Search results for: data acquisition
20347 Social Networking Sites and Employee Engagement
Authors: Sultan Ali Suleiman AlMazrouei
Abstract:
Purpose: The purpose of this paper is to examine the effect of communication through social networking sites (Facebook, Twitter) on employee engagement. Methodology: A quantitative survey was used to collect data from 440 employees from the Ministry of Education in Oman. SPSS software was used to analyze the data. Findings: The results revealed a positive significant relationship between communication via Facebook and employee engagement. However, communication via Twitter does not influence employee engagement significantly. Practical implications: Managers can benefit from the study by understanding the importance of communication via Facebook with employees in order to increase their engagement. They should post their views and thoughts on Facebook and encourage their employees to be members which would be reflected on their psychological side positively. That gives them a feeling of belonging to a network. Originality/value: The study enriches the human resources management literature by examining a theoretical framework about the influence of social networking sites usage on employee engagement. This is one of the few studies that focus on the relationship of social networking sites usage with employees' engagement. It is the first study in an Omani context.Keywords: employee engagement, social networking sites, Facebook, Twitter
Procedia PDF Downloads 33320346 Efficacy of Knowledge Management Practices in Selected Public Libraries in the Province of Kwazulu-Natal, South Africa
Authors: Petros Dlamini, Bethiweli Malambo, Maggie Masenya
Abstract:
Knowledge management practices are very important in public libraries, especial in the era of the information society. The success of public libraries depends on the recognition and application of knowledge management practices. The study investigates the value and challenges of knowledge management practices in public libraries. Three research objectives informed the study: to identify knowledge management practices in public libraries, understand the value of knowledge management practices in public libraries, and determine the factors hampering knowledge management practices in public libraries. The study was informed by the interpretivism research paradigm, which is associated with qualitative studies. In that light, the study collected data from eight librarians and or library heads, who were purposively selected from public libraries. The study adopted a social anthropological approach, which thoroughly evaluated each participant's response. Data was collected from the respondents through telephonic semi-structured interviews and assessed accordingly. Furthermore, the study used the latest content concept for data interpretation. The chosen data analysis method allowed the study to achieve its main purpose with concrete and valid information. The study's findings showed that all six (100%) selected public libraries apply knowledge management practices. The findings of the study revealed that public libraries have knowledge sharing as the main knowledge management practice. It was noted that public libraries employ many practices, but each library employed its practices of choice depending on their knowledge management practices structure. The findings further showed that knowledge management practices in public libraries are employed through meetings, training, information sessions, and awareness, to mention a few. The findings revealed that knowledge management practices make the libraries usable. Furthermore, it has been asserted that knowledge management practices in public libraries meet users’ needs and expectations and equip them with skills. It was discovered that all participating public libraries from Umkhanyakude district municipality valued their knowledge management practices as the pillar and foundation of services. Noticeably, knowledge management practices improve users ‘standard of living and build an information society. The findings of the study showed that librarians should be responsible for the value of knowledge management practices as they are qualified personnel. The results also showed that 83.35% of public libraries had factors hampering knowledge management practices. The factors are not limited to shortage of funds, resources and space, and political interference. Several suggestions were made to improve knowledge management practices in public libraries. These suggestions include improving the library budget, increasing libraries’ building sizes, and conducting more staff training.Keywords: knowledge management, knowledge management practices, storage, dissemination
Procedia PDF Downloads 9520345 The Influence of Educational Board Games on Chinese Learning Motivation and Flow Experience
Authors: Ju May Wen, Chun Hung Lin, Eric Zhi Feng Liu
Abstract:
Flow theory implies that people are persuaded by happiness. By focusing on an activity, people turn a blind eye to external factors. This study explores the influence of educational board games and fundamental Chinese language teaching on students’ learning motivation and flow experience. Fifty-three students studying Chinese language fundamental courses were used in the study. These students were divided into three groups: (1) flash card teaching group; (2) educational original board game teaching group; and (3) educational Chinese board game teaching group. Chinese language teaching was integrated with the educational board game titled ‘Transportation GO.’ The students were observed playing this game as the teacher collected quantitative and qualitative data. Quantitative data was collected from the learning motivation scale and flow experience scale. Qualitative data was collected through observing, recording, and visiting. The first result found that the three groups integrated with Chinese language teaching could maintain students’ high learning motivation and high flow experience. Second, there was no significant difference between the flow experience of the flash card group and the educational original board game group. Third, there was a significant difference in the flow experience and learning motivation of the educational Chinese board game group vs. the other groups. This study suggests that the experimental model can be applied to advanced Chinese language teaching. Apart from oral and literacy skills, the study of educational board games integrated with Chinese language teaching to enforce student writing skills will be continued.Keywords: Chinese language instruction, educational board game, learning motivation, flow experience
Procedia PDF Downloads 17820344 Employee Commitment as a Means of Revitalising the Hospitality Industry post-Covid: Considering the Impact of Psychological Contract and Psychological Capital
Authors: Desere Kokt
Abstract:
Hospitality establishments worldwide are bearing the brunt of the effects of Covid-19. As the hospitality industry is looking to recover, emphasis is placed on rejuvenating the industry. This is especially pertinent for economic development in areas of high unemployment, such as the Free State province of South Africa. The province is not a main tourist area and thus depends on the influx of tourists. The province has great scenic beauty with many accommodation establishments that provide job opportunities to the local population. The two main economic hubs of the Free State province namely Bloemfontein and Clarens, were the focus of the investigation. The emphasis was on graded accommodation establishments as they must adhere to the quality principles of the Tourism Grading Council of South Africa (TGCSA) to obtain star grading. The hospitality industry is known for being labour intensive, and employees need to be available to cater for the needs of paying customers. This is referred to as ‘emotional labour’ and implies that employees need to manage their feelings and emotions as part of performing their jobs. The focus of this study was thus on psychological factors related to working in the hospitality industry – specifically psychological contract and psychological capital and its impact on the commitment of employees in graded accommodation establishments. Employee commitment can be explained as a psychological state that binds the individual to the organisation and involves a set of psychological relationships that include affective (emotions), normative (perceived obligation) and continuance (staying with the organisation) dimensions. Psychological contract refers to the reciprocal beliefs and expectations between the employer and the employee and consists of transactional and rational contracts. Transactional contracts are associated with the economic exchange, and contractional issues related to the employment contract and rational contracts relate to the social exchange between the employee and the organisation. Psychological capital refers to an individual’s positive psychology state of development that is characterised by self-efficiency (having confidence in doing one’s job), optimism (being positive and persevering towards achieving one’s goals), hope (expectations for goals to succeed) and resilience (bouncing back to attain success when beset by problems and adversity). The study employed a quantitative research approach, and a structured questionnaire was used to gather data from respondents. The study was conducted during the Covid-19 pandemic, which hampered the data gathering efforts of the researchers. Many accommodation establishments were either closed or temporarily closed, which meant that data gathering was an intensive and laborious process. The main researcher travelled to the various establishments to collect the data. Nine hospitality establishments participated in the study, and around 150 employees were targeted for data collection. Ninety-two (92) questionnaires were completed, which represents a response rate of 61%. Data were analysed using descriptive and inferential statistics, and partial least squares structural equation modelling (PLS-SEM) was applied to examine the relationship between the variables.Keywords: employee commitment, hospitality industry, psychological contract, psychological capital
Procedia PDF Downloads 10620343 Statistical and Land Planning Study of Tourist Arrivals in Greece during 2005-2016
Authors: Dimitra Alexiou
Abstract:
During the last 10 years, in spite of the economic crisis, the number of tourists arriving in Greece has increased, particularly during the tourist season from April to October. In this paper, the number of annual tourist arrivals is studied to explore their preferences with regard to the month of travel, the selected destinations, as well the amount of money spent. The collected data are processed with statistical methods, yielding numerical and graphical results. From the computation of statistical parameters and the forecasting with exponential smoothing, useful conclusions are arrived at that can be used by the Greek tourism authorities, as well as by tourist organizations, for planning purposes for the coming years. The results of this paper and the computed forecast can also be used for decision making by private tourist enterprises that are investing in Greece. With regard to the statistical methods, the method of Simple Exponential Smoothing of time series of data is employed. The search for a best forecast for 2017 and 2018 provides the value of the smoothing coefficient. For all statistical computations and graphics Microsoft Excel is used.Keywords: tourism, statistical methods, exponential smoothing, land spatial planning, economy
Procedia PDF Downloads 26520342 Cosmic Muon Tomography at the Wylfa Reactor Site Using an Anti-Neutrino Detector
Authors: Ronald Collins, Jonathon Coleman, Joel Dasari, George Holt, Carl Metelko, Matthew Murdoch, Alexander Morgan, Yan-Jie Schnellbach, Robert Mills, Gareth Edwards, Alexander Roberts
Abstract:
At the Wylfa Magnox Power Plant between 2014–2016, the VIDARR prototype anti-neutrino detector was deployed. It is comprised of extruded plastic scintillating bars measuring 4 cm × 1 cm × 152 cm and utilised wavelength shifting fibres (WLS) and multi-pixel photon counters (MPPCs) to detect and quantify radiation. During deployment, it took cosmic muon data in accidental coincidence with the anti-neutrino measurements with the power plant site buildings obscuring the muon sky. Cosmic muons have a significantly higher probability of being attenuated and/or absorbed by denser objects, and so one-sided cosmic muon tomography was utilised to image the reactor site buildings. In order to achieve clear building outlines, a control data set was taken at the University of Liverpool from 2016 – 2018, which had minimal occlusion of the cosmic muon flux by dense objects. By taking the ratio of these two data sets and using GEANT4 simulations, it is possible to perform a one-sided cosmic muon tomography analysis. This analysis can be used to discern specific buildings, building heights, and features at the Wylfa reactor site, including the reactor core/reactor core shielding using ∼ 3 hours worth of cosmic-ray detector live time. This result demonstrates the feasibility of using cosmic muon analysis to determine a segmented detector’s location with respect to surrounding buildings, assisted by aerial photography or satellite imagery.Keywords: anti-neutrino, GEANT4, muon, tomography, occlusion
Procedia PDF Downloads 18620341 Two-Stage Hospital Efficiency Analysis Including Qualitative Evidence: A Greek Case
Authors: Panos Xenos, Milton Nektarios, John Yfantopoulos
Abstract:
Background: Policy makers, professional organizations and payers have introduced a variety of initiatives and reforms for the health systems worldwide, aimed at improving hospital efficiency. Their efforts are concentrated in two main categories: to constrain increasing healthcare costs and to enhance quality of services provided. Research Objectives: This study examines the efficiency of 112 Greek public hospitals for the year 2009, evaluates the importance of bootstrapping techniques and investigates the effect of contextual factors on hospital efficiency. Furthermore, the effect of qualitative evidence, on hospital efficiency is explored using data from 28 large hospitals. Methods: We applied Data Envelopment Analysis, augmented by bootstrapping techniques, to estimate efficiency scores. In order to measure the effect of environmental factors on hospital efficiency we used Tobit regression analysis. The significance of our models is evaluated using statistical tests to compare distributions. Results: The Kolmogorov-Smirnov test between the original and the bootstrap-corrected efficiency indicates that their distributions are significantly different (p-value<0.01). The environmental factors, that seem to influence efficiency, are Occupancy Rating and the ratio between Outpatient Visits and Inpatient Days. Results indicate that the inclusion of the quality variable in DEA modelling generates statistically significant variations in efficiency scores (p-value<0.05). Conclusions: The inclusion of quality variables and the use of bootstrap resampling in efficiency analysis impose a statistically significant effect on the distribution of efficiency scores. As a policy conclusion we highlight the importance of these methods on hospital efficiency analysis and, by implication, on healthcare resource allocation.Keywords: hospitals, efficiency, quality, data envelopment analysis, Greek public hospital sector
Procedia PDF Downloads 30920340 Student Performance and Confidence Analysis on Education Virtual Environments through Different Assessment Strategies
Authors: Rubén Manrique, Delio Balcázar, José Parrado, Sebastián Rodríguez
Abstract:
Hand in hand with the evolution of technology, education systems have moved to virtual environments to provide increased coverage and facilitate the access to education. However, measuring student performance in virtual environments presents significant challenges to ensure students are acquiring the expected skills. In this study, the confidence and performance of engineering students in virtual environments is analyzed through different evaluation strategies. The effect of the assessment strategy in student confidence is identified using educational data mining techniques. Four assessment strategies were used. First, a conventional multiple choice test; second, a multiple choice test with feedback; third, a multiple choice test with a second chance; and fourth; a multiple choice test with feedback and second chance. Our results show that applying testing with online feedback strategies can influence positively student confidence.Keywords: assessment strategies, educational data mining, student performance, student confidence
Procedia PDF Downloads 35420339 Web-Based Criminal Diary: Paperless Criminal Evidence for Federal Republic of Nigeria
Authors: Yekini Nureni Asafe, Haastrup Victor Adeleye, Ikotun Abiodun Motunrayo, Ojo Olanrewaju
Abstract:
Web Based Criminal Diary is a web based application whereby data of criminals been convicted by a judge in the court of law in Nigeria are shown to the entire public. Presently, criminal records are kept manually in Nigeria, which means when a person needs to be investigated to know if the person has a criminal record in the country, there is need to pass through different manual processes. With the use of manual record keeping, the criminal records can easily be manipulated by people in charge. The focus of this research work is to design a web-based application system for criminal record in Nigeria, towards elimination of challenges (such as loss of criminal records, in-efficiency in criminal record keeping, data manipulation, and other attendant problems of paper-based record keeping) which surrounds manual processing currently in use. The product of this research work will also help to minimize crime rate in our country since the opportunities and benefits lost as a result of a criminal record create will a lifelong barriers for anyone attempting to overcome a criminal past in our country.Keywords: court of law, criminal, criminal diary, criminal evidence, Nigeria, web-based
Procedia PDF Downloads 32020338 The Proportion of Dysthymia Prevailing in Men and Women With Anxiety as Comorbidity
Authors: Yashvi Italiya
Abstract:
Dysthymia (DD) is a much-overlooked soft mood disorder and mostly confused with other forms of chronic depression. This research paper gives a spotlight to the DD prevailing in men and women. It also focuses on one of the comorbidities of Dysthymia, i.e., Anxiety. The comorbidities, hurdles in diagnosis, the ubiquity of the disorder, and the relation of Anxiety and DD are briefly described. Gender was the main focus here because the researcher of this paper found it as a research gap while doing the literature review. The study was done through secondary data obtained primarily from a questionnaire having Alpha 0.891 reliability. T-test method of data analysis was used to test the hypotheses. The result shows that the researcher failed to accept alternative hypothesis 1 (M1 > M2), while the alternative hypothesis 2 (M1 > M2) was accepted. The ratio of DD in women (M1) is not higher than that of men (M2) (hypothesis 1). But, women are more anxious than men (hypothesis 2). It was found that comorbid Anxiety is more widespread in one gender. It further plays a significant role in mixing up the symptoms. It was concluded that the dividing line between Dysthymia and MDD is still unclear for an accurate diagnosis. There is an essential need for spreading knowledge concerning the differences between the symptoms of DD and MDD so that the actual disorder can be identified, and proper help can be received from/provided by professionals.Keywords: anxiety, comorbidity, dysthymia, gender, MDD
Procedia PDF Downloads 13920337 Intrusion Detection Based on Graph Oriented Big Data Analytics
Authors: Ahlem Abid, Farah Jemili
Abstract:
Intrusion detection has been the subject of numerous studies in industry and academia, but cyber security analysts always want greater precision and global threat analysis to secure their systems in cyberspace. To improve intrusion detection system, the visualisation of the security events in form of graphs and diagrams is important to improve the accuracy of alerts. In this paper, we propose an approach of an IDS based on cloud computing, big data technique and using a machine learning graph algorithm which can detect in real time different attacks as early as possible. We use the MAWILab intrusion detection dataset . We choose Microsoft Azure as a unified cloud environment to load our dataset on. We implement the k2 algorithm which is a graphical machine learning algorithm to classify attacks. Our system showed a good performance due to the graphical machine learning algorithm and spark structured streaming engine.Keywords: Apache Spark Streaming, Graph, Intrusion detection, k2 algorithm, Machine Learning, MAWILab, Microsoft Azure Cloud
Procedia PDF Downloads 14820336 Career Development for Benjarong Porcelain Handicraft Communities in Central Thailand
Authors: Chutikarn Sriwiboon, Suwaree Yordchim
Abstract:
Benjarong handicraft product is one of the most important handicraft products from Thailand. It involves the management of traditional wisdom of arts and Thai culture. This paper drew upon data collection from local communities by using an in-depth interview technique which was conducted in Thailand during summer of 2014. The survey was structured primarily to obtain local wisdom and concerns toward their career development. This research paper was a qualitative research conducted by focus groups with a total of 51 cooperative women and occupational groups around Thailand which produced the Benjarong products. The data were significantly collected from many sources and many communities, which totaled 24,430 handicraft products, in which the 668 different patterns of Benjarong products were produced by 51 local community network groups in Thailand. The findings revealed that after applying the Philosophy of Sufficiency Economy, there was a significantly positive change in their career development and the process of knowledge management enables local community to enhance their personal development and career.Keywords: Benjarong, career development, community, handicraft
Procedia PDF Downloads 38320335 Heart Attack Prediction Using Several Machine Learning Methods
Authors: Suzan Anwar, Utkarsh Goyal
Abstract:
Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%.Keywords: heart rate, machine learning, SVM, decision tree, logistic regression, random forest
Procedia PDF Downloads 13820334 Adsorption of Iodine from Aqueous Solution on Modified Silica Gel with Cyclodextrin Derivatives
Authors: Raied, Badr Al-Fulaiti, E. I. El-Shafey
Abstract:
Cyclodextrin (CD) derivatives (αCD, βCD, ϒCD and hp-βCD) were successfully immobilized on silica gel surface via epichlorohydrin as a cross linker. The ratio of silica to CD was optimized in preliminary experiments based on best performance of iodine adsorption capacity. Selected adsorbents with ratios of silica to CD derivatives, in this study, include Si-αCD (3:2), Si-βCD (4:1), Si-ϒCD (4:1) and Si-hp-βCD (4:1). The adsorption of iodine (I2/KI) solution was investigated in terms of initial pH, contact time, iodine concentration and temperature. No significant variations was noticed for iodine adsorption at different pH values, thus, initial pH 6 was selected for further studies. Equilibrium adsorption was reached faster on Si-hp-βCD than other adsorbents with kinetic adsorption data fitting well pseudo second order model. Activation energy (Ea) was found to be in the range of 12.7 - 23.4 kJ/mol. Equilibrium adsorption data were found to fit well the Langmuir adsorption model with lower uptake as temperature rises. Iodine uptake follows the order: Si-hp-βCD (714 mg/g) >Si-αCD (625 mg/g) >Si-βCD (555.6 mg/g)> Si-ϒCD (435 mg/g). Thermodynamic study showed that iodine adsorption is exothermic and spontaneous. Adsorbents reuse exhibited excellent performance for iodine adsorption with a decrease in iodine uptake of ~ 2- 4 % in the third adsorption cycle.Keywords: adsorption, iodine, silica, cyclodextrin, functionalization, epichlorohydrin
Procedia PDF Downloads 13220333 Comparative Assessment of ISSR and RAPD Markers among Egyptian Jojoba Shrubs
Authors: Abdelsabour G. A. Khaled, Galal A.R. El-Sherbeny, Ahmed M. Hassanein, Gameel M. G. Aly
Abstract:
Classical methods of identification, based on agronomical characterization, are not always the most accurate way due to the instability of these characteristics under the influence of the different environments. In order to estimate the genetic diversity, molecular markers provided excellent tools. In this study, Genetic variation of nine Egyptian jojoba shrubs was tested using ISSR (inter simple sequences repeats), RAPD (random amplified polymorphic DNA) markers and based on the morphological characterization. The average of the percentage of polymorphism (%P) ranged between 58.17% and 74.07% for ISSR and RAPD markers, respectively. The range of genetic similarity percents among shrubs based on ISSR and RAPD markers were from 82.9 to 97.9% and from 85.5 to 97.8%, respectively. The average of PIC (polymorphism information content) values were 0.19 (ISSR) and 0.24 (RAPD). In the present study, RAPD markers were more efficient than the ISSR markers. Where the RAPD technique exhibited higher marker index (MI) average (1.26) compared to ISSR one (1.11). There was an insignificant correlation between the ISSR and RAPD data (0.076, P > 0.05). The dendrogram constructed by the combined RAPD and ISSR data gave a relatively different clustering pattern.Keywords: correlation, molecular markers, polymorphism, marker index
Procedia PDF Downloads 47920332 Bitplanes Image Encryption/Decryption Using Edge Map (SSPCE Method) and Arnold Transform
Authors: Ali A. Ukasha
Abstract:
Data security needed in data transmission, storage, and communication to ensure the security. The single step parallel contour extraction (SSPCE) method is used to create the edge map as a key image from the different Gray level/Binary image. Performing the X-OR operation between the key image and each bit plane of the original image for image pixel values change purpose. The Arnold transform used to changes the locations of image pixels as image scrambling process. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Gary level image and completely reconstructed without any distortion. Also shown that the analyzed algorithm have extremely large security against some attacks like salt & pepper and JPEG compression. Its proof that the Gray level image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.Keywords: SSPCE method, image compression, salt and peppers attacks, bitplanes decomposition, Arnold transform, lossless image encryption
Procedia PDF Downloads 49920331 Social Media Marketing Efforts and Hospital Brand Equity: An Empirical Investigation
Authors: Abrar R. Al-Hasan
Abstract:
Despite the widespread use of social media by consumers and marketers, empirical research investigating their economic value in the healthcare industry still lags. This study explores the impact of the use of social media marketing efforts on a hospital's brand equity and, ultimately, consumer response. Using social media data from Twitter and Facebook, along with an online and offline survey methodology, data is analyzed using logistic regression models. A random sample of (728) residents of the Kuwaiti population is used. The results of this study found that social media marketing efforts (SMME) in terms of use and validation lead to higher hospital brand equity and in turn, patient loyalty and patient visit. The study highlights the impact of SMME on hospital brand equity and patient response. Healthcare organizations should guide their marketing efforts to better manage this new way of marketing and communicating with patients to enhance their consumer loyalty and financial performance.Keywords: brand equity, healthcare marketing, patient visit, social media, SMME
Procedia PDF Downloads 17320330 Dynamic Ad-hoc Topologies for Mobile Robot Navigation Based on Non-Uniform Grid Maps
Authors: Peter Sauer, Thomas Hinze, Petra Hofstedt
Abstract:
To avoid obstacles in the surrounding environment and to navigate to a given target belong to the most important tasks for mobile robots. According to these tasks different data structures are suitable. To avoid near obstacles, occupancy grid maps are an ideal representation of the surroundings. For less fine grained tasks, such as navigating from one room to another in an apartment, pure grid maps are inappropriate. Grid maps are very detailed, calculating paths to navigate between rooms based on grid maps would take too long. Instead, graph-based data structures, so-called topologies, turn out to be a proper choice for such tasks. In this paper we present two methods to dynamically create topologies from grid maps. Both methods are based on non-uniform grid maps. The topologies are generated on-the-fly and can easily be modified to represent changes in the environment. This allows a hybrid approach to control mobile robots, where, depending on the situation and the current task, either the grid map or the generated topology may be used.Keywords: robot navigation, occupancy grids, topological maps, dynamic map creation
Procedia PDF Downloads 56320329 Platform Urbanism: Planning towards Hyper-Personalisation
Authors: Provides Ng
Abstract:
Platform economy is a peer-to-peer model of distributing resources facilitated by community-based digital platforms. In recent years, digital platforms are rapidly reconfiguring the public realm using hyper-personalisation techniques. This paper aims at investigating how urban planning can leapfrog into the digital age to help relieve the rising tension of the global issue of labour flow; it discusses the means to transfer techniques of hyper-personalisation into urban planning for plasticity using platform technologies. This research first denotes the limitations of the current system of urban residency, where the system maintains itself on the circulation of documents, which are data on paper. Then, this paper tabulates how some of the institutions around the world, both public and private, digitise data, and streamline communications between a network of systems and citizens using platform technologies. Subsequently, this paper proposes ways in which hyper-personalisation can be utilised to form a digital planning platform. Finally, this paper concludes by reviewing how the proposed strategy may help to open up new ways of thinking about how we affiliate ourselves with cities.Keywords: platform urbanism, hyper-personalisation, digital inventory, urban accessibility
Procedia PDF Downloads 11520328 The Analyzer: Clustering Based System for Improving Business Productivity by Analyzing User Profiles to Enhance Human Computer Interaction
Authors: Dona Shaini Abhilasha Nanayakkara, Kurugamage Jude Pravinda Gregory Perera
Abstract:
E-commerce platforms have revolutionized the shopping experience, offering convenient ways for consumers to make purchases. To improve interactions with customers and optimize marketing strategies, it is essential for businesses to understand user behavior, preferences, and needs on these platforms. This paper focuses on recommending businesses to customize interactions with users based on their behavioral patterns, leveraging data-driven analysis and machine learning techniques. Businesses can improve engagement and boost the adoption of e-commerce platforms by aligning behavioral patterns with user goals of usability and satisfaction. We propose TheAnalyzer, a clustering-based system designed to enhance business productivity by analyzing user-profiles and improving human-computer interaction. The Analyzer seamlessly integrates with business applications, collecting relevant data points based on users' natural interactions without additional burdens such as questionnaires or surveys. It defines five key user analytics as features for its dataset, which are easily captured through users' interactions with e-commerce platforms. This research presents a study demonstrating the successful distinction of users into specific groups based on the five key analytics considered by TheAnalyzer. With the assistance of domain experts, customized business rules can be attached to each group, enabling The Analyzer to influence business applications and provide an enhanced personalized user experience. The outcomes are evaluated quantitatively and qualitatively, demonstrating that utilizing TheAnalyzer’s capabilities can optimize business outcomes, enhance customer satisfaction, and drive sustainable growth. The findings of this research contribute to the advancement of personalized interactions in e-commerce platforms. By leveraging user behavioral patterns and analyzing both new and existing users, businesses can effectively tailor their interactions to improve customer satisfaction, loyalty and ultimately drive sales.Keywords: data clustering, data standardization, dimensionality reduction, human computer interaction, user profiling
Procedia PDF Downloads 7420327 The Acceptance of Online Social Network Technology for Tourism Destination
Authors: Wanida Suwunniponth
Abstract:
The purpose of this research was to investigate the relationship between the factors of using online social network for tourism destination in case of Bangkok area in Thailand, by extending the use of technology acceptance model (TAM). This study employed by quantitative research and the target population were entrepreneurs and local people in Bangkok who use social network-Facebook concerning tourist destinations in Bangkok. Questionnaire was used to collect data from 300 purposive samples. The multiple regression analysis and path analysis were used to analyze data. The results revealed that most people who used Facebook for promoting tourism destinations in Bangkok perceived ease of use, perceived usefulness, perceived trust in using Facebook and influenced by social normative as well as having positive attitude towards using this application. Addition, the hypothesis results indicate that acceptance of online social network-Facebook was related to the positive attitude towards using of Facebook and related to their intention to use this application for tourism.Keywords: Facebook, online social network, technology acceptance model, tourism destination
Procedia PDF Downloads 34320326 Spatio-Temporal Analysis of Drought in Cholistan Region, Pakistan: An Application of Standardized Precipitation Index
Authors: Qurratulain Safdar
Abstract:
Drought is a temporary aberration in contrast to aridity, as it is a permanent feature of climate. Virtually, it takes place in all types of climatic regions that range from high to low rainfall areas. Due to the wide latitudinal extent of Pakistan, there is seasonal and annual variability in rainfall. The south-central part of the country is arid and hyper-arid. This study focuses on the spatio-temporal analysis of droughts in arid and hyperarid region of Cholistan using the standardized precipitation index (SPI) approach. This study has assessed the extent of recurrences of drought and its temporal vulnerability to drought in Cholistan region. Initially, the paper described the geographic setup of the study area along with a brief description of the drought conditions that prevail in Pakistan. The study also provides a scientific foundation for preparing literature and theoretical framework in-line with the selected parameters and indicators. Data were collected both from primary and secondary data sources. Rainfall and temperature data were obtained from Pakistan Meteorology Department. By applying geostatistical approach, a standardized precipitation index (SPI) was calculated for the study region, and the value of spatio-temporal variability of drought and its severity was explored. As a result, in-depth spatial analysis of drought conditions in Cholistan area was found. Parallel to this, drought-prone areas with seasonal variation were also identified using Kriging spatial interpolation techniques in a GIS environment. The study revealed that there is temporal variation in droughts' occurrences both in time series and SPI values. The paper is finally concluded, and strategic plan was suggested to minimize the impacts of drought.Keywords: Cholistan desert, climate anomalies, metrological droughts, standardized precipitation index
Procedia PDF Downloads 21320325 Personalized Intervention through Causal Inference in mHealth
Authors: Anna Guitart Atienza, Ana Fernández del Río, Madhav Nekkar, Jelena Ljubicic, África Periáñez, Eura Shin, Lauren Bellhouse
Abstract:
The use of digital devices in healthcare or mobile health (mHealth) has increased in recent years due to the advances in digital technology, making it possible to nudge healthy behaviors through individual interventions. In addition, mHealth is becoming essential in poor-resource settings due to the widespread use of smartphones in areas where access to professional healthcare is limited. In this work, we evaluate mHealth interventions in low-income countries with a focus on causal inference. Counterfactuals estimation and other causal computations are key to determining intervention success and assisting in empirical decision-making. Our main purpose is to personalize treatment recommendations and triage patients at the individual level in order to maximize the entire intervention's impact on the desired outcome. For this study, collected data includes mHealth individual logs from front-line healthcare workers, electronic health records (EHR), and external variables data such as environmental, demographic, and geolocation information.Keywords: causal inference, mHealth, intervention, personalization
Procedia PDF Downloads 13220324 Effects of Gross Domestic Product and International Trade on Logistic Performance: An Effect Observation Trial
Authors: Ibrahim Halil Korkmaz, Eren Özceylan, Cihan Çetinkaya
Abstract:
Logistics function has great potential for increasing sustainable competitive advantage, profitability, productivity, customer satisfaction and decreasing costs in all sectors. The performance of logistics sector, which has such great influence on the overall performance of the economy, attracts more attention of both researchers and sector representatives day by day. The purpose of this study is to determine the effects of research and development expenditures which spent by enterprises operating in the transportation and storage sectors on Turkey’s logistic performance index (LPI). To do so, research and development investment expenditure among the years 2009-2015 of Turkish transportation and storage firms data from the Turkish Statistical Institute and Turkeys country points in the World Bank logistics performance index in the same years data were examined. As the result of the parametric evaluation, it is seen that the research and development expenditures made have a positive effect on the logistic performance of Turkey.Keywords: logistics performance index, R&D investments, transportation, storage, Turkey
Procedia PDF Downloads 32220323 Beef Cattle Farmers Perception toward Urea Mineral Molasses Block
Authors: Veronica Sri Lestari, Djoni Prawira Rahardja, Tanrigiling Rasyid, Aslina Asnawi, Ikrar Muhammad Saleh, Ilham Rasyid
Abstract:
Urea Mineral Molasses Block is very important for beef cattle, because it can increase beef production. The purpose of this research was to know beef cattle farmers’ perception towards Urea Mineral Molasses Block (UMMB). This research was conducted in Gowa Regency, South Sulawesi, Indonesia in 2016. The population of this research were all beef cattle farmers. Sample was chosen through purposive sampling. Data were collected through observation and face to face with deep interview using questionnaire. Variables of perception consisted of relative advantage, compatibility, complexity, observability and triability. There were 10 questions. The answer for each question was scored by 1, 2, 3 which refer to disagree, agree enough, strongly agree. The data were analyzed descriptively using frequency distribution. The research revealed that beef cattle farmers’ perception towards UMMB was categorized as strongly agree.Keywords: beef cattle, farmers, perception, urea mineral molasses block
Procedia PDF Downloads 34720322 Point-of-Interest Recommender Systems for Location-Based Social Network Services
Authors: Hoyeon Park, Yunhwan Keon, Kyoung-Jae Kim
Abstract:
Location Based Social Network services (LBSNs) is a new term that combines location based service and social network service (SNS). Unlike traditional SNS, LBSNs emphasizes empirical elements in the user's actual physical location. Point-of-Interest (POI) is the most important factor to implement LBSNs recommendation system. POI information is the most popular spot in the area. In this study, we would like to recommend POI to users in a specific area through recommendation system using collaborative filtering. The process is as follows: first, we will use different data sets based on Seoul and New York to find interesting results on human behavior. Secondly, based on the location-based activity information obtained from the personalized LBSNs, we have devised a new rating that defines the user's preference for the area. Finally, we have developed an automated rating algorithm from massive raw data using distributed systems to reduce advertising costs of LBSNs.Keywords: location-based social network services, point-of-interest, recommender systems, business analytics
Procedia PDF Downloads 22920321 Measuring Emotion Dynamics on Facebook: Associations between Variability in Expressed Emotion and Psychological Functioning
Authors: Elizabeth M. Seabrook, Nikki S. Rickard
Abstract:
Examining time-dependent measures of emotion such as variability, instability, and inertia, provide critical and complementary insights into mental health status. Observing changes in the pattern of emotional expression over time could act as a tool to identify meaningful shifts between psychological well- and ill-being. From a practical standpoint, however, examining emotion dynamics day-to-day is likely to be burdensome and invasive. Utilizing social media data as a facet of lived experience can provide real-world, temporally specific access to emotional expression. Emotional language on social media may provide accurate and sensitive insights into individual and community mental health and well-being, particularly with focus placed on the within-person dynamics of online emotion expression. The objective of the current study was to examine the dynamics of emotional expression on the social network platform Facebook for active users and their relationship with psychological well- and ill-being. It was expected that greater positive and negative emotion variability, instability, and inertia would be associated with poorer psychological well-being and greater depression symptoms. Data were collected using a smartphone app, MoodPrism, which delivered demographic questionnaires, psychological inventories assessing depression symptoms and psychological well-being, and collected the Status Updates of consenting participants. MoodPrism also delivered an experience sampling methodology where participants completed items assessing positive affect, negative affect, and arousal, daily for a 30-day period. The number of positive and negative words in posts was extracted and automatically collated by MoodPrism. The relative proportion of positive and negative words from the total words written in posts was then calculated. Preliminary analyses have been conducted with the data of 9 participants. While these analyses are underpowered due to sample size, they have revealed trends that greater variability in the emotion valence expressed in posts is positively associated with greater depression symptoms (r(9) = .56, p = .12), as is greater instability in emotion valence (r(9) = .58, p = .099). Full data analysis utilizing time-series techniques to explore the Facebook data set will be presented at the conference. Identifying the features of emotion dynamics (variability, instability, inertia) that are relevant to mental health in social media emotional expression is a fundamental step in creating automated screening tools for mental health that are temporally sensitive, unobtrusive, and accurate. The current findings show how monitoring basic social network characteristics over time can provide greater depth in predicting risk and changes in depression and positive well-being.Keywords: emotion, experience sampling methods, mental health, social media
Procedia PDF Downloads 25020320 Pre-Service Mathematics Teachers’ Mental Construction in Solving Equations and Inequalities Using ACE Teaching Cycle
Authors: Abera Kotu, Girma Tesema, Mitiku Tadesse
Abstract:
This study investigated ACE supported instruction and pre-service mathematics teachers’ mental construction in solving equations and inequalities. A mixed approach with concurrent parallel design was employed. It was conducted on two intact groups of regular first-year pre-service mathematics teachers at Fiche College of Teachers’ Education in which one group was assigned as an intervention group and the other group as a comparison group using the lottery method. There were 33 participants in the intervention and 32 participants in the comparison. Six pre-service mathematics teachers were selected for interview using purposive sampling based on pre-test results. An instruction supported with ACE cycle was given to the intervention group for two weeks duration of time. Written tasks, interviews, and observations were used to collect data. Data collected from written tasks were analyzed quantitatively using independent samples t-test and effect size. Data collected from interviews and observations were analyzed narratively. The findings of the study uncovered that ACE-supported instruction has a moderate effect on Pre-service Mathematics Teachers’ levels of conceptualizations of action, process, object, ad schema. Moreover, the ACE supported group out scored and performed better than the usual traditional method supported groups across the levels of conceptualization. The majority of pre-service mathematics teachers’ levels of conceptualizations were at action and process levels and their levels of conceptualization were linked with genetic decomposition more at action and object levels than object and schema. The use of ACE supported instruction is recommended to improve pre-service mathematics teachers’ mental construction.Keywords: ACE teaching cycle, APOS theory, mental construction, genetic composition
Procedia PDF Downloads 1820319 Challenges and Prospects of Small and Medium Scale Enterprises in Somolu Local Government Area
Authors: A. A. Akharayi, B. E. Anjola
Abstract:
The economic development of a country depends greatly on internally built revenue. Small and Medium-scale Enterprise (SMEs) contributes to the economic buoyancy as it provides employment for the teeming population, encourages job creation by youths who believes in themselves and also by others who have gathered finance enough to invest in growable investment. SMEs is faced with several challenges. The study investigates the role and challenges of SMEs Somolu Local Government Area. Simple random sampling techniques were used to select entrepreneurs (SMEs owners and managers). One hundred and fifty (150) registered SMEs were selected across the LGA data collection with the use of well-structured questionnaire. The data collected were analysed using Statistical Package for Social Science (SPSS) version 21. The result of the analysis indicated that marketing, finance, social facilities and indiscriminate taxes among other high level of fund available significantly (p <0 .05) increase firm capacity while marketing showed a significant (p < 0.05) relationship with profit level.Keywords: challenge, development, economic, small and medium scale enterprise
Procedia PDF Downloads 24320318 Circulating Public Perception on Agroforestry: Discourse Networks Analysis Using Social Media and Online News Media in Four Countries of the Sahel Region
Authors: Luisa Müting, Wisnu Harto Adiwijoyo
Abstract:
Agroforestry systems transform the agricultural landscapes in the Sahel region of Africa, providing food and farming products consumed for subsistence or sold for income. In the incrementally dry climate of the Sahel region, the spreading of agroforestry practices is integral for policymaker efforts to counteract land degradation and provide soil restoration in the region. Several measures on agroforestry practices have been implemented in the region by governmental and non-governmental institutions in recent years. However, despite the efforts, past research shows that awareness of how policies and interventions are being consumed and perceived by the public remains low. Therefore, interpreting public policy dilemmas by analyzing the public perception regarding agroforestry concepts and practices is necessary. Public perceptions and discourses can be an essential driver or constraint for the adoption of agroforestry practices in the region. Thus, understanding the public discourse behavior of crucial stakeholders could assist policymakers in developing inclusive and contextual policies that are relevant to the context of agroforestry adoption in Sahel region. To answer how information about agroforestry spreads and is perceived by the public. As internet usage increased drastically over the past decade, reaching a share of 33 percent of the population being connected to the internet, this research is based on online conversation data. Social media data from Facebook are gathered daily between April 2021 and April 2022 in Djibouti, Senegal, Mali, and Nigeria based on their share of active internet users compared to other countries in the Sahel region. A systematic methodology was applied to the extracted social media using discourse network analysis (DNA). This study then clustered the data by the types of agroforestry practices, sentiments, and country. Additionally, this research extracted the text data from online news media during the same period to pinpoint events related to the topic of agroforestry. The preliminary result indicates that tree management, crops, and livestock integration, diversifying species and genetic resources, and focusing on interactions and productivity across the agricultural system; are the most notable keywords in agroforestry-related conversations within the four countries in the Sahel region. Additionally, approximately 84 percent of the discussions were still dominated by big actors, such as NGO or government actors. Furthermore, as a subject of communication within agroforestry discourse, the Great Green Wall initiative generates almost 60 percent positive sentiment within the captured social media data, effectively having a more significant outreach than general agroforestry topics. This study provides an understanding for scholars and policymakers with a springboard for further research or policy design on agroforestry in the four countries of the Sahel region with systematically uncaptured novel data from the internet.Keywords: sahel, djibouti, senegal, mali, nigeria, social networks analysis, public discourse analysis, sentiment analysis, content analysis, social media, online news, agroforestry, land restoration
Procedia PDF Downloads 102