TLBO is used in continuous solution representation and priority-based solution representation is discrete, a few modifications were added to the algorithm to remove the solutions that are infeasible. As shown by the results of experiments, the superiority of DSS-TLBO compared to pure TLBO, genetic algorithm (GA) and firefly Algorithm (FA) was established.

Keywords: supply chain network design, teaching–learning-based optimization, improved metaheuristics, discrete solution representation

Procedia PDF Downloads 52
3674 An Improved VM Allocation Algorithm by Utilizing Combined Resource Allocation Mechanism and Released Resources in Cloud Environment

Authors: Md Habibul Ansary, Chandan Garai, Ranjan Dasgupta

Abstract:

Utilization of resources is always a great challenge for any allocation problem, particularly when resource availability is dynamic in nature. In this work VM allocation mechanism has been augmented by providing resources in a combined manner. This approach has some inherent advantages in terms of reduction of wait state for the pending jobs of some users and better utilization of unused resources from the service providers’ point of view. Moreover the algorithm takes care of released resources from the finished jobs as soon as those become available. The proposed algorithm has been explained by suitable example to make the work complete.

Keywords: Bid ratio, cloud service, virtualization, VM allocation problem

Procedia PDF Downloads 396
3673 Merging and Comparing Ontologies Generically

Authors: Xiuzhan Guo, Arthur Berrill, Ajinkya Kulkarni, Kostya Belezko, Min Luo

Abstract:

Ontology operations, e.g., aligning and merging, were studied and implemented extensively in different settings, such as categorical operations, relation algebras, and typed graph grammars, with different concerns. However, aligning and merging operations in the settings share some generic properties, e.g., idempotence, commutativity, associativity, and representativity, labeled by (I), (C), (A), and (R), respectively, which are defined on an ontology merging system (D~M), where D is a non-empty set of the ontologies concerned, ~ is a binary relation on D modeling ontology aligning and M is a partial binary operation on D modeling ontology merging. Given an ontology repository, a finite set O ⊆ D, its merging closure Ô is the smallest set of ontologies, which contains the repository and is closed with respect to merging. If (I), (C), (A), and (R) are satisfied, then both D and Ô are partially ordered naturally by merging, Ô is finite and can be computed, compared, and sorted efficiently, including sorting, selecting, and querying some specific elements, e.g., maximal ontologies and minimal ontologies. We also show that the ontology merging system, given by ontology V -alignment pairs and pushouts, satisfies the properties: (I), (C), (A), and (R) so that the merging system is partially ordered and the merging closure of a given repository with respect to pushouts can be computed efficiently.

Keywords: ontology aligning, ontology merging, merging system, poset, merging closure, ontology V-alignment pair, ontology homomorphism, ontology V-alignment pair homomorphism, pushout

Procedia PDF Downloads 893
3672 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout

Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati

Abstract:

Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.

Keywords: metabolic network, gene knockout, flux balance analysis, microarray data, integration

Procedia PDF Downloads 579
3671 Microwave Imaging by Application of Information Theory Criteria in MUSIC Algorithm

Authors: Majid Pourahmadi

Abstract:

The performance of time-reversal MUSIC algorithm will be dramatically degrades in presence of strong noise and multiple scattering (i.e. when scatterers are close to each other). This is due to error in determining the number of scatterers. The present paper provides a new approach to alleviate such a problem using an information theoretic criterion referred as minimum description length (MDL). The merits of the novel approach are confirmed by the numerical examples. The results indicate the time-reversal MUSIC yields accurate estimate of the target locations with considerable noise and multiple scattering in the received signals.

Keywords: microwave imaging, time reversal, MUSIC algorithm, minimum description length (MDL)

Procedia PDF Downloads 339
3670 The Quotation-Based Algorithm for Distributed Decision Making

Authors: Gennady P. Ginkul, Sergey Yu. Soloviov

Abstract:

The article proposes to use so-called "quotation-based algorithm" for simulation of decision making process in distributed expert systems and multi-agent systems. The idea was adopted from the techniques for group decision-making. It is based on the assumption that one expert system to perform its logical inference may use rules from another expert system. The application of the algorithm was demonstrated on the example in which the consolidated decision is the decision that requires minimal quotation.

Keywords: backward chaining inference, distributed expert systems, group decision making, multi-agent systems

Procedia PDF Downloads 376
3669 Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys

Authors: Hexiong Liu

Abstract:

Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model.

Keywords: sintered density, machine learning, interpretable descriptors, W(Mo) alloy

Procedia PDF Downloads 82
3668 A Highly Efficient Broadcast Algorithm for Computer Networks

Authors: Ganesh Nandakumaran, Mehmet Karaata

Abstract:

A wave is a distributed execution, often made up of a broadcast phase followed by a feedback phase, requiring the participation of all the system processes before a particular event called decision is taken. Wave algorithms with one initiator such as the 1-wave algorithm have been shown to be very efficient for broadcasting messages in tree networks. Extensions of this algorithm broadcasting a sequence of waves using a single initiator have been implemented in algorithms such as the m-wave algorithm. However as the network size increases, having a single initiator adversely affects the message delivery times to nodes further away from the initiator. As a remedy, broadcast waves can be allowed to be initiated by multiple initiator nodes distributed across the network to reduce the completion time of broadcasts. These waves initiated by one or more initiator processes form a collection of waves covering the entire network. Solutions to global-snapshots, distributed broadcast and various synchronization problems can be solved efficiently using waves with multiple concurrent initiators. In this paper, we propose the first stabilizing multi-wave sequence algorithm implementing waves started by multiple initiator processes such that every process in the network receives at least one sequence of broadcasts. Due to being stabilizing, the proposed algorithm can withstand transient faults and do not require initialization. We view a fault as a transient fault if it perturbs the configuration of the system but not its program.

Keywords: distributed computing, multi-node broadcast, propagation of information with feedback and cleaning (PFC), stabilization, wave algorithms

Procedia PDF Downloads 505
3667 Analysis of ECGs Survey Data by Applying Clustering Algorithm

Authors: Irum Matloob, Shoab Ahmad Khan, Fahim Arif

Abstract:

As Indo-pak has been the victim of heart diseases since many decades. Many surveys showed that percentage of cardiac patients is increasing in Pakistan day by day, and special attention is needed to pay on this issue. The framework is proposed for performing detailed analysis of ECG survey data which is conducted for measuring the prevalence of heart diseases statistics in Pakistan. The ECG survey data is evaluated or filtered by using automated Minnesota codes and only those ECGs are used for further analysis which is fulfilling the standardized conditions mentioned in the Minnesota codes. Then feature selection is performed by applying proposed algorithm based on discernibility matrix, for selecting relevant features from the database. Clustering is performed for exposing natural clusters from the ECG survey data by applying spectral clustering algorithm using fuzzy c means algorithm. The hidden patterns and interesting relationships which have been exposed after this analysis are useful for further detailed analysis and for many other multiple purposes.

Keywords: arrhythmias, centroids, ECG, clustering, discernibility matrix

Procedia PDF Downloads 352
3666 Investigating the Steam Generation Potential of Lithium Bromide Based CuO Nanofluid under Simulated Solar Flux

Authors: Tamseela Habib, Muhammad Amjad, Muhammad Edokali, Masome Moeni, Olivia Pickup, Ali Hassanpour

Abstract:

Nanofluid-assisted steam generation is rapidly attracting attention amongst the scientific community since it can be applied in a wide range of industrial processes. Because of its high absorption rate of solar energy, nanoparticle-based solar steam generation could be a major contributor to many applications, including water desalination, sterilization and power generation. Lithium bromide-based iron oxide nanofluids have been previously studied in steam generation, which showed promising results. However, the efficiency of the system could be improved if a more heat-conductive nanofluid system could be utilised. In the current paper, we report on an experimental investigation of the photothermal conversion properties of functionalised Copper oxide (CuO) nanoparticles used in Lithium Bromide salt solutions. CuO binary nanofluid was prepared by chemical functionalization with polyethyleneimine (PEI). Long-term stability evaluation of prepared binary nanofluid was done by a high-speed centrifuge analyser which showed a 0.06 Instability index suggesting low agglomeration and sedimentation tendencies. This stability is also supported by the measurements from dynamic light scattering (DLS), transmission electron microscope (TEM), and ultraviolet-visible (UV-Vis) spectrophotometer. The fluid rheology is also characterised, which suggests the system exhibits a Newtonian fluid behavior. The photothermal conversion efficiency of different concentrations of CuO was experimentally investigated under a solar simulator. Experimental results reveal that the binary nanofluid in this study can remarkably increase the solar energy trapping efficiency and evaporation rate as compared to conventional fluids due to localized solar energy harvesting by the surface of the nanofluid. It was found that 0.1wt% CuO NP is the optimum nanofluid concentration for enhanced sensible and latent heat efficiencies.

Keywords: nanofluids, vapor absorption refrigeration system, steam generation, high salinity

Procedia PDF Downloads 85
3665 Support Vector Machine Based Retinal Therapeutic for Glaucoma Using Machine Learning Algorithm

Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Yang Yung, Tracy Lin Huan

Abstract:

Glaucoma is a group of visual maladies represented by the scheduled optic nerve neuropathy; means to the increasing dwindling in vision ground, resulting in loss of sight. In this paper, a novel support vector machine based retinal therapeutic for glaucoma using machine learning algorithm is conservative. The algorithm has fitting pragmatism; subsequently sustained on correlation clustering mode, it visualizes perfect computations in the multi-dimensional space. Support vector clustering turns out to be comparable to the scale-space advance that investigates the cluster organization by means of a kernel density estimation of the likelihood distribution, where cluster midpoints are idiosyncratic by the neighborhood maxima of the concreteness. The predicted planning has 91% attainment rate on data set deterrent on a consolidation of 500 realistic images of resolute and glaucoma retina; therefore, the computational benefit of depending on the cluster overlapping system pedestal on machine learning algorithm has complete performance in glaucoma therapeutic.

Keywords: machine learning algorithm, correlation clustering mode, cluster overlapping system, glaucoma, kernel density estimation, retinal therapeutic

Procedia PDF Downloads 255
3664 Minimizing Total Completion Time in No-Wait Flowshops with Setup Times

Authors: Ali Allahverdi

Abstract:

The m-machine no-wait flowshop scheduling problem is addressed in this paper. The objective is to minimize total completion time subject to the constraint that the makespan value is not greater than a certain value. Setup times are treated as separate from processing times. Several recent algorithms are adapted and proposed for the problem. An extensive computational analysis has been conducted for the evaluation of the proposed algorithms. The computational analysis indicates that the best proposed algorithm performs significantly better than the earlier existing best algorithm.

Keywords: scheduling, no-wait flowshop, algorithm, setup times, total completion time, makespan

Procedia PDF Downloads 341
3663 A Review on Parametric Optimization of Casting Processes Using Optimization Techniques

Authors: Bhrugesh Radadiya, Jaydeep Shah

Abstract:

In Indian foundry industry, there is a need of defect free casting with minimum production cost in short lead time. Casting defect is a very large issue in foundry shop which increases the rejection rate of casting and wastage of materials. The various parameters influences on casting process such as mold machine related parameters, green sand related parameters, cast metal related parameters, mold related parameters and shake out related parameters. The mold related parameters are most influences on casting defects in sand casting process. This paper review the casting produced by foundry with shrinkage and blow holes as a major defects was analyzed and identified that mold related parameters such as mold temperature, pouring temperature and runner size were not properly set in sand casting process. These parameters were optimized using different optimization techniques such as Taguchi method, Response surface methodology, Genetic algorithm and Teaching-learning based optimization algorithm. Finally, concluded that a Teaching-learning based optimization algorithm give better result than other optimization techniques.

Keywords: casting defects, genetic algorithm, parametric optimization, Taguchi method, TLBO algorithm

Procedia PDF Downloads 729
3662 Effect Analysis of an Improved Adaptive Speech Noise Reduction Algorithm in Online Communication Scenarios

Authors: Xingxing Peng

Abstract:

With the development of society, there are more and more online communication scenarios such as teleconference and online education. In the process of conference communication, the quality of voice communication is a very important part, and noise may cause the communication effect of participants to be greatly reduced. Therefore, voice noise reduction has an important impact on scenarios such as voice calls. This research focuses on the key technologies of the sound transmission process. The purpose is to maintain the audio quality to the maximum so that the listener can hear clearer and smoother sound. Firstly, to solve the problem that the traditional speech enhancement algorithm is not ideal when dealing with non-stationary noise, an adaptive speech noise reduction algorithm is studied in this paper. Traditional noise estimation methods are mainly used to deal with stationary noise. In this chapter, we study the spectral characteristics of different noise types, especially the characteristics of non-stationary Burst noise, and design a noise estimator module to deal with non-stationary noise. Noise features are extracted from non-speech segments, and the noise estimation module is adjusted in real time according to different noise characteristics. This adaptive algorithm can enhance speech according to different noise characteristics, improve the performance of traditional algorithms to deal with non-stationary noise, so as to achieve better enhancement effect. The experimental results show that the algorithm proposed in this chapter is effective and can better adapt to different types of noise, so as to obtain better speech enhancement effect.

Keywords: speech noise reduction, speech enhancement, self-adaptation, Wiener filter algorithm

Procedia PDF Downloads 59
3661 Multithreading/Multiprocessing Simulation of The International Space Station Multibody System Using A Divide and Conquer Dynamics Formulation with Flexible Bodies

Authors: Luong A. Nguyen, Elihu Deneke, Thomas L. Harman

Abstract:

This paper describes a multibody dynamics algorithm formulated for parallel implementation on multiprocessor computing platforms using the divide-and-conquer approach. The system of interest is a general topology of rigid and elastic articulated bodies with or without loops. The algorithm is an extension of Featherstone’s divide and conquer approach to include the flexible-body dynamics formulation. The equations of motion, configured for the International Space Station (ISS) with its robotic manipulator arm as a system of articulated flexible bodies, are implemented in separate computer processors. The performance of this divide-and-conquer algorithm implementation in multiple processors is compared with an existing method implemented on a single processor.

Keywords: multibody dynamics, multiple processors, multithreading, divide-and-conquer algorithm, computational efficiency, flexible body dynamics

Procedia PDF Downloads 337
3660 Soueif’s 'The Returning' and 'The Nativity': A Portrait of the Other as Others

Authors: Samira Brahimi

Abstract:

Throughout Aisha, her first collection of short stories, Ahdaf Soueif draws a multilayered picture of the Other as others, picturing a series of encounters of her protagonist with this very Other as a set of binary elements. The current essay includes a comparative study between two narratives, namely The Returning and The Nativity. The Other is portrayed as a male/female binary in The Returning and as 'The Foreigner' in an exotic land vs. the local in The Nativity. The analysis is to focus on Aisha, the main female character, who figures as conforming to the portrait of the stereotyped Arab Muslim woman as a sex-subject, submissive, and maudlin character, confining her vision of the Other to the boundaries of her cocooned self, epitomizing a self-centered vision of the world. This reduced vision results in the possibility of viewing the Other as a hindrance to her attaining a clarified and centrifugal representation of the latter, herself, and the outside world. The encounters could also be considered as the character's opportunity for a less stigmatized perception of the elements set forth. The main queries to be probed are: what are the different perceptions of the Other by the author in the narratives set forth? How does the protagonist's encounter with the Other(s) impede her ability to understand the Other, herself, and the world around her? Or how does this encounter allow her an enlightened vision of the aforementioned elements to forge a new start? The possibility of imagining a dialogic relation between different perceptions of the Other opens up new perspectives for adopting magnified representations of the later, oneself, and the world, dilating one's imagination.

Keywords: dialogic, female, foreigner, local, male, other, others

Procedia PDF Downloads 132
3659 Binary Decision Diagram Based Methods to Evaluate the Reliability of Systems Considering Failure Dependencies

Authors: Siqi Qiu, Yijian Zheng, Xin Guo Ming

Abstract:

In many reliability and risk analysis, failures of components are supposed to be independent. However, in reality, the ignorance of failure dependencies among components may render the results of reliability and risk analysis incorrect. There are two principal ways to incorporate failure dependencies in system reliability and risk analysis: implicit and explicit methods. In the implicit method, failure dependencies can be modeled by joint probabilities, correlation values or conditional probabilities. In the explicit method, certain types of dependencies can be modeled in a fault tree as mutually independent basic events for specific component failures. In this paper, explicit and implicit methods based on BDD will be proposed to evaluate the reliability of systems considering failure dependencies. The obtained results prove the equivalence of the proposed implicit and explicit methods. It is found that the consideration of failure dependencies decreases the reliability of systems. This observation is intuitive, because more components fail due to failure dependencies. The consideration of failure dependencies helps designers to reduce the dependencies between components during the design phase to make the system more reliable.

Keywords: reliability assessment, risk assessment, failure dependencies, binary decision diagram

Procedia PDF Downloads 474
3658 Optimized and Secured Digital Watermarking Using Fuzzy Entropy, Bezier Curve and Visual Cryptography

Authors: R. Rama Kishore, Sunesh

Abstract:

Recent development in the usage of internet for different purposes creates a great threat for the copyright protection of the digital images. Digital watermarking can be used to address the problem. This paper presents detailed review of the different watermarking techniques, latest trends in the field of secured, robust and imperceptible watermarking. It also discusses the different optimization techniques used in the field of watermarking in order to improve the robustness and imperceptibility of the method. Different measures are discussed to evaluate the performance of the watermarking algorithm. At the end, this paper proposes a watermarking algorithm using (2, 2) share visual cryptography and Bezier curve based algorithm to improve the security of the watermark. The proposed method uses fractional transformation to improve the robustness of the copyright protection of the method. The algorithm is optimized using fuzzy entropy for better results.

Keywords: digital watermarking, fractional transform, visual cryptography, Bezier curve, fuzzy entropy

Procedia PDF Downloads 368
3657 Roullete Wheel Selection Mechanism for Solving Travelling Salesman Problem in Ant Colony Optimization

Authors: Sourabh Joshi, Geetinder Kaur, Sarabjit Kaur, Gulwatanpreet Singh, Geetika Mannan

Abstract:

In this paper, we have use an algorithm that able to obtain an optimal solution to travelling salesman problem from a huge search space, quickly. This algorithm is based upon the ant colony optimization technique and employees roulette wheel selection mechanism. To illustrate it more clearly, a program has been implemented which is based upon this algorithm, that presents the changing process of route iteration in a more intuitive way. In the event, we had find the optimal path between hundred cities and also calculate the distance between two cities.

Keywords: ant colony, optimization, travelling salesman problem, roulette wheel selection

Procedia PDF Downloads 441
3656 Two Stage Assembly Flowshop Scheduling Problem Minimizing Total Tardiness

Authors: Ali Allahverdi, Harun Aydilek, Asiye Aydilek

Abstract:

The two stage assembly flowshop scheduling problem has lots of application in real life. To the best of our knowledge, the two stage assembly flowshop scheduling problem with total tardiness performance measure and separate setup times has not been addressed so far, and hence, it is addressed in this paper. Different dominance relations are developed and several algorithms are proposed. Extensive computational experiments are conducted to evaluate the proposed algorithms. The computational experiments have shown that one of the algorithms performs much better than the others. Moreover, the experiments have shown that the best performing algorithm performs much better than the best existing algorithm for the case of zero setup times in the literature. Therefore, the proposed best performing algorithm not only can be used for problems with separate setup times but also for the case of zero setup times.

Keywords: scheduling, assembly flowshop, total tardiness, algorithm

Procedia PDF Downloads 344
3655 Optimal Voltage and Frequency Control of a Microgrid Using the Harmony Search Algorithm

Authors: Hossein Abbasi

Abstract:

The stability is an important topic to plan and manage the energy in the microgrids as the same as the conventional power systems. The voltage and frequency stability is one of the most important issues recently studied in microgrids. The objectives of this paper are the modelling and designing of the components and optimal controllers for the voltage and frequency control of the AC/DC hybrid microgrid under the different disturbances. Since the PI controllers have the advantages of simple structure and easy implementation, so they are designed and modeled in this paper. The harmony search (HS) algorithm is used to optimize the controllers’ parameters. According to the achieved results, the PI controllers have a good performance in voltage and frequency control of the microgrid.

Keywords: frequency control, HS algorithm, microgrid, PI controller, voltage control

Procedia PDF Downloads 391
3654 Optimal Cropping Pattern in an Irrigation Project: A Hybrid Model of Artificial Neural Network and Modified Simplex Algorithm

Authors: Safayat Ali Shaikh

Abstract:

Software has been developed for optimal cropping pattern in an irrigation project considering land constraint, water availability constraint and pick up flow constraint using modified Simplex Algorithm. Artificial Neural Network Models (ANN) have been developed to predict rainfall. AR (1) model used to generate 1000 years rainfall data to train the ANN. Simulation has been done with expected rainfall data. Eight number crops and three types of soil class have been considered for optimization model. Area under each crop and each soil class have been quantified using Modified Simplex Algorithm to get optimum net return. Efficacy of the software has been tested using data of large irrigation project in India.

Keywords: artificial neural network, large irrigation project, modified simplex algorithm, optimal cropping pattern

Procedia PDF Downloads 203