Search results for: Spark Ignition (SI) engine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 947

Search results for: Spark Ignition (SI) engine

437 Wireless Sensor Network for Forest Fire Detection and Localization

Authors: Tarek Dandashi

Abstract:

WSNs may provide a fast and reliable solution for the early detection of environment events like forest fires. This is crucial for alerting and calling for fire brigade intervention. Sensor nodes communicate sensor data to a host station, which enables a global analysis and the generation of a reliable decision on a potential fire and its location. A WSN with TinyOS and nesC for the capturing and transmission of a variety of sensor information with controlled source, data rates, duration, and the records/displaying activity traces is presented. We propose a similarity distance (SD) between the distribution of currently sensed data and that of a reference. At any given time, a fire causes diverging opinions in the reported data, which alters the usual data distribution. Basically, SD consists of a metric on the Cumulative Distribution Function (CDF). SD is designed to be invariant versus day-to-day changes of temperature, changes due to the surrounding environment, and normal changes in weather, which preserve the data locality. Evaluation shows that SD sensitivity is quadratic versus an increase in sensor node temperature for a group of sensors of different sizes and neighborhood. Simulation of fire spreading when ignition is placed at random locations with some wind speed shows that SD takes a few minutes to reliably detect fires and locate them. We also discuss the case of false negative and false positive and their impact on the decision reliability.

Keywords: forest fire, WSN, wireless sensor network, algortihm

Procedia PDF Downloads 244
436 Niche Authorities and Social Activism: Interrogating the Activities of Selected Bloggers in Ghana

Authors: Akosua Asantewaa Anane

Abstract:

Social media and its networking sites have become beneficial to society. With the advent of Web 2.0, many people are becoming technologically savvy and attracted to internet-based activities. With the click of a button, users are now sharing more information on topics, events and issues than before. A new phenomenon in the Ghanaian journalism sphere is the advent of blogger and citizen journalism, some of whom have become niche authorities. Niche authorities have emerged through the habitual and persistent curation of news on specific topics, resulting in the steady growth and emergence of valuable contributions to news sharing. Minimal studies have been conducted on niche authorities and their role in social activism in Ghana. This study, anchored on Cialdini’s Six Principles of Persuasion (reciprocation, consistency, social proof, liking, authority and scarcity), explores the features of niche authorities, their areas of expertise, as well as their authoritative voices in the curation of news stories. Using qualitative content analysis, cyber ethnography and thematic analysis of purposively sampled social media posts of five niche authorities, the study interrogates how these niche authorities employ the six principles of persuasion on their platforms to spark conversations on development, social inclusion and gender-based issues in the country. The study discusses how niche authorities deploy the principles in social activism and further recommends nurturing and mentoring communication strategies to progressively guide the youth to become future niche authorities in news curation and news sharing.

Keywords: social activism, cialdini’s six principles of persuasion, news curation, niche authorities

Procedia PDF Downloads 44
435 KBASE Technological Framework - Requirements

Authors: Ivan Stanev, Maria Koleva

Abstract:

Automated software development issues are addressed in this paper. Layers and packages of a Common Platform for Automated Programming (CPAP) are defined based on Service Oriented Architecture, Cloud computing, Knowledge based automated software engineering (KBASE) and Method of automated programming. Tools of seven leading companies (AWS of Amazon, Azure of Microsoft, App Engine of Google, vCloud of VMWare, Bluemix of IBM, Helion of HP, OCPaaS of Oracle) are analyzed in the context of CPAP. Based on the results of the analysis CPAP requirements are formulated

Keywords: automated programming, cloud computing, knowledge based software engineering, service oriented architecture

Procedia PDF Downloads 276
434 Unconventional Calculus Spreadsheet Functions

Authors: Chahid K. Ghaddar

Abstract:

The spreadsheet engine is exploited via a non-conventional mechanism to enable novel worksheet solver functions for computational calculus. The solver functions bypass inherent restrictions on built-in math and user defined functions by taking variable formulas as a new type of argument while retaining purity and recursion properties. The enabling mechanism permits integration of numerical algorithms into worksheet functions for solving virtually any computational problem that can be modelled by formulas and variables. Several examples are presented for computing integrals, derivatives, and systems of deferential-algebraic equations. Incorporation of the worksheet solver functions with the ubiquitous spreadsheet extend the utility of the latter as a powerful tool for computational mathematics.

Keywords: calculus, differential algebraic equations, solvers, spreadsheet

Procedia PDF Downloads 333
433 Regression Approach for Optimal Purchase of Hosts Cluster in Fixed Fund for Hadoop Big Data Platform

Authors: Haitao Yang, Jianming Lv, Fei Xu, Xintong Wang, Yilin Huang, Lanting Xia, Xuewu Zhu

Abstract:

Given a fixed fund, purchasing fewer hosts of higher capability or inversely more of lower capability is a must-be-made trade-off in practices for building a Hadoop big data platform. An exploratory study is presented for a Housing Big Data Platform project (HBDP), where typical big data computing is with SQL queries of aggregate, join, and space-time condition selections executed upon massive data from more than 10 million housing units. In HBDP, an empirical formula was introduced to predict the performance of host clusters potential for the intended typical big data computing, and it was shaped via a regression approach. With this empirical formula, it is easy to suggest an optimal cluster configuration. The investigation was based on a typical Hadoop computing ecosystem HDFS+Hive+Spark. A proper metric was raised to measure the performance of Hadoop clusters in HBDP, which was tested and compared with its predicted counterpart, on executing three kinds of typical SQL query tasks. Tests were conducted with respect to factors of CPU benchmark, memory size, virtual host division, and the number of element physical host in cluster. The research has been applied to practical cluster procurement for housing big data computing.

Keywords: Hadoop platform planning, optimal cluster scheme at fixed-fund, performance predicting formula, typical SQL query tasks

Procedia PDF Downloads 213
432 A Design of the Organic Rankine Cycle for the Low Temperature Waste Heat

Authors: K. Fraňa, M. Müller

Abstract:

A presentation of the design of the Organic Rankine Cycle (ORC) with heat regeneration and super-heating processes is a subject of this paper. The maximum temperature level in the ORC is considered to be 110°C and the maximum pressure varies up to 2.5MPa. The selection process of the appropriate working fluids, thermal design and calculation of the cycle and its components are described. With respect to the safety, toxicity, flammability, price and thermal cycle efficiency, the working fluid selected is R134a. As a particular example, the thermal design of the condenser used for the ORC engine with a theoretical thermal power of 179 kW was introduced. The minimal heat transfer area for a completed condensation was determined to be approximately 520m2.

Keywords: organic rankine cycle, thermal efficiency, working fluids, environmental engineering

Procedia PDF Downloads 435
431 Analysis of The Effect about Different Automatic Sprinkler System Extinguishing The Scooter Fire in Underground Parking Space

Authors: Yu-Hsiu Li, Chun-Hsun Chen

Abstract:

Analysis of automatic sprinkler system protects the scooter in underground parking space, the current of general buildings is mainly equipped with foam fire-extinguishing equipment in Taiwan, the automatic sprinkling system has economic and environmental benefits, even high stability, China and the United States allow the parking space to set the automatic sprinkler system under certain conditions. The literature about scooter full-scale fire indicates that the average fire growth coefficient is 0.19 KW/sec2, it represents the scooter fire is classified as ultra-fast time square fire growth model, automatic sprinkler system can suppress the flame height and prevent extending burning. According to the computer simulation (FDS) literature, no matter computer simulation or full-scale experiments, the active order and trend about sprinkler heads are the same. This study uses the computer simulation program (FDS), the simulation scenario designed includes using a different system (enclosed wet type and open type), and different configurations. The simulation result demonstrates that the open type requires less time to extinguish the fire than the enclosed wet type if the horizontal distance between the sprinkler and the scooter ignition source is short, the sprinkler can act quickly, the heat release rate of fire can be suppressed in advance.

Keywords: automatic sprinkler system, underground parking Spac, FDS, scooter fire extinguishing

Procedia PDF Downloads 120
430 An Investigation of Machinability of Inconel 718 in EDM Using Different Cryogenic Treated Tools

Authors: Pradeep Joshi, Prashant Dhiman, Shiv Dayal Dhakad

Abstract:

Inconel 718 is a family if Nickel-Chromium based Superalloy; it has very high oxidation and corrosion resistance. Inconel 718 is widely being used in aerospace, engine, turbine etc. due to its high mechanical strength and creep resistance. Being widely used, its machining should be easy but in real its machining is very difficult, especially by using traditional machining methods. It becomes easy to machine only by using non Traditional machining such as EDM. During EDM machining there is wear of both tool and workpiece, the tool wear is undesired because it changes tool shape, geometry. To reduce the tool wear rate (TWR) cryogenic treatment is performed on tool before the machining operation. The machining performances of the process are to be evaluated in terms of MRR, TWR which are functions of Discharge current, Pulse on-time, Pulse Off-time.

Keywords: EDM, cyrogenic, TWR, MRR

Procedia PDF Downloads 438
429 Using Vulnerability to Reduce False Positive Rate in Intrusion Detection Systems

Authors: Nadjah Chergui, Narhimene Boustia

Abstract:

Intrusion Detection Systems are an essential tool for network security infrastructure. However, IDSs have a serious problem which is the generating of massive number of alerts, most of them are false positive ones which can hide true alerts and make the analyst confused to analyze the right alerts for report the true attacks. The purpose behind this paper is to present a formalism model to perform correlation engine by the reduction of false positive alerts basing on vulnerability contextual information. For that, we propose a formalism model based on non-monotonic JClassicδє description logic augmented with a default (δ) and an exception (є) operator that allows a dynamic inference according to contextual information.

Keywords: context, default, exception, vulnerability

Procedia PDF Downloads 242
428 Adaptive Auth - Adaptive Authentication Based on User Attributes for Web Application

Authors: Senthuran Manoharan, Rathesan Sivagananalingam

Abstract:

One of the main issues in system security is Authentication. Authentication can be defined as the process of recognizing the user's identity and it is the most important step in the access control process to safeguard data/resources from being accessed by unauthorized users. The static method of authentication cannot ensure the genuineness of the user. Due to this reason, more innovative authentication mechanisms came into play. At first two factor authentication was introduced and later, multi-factor authentication was introduced to enhance the security of the system. It also had some issues and later, adaptive authentication was introduced. In this research paper, the design of an adaptive authentication engine was put forward. The user risk profile was calculated based on the user parameters and then the user was challenged with a suitable authentication method.

Keywords: authentication, adaptive authentication, machine learning, security

Procedia PDF Downloads 211
427 Diesel Fault Prediction Based on Optimized Gray Neural Network

Authors: Han Bing, Yin Zhenjie

Abstract:

In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.

Keywords: fault prediction, neural network, GM(1, 5) genetic algorithm, GBPGA

Procedia PDF Downloads 285
426 Parallel Querying of Distributed Ontologies with Shared Vocabulary

Authors: Sharjeel Aslam, Vassil Vassilev, Karim Ouazzane

Abstract:

Ontologies and various semantic repositories became a convenient approach for implementing model-driven architectures of distributed systems on the Web. SPARQL is the standard query language for querying such. However, although SPARQL is well-established standard for querying semantic repositories in RDF and OWL format and there are commonly used APIs which supports it, like Jena for Java, its parallel option is not incorporated in them. This article presents a complete framework consisting of an object algebra for parallel RDF and an index-based implementation of the parallel query engine capable of dealing with the distributed RDF ontologies which share common vocabulary. It has been implemented in Java, and for validation of the algorithms has been applied to the problem of organizing virtual exhibitions on the Web.

Keywords: distributed ontologies, parallel querying, semantic indexing, shared vocabulary, SPARQL

Procedia PDF Downloads 176
425 Numerical Investigation of the Electromagnetic Common Rail Injector Characteristics

Authors: Rafal Sochaczewski, Ksenia Siadkowska, Tytus Tulwin

Abstract:

The paper describes the modeling of a fuel injector for common rail systems. A one-dimensional model of a solenoid-valve-controlled injector with Valve Closes Orifice (VCO) spray was modelled in the AVL Hydsim. This model shows the dynamic phenomena that occur in the injector. The accuracy of the calibration, based on a regulation of the parameters of the control valve and the nozzle needle lift, was verified by comparing the numerical results of injector flow rate. Our model is capable of a precise simulation of injector operating parameters in relation to injection time and fuel pressure in a fuel rail. As a result, there were made characteristics of the injector flow rate and backflow.

Keywords: common rail, diesel engine, fuel injector, modeling

Procedia PDF Downloads 394
424 Adaptive Environmental Control System Strategy for Cabin Air Quality in Commercial Aircrafts

Authors: Paolo Grasso, Sai Kalyan Yelike, Federico Benzi, Mathieu Le Cam

Abstract:

The cabin air quality (CAQ) in commercial aircraft is of prime interest, especially in the context of the COVID-19 pandemic. Current Environmental Control Systems (ECS) rely on a prescribed fresh airflow per passenger to dilute contaminants. An adaptive ECS strategy is proposed, leveraging air sensing and filtration technologies to ensure a better CAQ. This paper investigates the CAQ level achieved in commercial aircraft’s cabin during various flight scenarios. The modeling and simulation analysis is performed in a Modelica-based environment describing the dynamic behavior of the system. The model includes the following three main systems: cabin, recirculation loop and air-conditioning pack. The cabin model evaluates the thermo-hygrometric conditions and the air quality in the cabin depending on the number of passengers and crew members, the outdoor conditions and the conditions of the air supplied to the cabin. The recirculation loop includes models of the recirculation fan, ordinary and novel filtration technology, mixing chamber and outflow valve. The air-conditioning pack includes models of heat exchangers and turbomachinery needed to condition the hot pressurized air bled from the engine, as well as selected contaminants originated from the outside or bled from the engine. Different ventilation control strategies are modeled and simulated. Currently, a limited understanding of contaminant concentrations in the cabin and the lack of standardized and systematic methods to collect and record data constitute a challenge in establishing a causal relationship between CAQ and passengers' comfort. As a result, contaminants are neither measured nor filtered during flight, and the current sub-optimal way to avoid their accumulation is their dilution with the fresh air flow. However, the use of a prescribed amount of fresh air comes with a cost, making the ECS the most energy-demanding non-propulsive system within an aircraft. In such a context, this study shows that an ECS based on a reduced and adaptive fresh air flow, and relying on air sensing and filtration technologies, provides promising results in terms of CAQ control. The comparative simulation results demonstrate that the proposed adaptive ECS brings substantial improvements to the CAQ in terms of both controlling the asymptotic values of the concentration of the contaminant and in mitigating hazardous scenarios, such as fume events. Original architectures allowing for adaptive control of the inlet air flow rate based on monitored CAQ will change the requirements for filtration systems and redefine the ECS operation.

Keywords: cabin air quality, commercial aircraft, environmental control system, ventilation

Procedia PDF Downloads 81
423 Wear Resistance and Thermal Stability of Tungsten Boride Layers Deposited by Magnetron Sputtering

Authors: Justyna Chrzanowska, Jacek Hoffman, Dariusz Garbiec, Łukasz Kurpaska, Piotr Denis, Tomasz Moscicki, Zygmunt Szymanski

Abstract:

Tungsten and boron compounds belong to the group of superhard materials and its hardness could exceed 40 GPa. In this study, the properties of the tungsten boride (WB) layers deposited in magnetron sputtering process are investigated. The sputtering process occurred from specially prepared targets that were composed of boron and tungsten mixed in molar ratio of 2.5 or 4.5 and sintered in spark plasma sintering process. WB layers were deposited on silicon (100) and stainless steel 304 substrates at room temperature (RT) or in 570 °C. Layers deposited in RT and in elevated temperature varied considerably. Layers deposited in RT are amorphous and have low adhesion. In contrast, the layers deposited in 570 °C are crystalline and have good adhesion. All deposited layers have a hardness about 40 GPa. Moreover, the friction coefficient of crystalline layers is 0.22 and wear rate is about 0.67•10-6 mm3N-1m-1. After material characterization the WB layers were annealed in argon atmosphere in 1000 °C for 1 hour. On the basis of X-Ray Diffraction analysis, it has been noted that the crystalline layers are thermally stable and do not change their phase composition, whereas the amorphous layers change their phase composition. Moreover, after annealing, on the surface of WB layers some cracks were observed. It is probably connected with the differences of the thermal expansion between the layer and the substrate. Despite of the presence of cracks, the wear resistance of annealed layers is still higher than the wear resistance of uncoated substrate. The analysis of the structure and properties of tungsten boride layers lead to the discussion about the application area of this material.

Keywords: hard coatings, hard materials, magnetron sputtering, mechanical properties, tungsten boride

Procedia PDF Downloads 257
422 Construction Information Visualization System Using nD CAD Model

Authors: Hyeon-seoung Kim, Sang-mi Park, Sun-ju Han, Leen-seok Kang

Abstract:

The visualization technology of construction information using 3D and nD modeling can satisfy the visualization needs of each construction project participant. The nD CAD system is a tool that the construction information, such as construction schedule, cost and resource utilization, are simulated by 4D, 5D and 6D object formats based on 3D object. This study developed a methodology and simulation engine for nD CAD system for construction project management. It has improved functions such as built-in schedule generation, cost simulation of changed budget and built-in resource allocation comparing with the current systems. To develop an integrated nD CAD system, this study attempts an integrated method to link 5D and 6D objects based on 4D object.

Keywords: building information modeling, visual simulation, 3D object, nD CAD augmented reality

Procedia PDF Downloads 282
421 Containment/Penetration Analysis for the Protection of Aircraft Engine External Configuration and Nuclear Power Plant Structures

Authors: Dong Wook Lee, Adrian Mistreanu

Abstract:

The authors have studied a method for analyzing containment and penetration using an explicit nonlinear Finite Element Analysis. This method may be used in the stage of concept design for the protection of external configurations or components of aircraft engines and nuclear power plant structures. This paper consists of the modeling method, the results obtained from the method and the comparison of the results with those calculated from simple analytical method. It shows that the containment capability obtained by proposed method matches well with analytically calculated containment capability.

Keywords: computer aided engineering, containment analysis, finite element analysis, impact analysis, penetration analysis

Procedia PDF Downloads 119
420 Gaming Tools for Efficient Low Cost Urban Planning Using Nature Based Solutions

Authors: Ioannis Kavouras, Eftychios Protopapadakis, Emmanuel Sardis, Anastasios Doulamis

Abstract:

In this paper, we investigate the appropriateness and usability of three different free and open-source rendering tools for urban planning visualizations. The process involves the selection of a map area, the 3D rendering transformation, the addition of nature-based solution placement, and the evaluation and assessment of the suggested applied interventions. The manuscript uses a case study involved at Dilaveri Coast, Piraeus region, Greece. Research outcomes indicate that a Blender-OSM implementation is an appropriate tool capable of supporting high-fidelity urban planning, with quick and accurate visibility of related results for end users and involved in NBS transformations.

Keywords: urban planning, nature based solution, 3D gaming tools, game engine, free and open source

Procedia PDF Downloads 83
419 NOx Emission and Computational Analysis of Jatropha Curcus Fuel and Crude Oil

Authors: Vipan Kumar Sohpal, Rajesh K Sharma

Abstract:

Diminishing of conventional fuels and hysterical vehicles emission leads to deterioration of the environment, which emphasize the research to work on biofuels. Biofuels from different sources attract the attention of research due to low emission and biodegradability. Emission of carbon monoxide, carbon dioxide and H-C reduced drastically using Biofuels (B-20) combustion. Contrary to the conventional fuel, engine emission results indicated that nitrous oxide emission is higher in Biofuels. So this paper examines and compares the nitrogen oxide emission of Jatropha Curcus (JCO) B-20% blends with the vegetable oil. In addition to that computational analysis of crude non edible oil performed to assess the impact of composition on emission quality. In conclusion, JCO have the potential feedstock for the biodiesel production after the genetic modification in the plant.

Keywords: jatropha curcus, computational analysis, emissions, NOx biofuels

Procedia PDF Downloads 559
418 Numerical Investigation of the Flow Characteristics inside the Scrubber Unit

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

Wet scrubbers have found widespread use in cleaning contaminated gas streams because of their ability to remove particulates and based on the applications of scrubbing of marine engine exhaust gases by spraying sea-water. In order to examine the flow characteristics inside the scrubber, the model is designated with flow properties of hot air and water sprayer. The flow dynamics of evaporation of hot air by the injection of water droplets is the key factor considered in this paper. The flow behavior inside the scrubber was investigated from the previous works and to sum up the evaporation rate with respect to the concentration of water droplets are predicted to bring out the competent modelling. The numerical analysis using CFD facilitates in understanding the problem better and empathies the behavior of the model over its entire operating envelope.

Keywords: concentration of water droplets, evaporation rate, scrubber, water sprayer

Procedia PDF Downloads 196
417 Variation with Depth of Physico-Chemical, Mineralogical and Physical Properties of Overburden over Gneiss Basement Complex in Minna Metropolis, North Central Nigeria

Authors: M. M. Alhaji, M. Alhassan, A. M. Yahaya

Abstract:

Soil engineers pay very little or no attention to variation in the mineralogical and consequently, the geotechnical properties of overburden with depth on basement complexes, a situation which can lead to sudden failure of civil engineering structures. Soil samples collected at depths ranging from 0.5m to 4.0m at 0.5m intervals, from a trial pit dogged manually to depth of 4.0m on an overburden over gneiss basement complex, was evaluated for physico-chemical, mineralogical and physical properties. This is to determine the variation of these properties with depth within the profile of the strata. Results showed that sodium amphibolite and feldspar, which are both primary minerals dominate the overall profile of the overburden. Carbon which dominates the lower profile of the strata was observed to alter to gregorite at upper section of the profile. Organic matter contents and cation exchange capacity reduces with increase in depth while lost on ignition and pH were relatively constant with depth. The index properties, as well as natural moisture contents, increases from 0.5m to between 1.0m to 1.5m depth after which the values reduced to constant values at 3.0m depth. The grain size analysis shows high composition of sand sized particles with silts of low to non-plasticity. The maximum dry density (MDD) values are generally relatively high and increases from 2.262g/cm³ at 0.5m depth to 2.410g/cm³ at 4.0m depth while the optimum moisture content (OMC) reduced from 9.8% at 0.5m depth to 6.7% at 4.0m depth.

Keywords: Gneiss basement complex, mineralogical properties, North Central Nigeria, physico-chemical properties, physical properties, overburden soil

Procedia PDF Downloads 124
416 Performance Evaluation of Fingerprint, Auto-Pin and Password-Based Security Systems in Cloud Computing Environment

Authors: Emmanuel Ogala

Abstract:

Cloud computing has been envisioned as the next-generation architecture of Information Technology (IT) enterprise. In contrast to traditional solutions where IT services are under physical, logical and personnel controls, cloud computing moves the application software and databases to the large data centres, where the management of the data and services may not be fully trustworthy. This is due to the fact that the systems are opened to the whole world and as people tries to have access into the system, many people also are there trying day-in day-out on having unauthorized access into the system. This research contributes to the improvement of cloud computing security for better operation. The work is motivated by two problems: first, the observed easy access to cloud computing resources and complexity of attacks to vital cloud computing data system NIC requires that dynamic security mechanism evolves to stay capable of preventing illegitimate access. Second; lack of good methodology for performance test and evaluation of biometric security algorithms for securing records in cloud computing environment. The aim of this research was to evaluate the performance of an integrated security system (ISS) for securing exams records in cloud computing environment. In this research, we designed and implemented an ISS consisting of three security mechanisms of biometric (fingerprint), auto-PIN and password into one stream of access control and used for securing examination records in Kogi State University, Anyigba. Conclusively, the system we built has been able to overcome guessing abilities of hackers who guesses people password or pin. We are certain about this because the added security system (fingerprint) needs the presence of the user of the software before a login access can be granted. This is based on the placement of his finger on the fingerprint biometrics scanner for capturing and verification purpose for user’s authenticity confirmation. The study adopted the conceptual of quantitative design. Object oriented and design methodology was adopted. In the analysis and design, PHP, HTML5, CSS, Visual Studio Java Script, and web 2.0 technologies were used to implement the model of ISS for cloud computing environment. Note; PHP, HTML5, CSS were used in conjunction with visual Studio front end engine design tools and MySQL + Access 7.0 were used for the backend engine and Java Script was used for object arrangement and also validation of user input for security check. Finally, the performance of the developed framework was evaluated by comparing with two other existing security systems (Auto-PIN and password) within the school and the results showed that the developed approach (fingerprint) allows overcoming the two main weaknesses of the existing systems and will work perfectly well if fully implemented.

Keywords: performance evaluation, fingerprint, auto-pin, password-based, security systems, cloud computing environment

Procedia PDF Downloads 118
415 Updating Stochastic Hosting Capacity Algorithm for Voltage Optimization Programs and Interconnect Standards

Authors: Nicholas Burica, Nina Selak

Abstract:

The ADHCAT (Automated Distribution Hosting Capacity Assessment Tool) was designed to run Hosting Capacity Analysis on the ComEd system via a stochastic DER (Distributed Energy Resource) placement on multiple power flow simulations against a set of violation criteria. The violation criteria in the initial version of the tool captured a limited amount of issues that individual departments design against for DER interconnections. Enhancements were made to the tool to further align with individual department violation and operation criteria, as well as the addition of new modules for use for future load profile analysis. A reporting engine was created for future analytical use based on the simulations and observations in the tool.

Keywords: distributed energy resources, hosting capacity, interconnect, voltage optimization

Procedia PDF Downloads 161
414 Performance Variation of the TEES According to the Changes in Cold-Side Storage Temperature

Authors: Young-Jin Baik, Minsung Kim, Junhyun Cho, Ho-Sang Ra, Young-Soo Lee, Ki-Chang Chang

Abstract:

Surplus electricity can be converted into potential energy via pumped hydroelectric storage for future usage. Similarly, thermo-electric energy storage (TEES) uses heat pumps equipped with thermal storage to convert electrical energy into thermal energy; the stored energy is then converted back into electrical energy when necessary using a heat engine. The greatest advantage of this method is that, unlike pumped hydroelectric storage and compressed air energy storage, TEES is not restricted by geographical constraints. In this study, performance variation of the TEES according to the changes in cold-side storage temperature was investigated by simulation method.

Keywords: energy storage system, heat pump, fluid mechanics, thermodynamics

Procedia PDF Downloads 455
413 Nearest Neighbor Investigate Using R+ Tree

Authors: Rutuja Desai

Abstract:

Search engine is fundamentally a framework used to search the data which is pertinent to the client via WWW. Looking close-by spot identified with the keywords is an imperative concept in developing web advances. For such kind of searching, extent pursuit or closest neighbor is utilized. In range search the forecast is made whether the objects meet to query object. Nearest neighbor is the forecast of the focuses close to the query set by the client. Here, the nearest neighbor methodology is utilized where Data recovery R+ tree is utilized rather than IR2 tree. The disadvantages of IR2 tree is: The false hit number can surpass the limit and the mark in Information Retrieval R-tree must have Voice over IP bit for each one of a kind word in W set is recouped by Data recovery R+ tree. The inquiry is fundamentally subordinate upon the key words and the geometric directions.

Keywords: information retrieval, nearest neighbor search, keyword search, R+ tree

Procedia PDF Downloads 268
412 Plasma Systems Application in Treating Automobile Exhaust Gases for a Clean Environment (Case Study)

Authors: Tahsen Abdalwahab Ibraheem Albehege

Abstract:

Exhaust fuel purification is of great importance to prevent the emission of major pollutants into the atmosphere such as diesel particulates and nitrogen oxides and meet environmental regulations, so environmental impacts are a primary concern of Diesel Exhaust Gas (DEG) which contains hazardous substances harmful to the environment as well as human health.We can not plasma formed through directing electrical energy to create free electrons, which in turn can react with gaseous species, but we can by used to treat engine exhaust gases. . By NO that has been reportedly oxidized to HNO3 and then into ammonium nitrate, and then condensed and removed. In general, thermal plasmas are formed by heating a system to high temperatures 2,000 degrees C, however this can be inefficient and can require extensive thermal management.

Keywords: plasma system application, project physics, oxidizing environment, electromagnetically

Procedia PDF Downloads 80
411 Superamolecular Chemistry and Packing of FAMEs in the Liquid Phase for Optimization of Combustion and Emission

Authors: Zeev Wiesman, Paula Berman, Nitzan Meiri, Charles Linder

Abstract:

Supramolecular chemistry refers to the domain of chemistry beyond that of molecules and focuses on the chemical systems made up of a discrete number of assembled molecular sub units or components. Biodiesel components self arrangements is closely related/affect their physical properties in combustion systems and emission. Due to technological difficulties, knowledge regarding the molecular packing of FAMEs (biodiesel) in the liquid phase is limited. Spectral tools such as X-ray and NMR are known to provide evidences related to molecular structure organization. Recently, it was reported by our research group that using 1H Time Domain NMR methodology based on relaxation time and self diffusion coefficients, FAMEs clusters with different motilities can be accurately studied in the liquid phase. Head to head dimarization with quasi-smectic clusters organization, based on molecular motion analysis, was clearly demonstrated. These findings about the assembly/packing of the FAME components are directly associated with fluidity/viscosity of the biodiesel. Furthermore, these findings may provide information of micro/nano-particles that are formed in the delivery and injection system of various combustion systems (affected by thermodynamic conditions). Various relevant parameters to combustion such as: distillation/Liquid Gas phase transition, cetane number/ignition delay, shoot, oxidation/NOX emission maybe predicted. These data may open the window for further optimization of FAME/diesel mixture in terms of combustion and emission.

Keywords: supermolecular chemistry, FAMEs, liquid phase, fluidity, LF-NMR

Procedia PDF Downloads 317
410 Parallelization of Random Accessible Progressive Streaming of Compressed 3D Models over Web

Authors: Aayushi Somani, Siba P. Samal

Abstract:

Three-dimensional (3D) meshes are data structures, which store geometric information of an object or scene, generally in the form of vertices and edges. Current technology in laser scanning and other geometric data acquisition technologies acquire high resolution sampling which leads to high resolution meshes. While high resolution meshes give better quality rendering and hence is used often, the processing, as well as storage of 3D meshes, is currently resource-intensive. At the same time, web applications for data processing have become ubiquitous owing to their accessibility. For 3D meshes, the advancement of 3D web technologies, such as WebGL, WebVR, has enabled high fidelity rendering of huge meshes. However, there exists a gap in ability to stream huge meshes to a native client and browser application due to high network latency. Also, there is an inherent delay of loading WebGL pages due to large and complex models. The focus of our work is to identify the challenges faced when such meshes are streamed into and processed on hand-held devices, owing to its limited resources. One of the solutions that are conventionally used in the graphics community to alleviate resource limitations is mesh compression. Our approach deals with a two-step approach for random accessible progressive compression and its parallel implementation. The first step includes partition of the original mesh to multiple sub-meshes, and then we invoke data parallelism on these sub-meshes for its compression. Subsequent threaded decompression logic is implemented inside the Web Browser Engine with modification of WebGL implementation in Chromium open source engine. This concept can be used to completely revolutionize the way e-commerce and Virtual Reality technology works for consumer electronic devices. These objects can be compressed in the server and can be transmitted over the network. The progressive decompression can be performed on the client device and rendered. Multiple views currently used in e-commerce sites for viewing the same product from different angles can be replaced by a single progressive model for better UX and smoother user experience. Can also be used in WebVR for commonly and most widely used activities like virtual reality shopping, watching movies and playing games. Our experiments and comparison with existing techniques show encouraging results in terms of latency (compressed size is ~10-15% of the original mesh), processing time (20-22% increase over serial implementation) and quality of user experience in web browser.

Keywords: 3D compression, 3D mesh, 3D web, chromium, client-server architecture, e-commerce, level of details, parallelization, progressive compression, WebGL, WebVR

Procedia PDF Downloads 150
409 Investigation of Soot Regeneration Behavior in the DPF Cleaning Device

Authors: Won Jun Jo, Man Young Kim

Abstract:

To meet stringent diesel particulate matter regulations, DPF system is essential after treatment technology providing exceptional reliability and filtration performance. At low load driving conditions, the passive type of DPF system is ineffective for regeneration method due to the inadequate of engine exhaust heat in removing accumulated soot from the filter. Therefore, DPF cleaning device is necessary to remove the soot particles. In this work, the numerical analysis on the active regeneration of DPF in DPF cleaning device is performed to find the optimum operating conditions. In order to find the DPF regeneration characteristics during active regeneration, 5 different initial soot loading condition are investigated. As the initial soot mass increases, the maximum temperature of DPF and regeneration rate also increase.

Keywords: active regeneration, DPF cleaning device, pressure drop, Diesel Particulate Filter, particulate matters, computational fluid dynamics

Procedia PDF Downloads 274
408 Practical Model of Regenerative Braking Using DC Machine and Boost Converter

Authors: Shah Krupa Rajendra, Amit Kumar

Abstract:

Increasing use of traditional vehicles driven by internal combustion engine is responsible for the environmental pollution. Further, it leads to depletion of limited energy resources. Therefore, it is required to explore alternative energy sources for the transportation. The promising solution is to use electric vehicle. However, it suffers from limited driving range. Regenerative braking increases the range of the electric vehicle to a certain extent. In this paper, a novel methodology utilizing regenerative braking is described. The model comprising of DC machine, feedback based boost converter and micro-controller is proposed. The suggested method is very simple and reliable. The proposed model successfully shows the energy being saved into during regenerative braking process.

Keywords: boost converter, DC machine, electric vehicle, micro-controller, regenerative braking

Procedia PDF Downloads 253