Search results for: architectural design learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18801

Search results for: architectural design learning

13461 Analysis of Six Sigma in the Aerospace Industry

Authors: Masimuddin Mohd Khaled

Abstract:

This paper subsidizes to the discussion of Six Sigma in the Aerospace Industry. The main aim of this report is to study the literature review of Six Sigma emphasizing on the aerospace industry. The implementation of Six Sigma stages are studied and how the improvement cycle ‘Define, Measure, Analyze, Improve, and Control cycle’ (DMAIC) and the design process is ‘Define, Measure, Analyze, Design, and Verify Cycle’ (DMADV) is used. The focus is also done by studying how the implementation of Six Sigma on an aerospace company has brought a positive effect to the company.

Keywords: six sigma, DMAIC, DMADV, aerospace

Procedia PDF Downloads 372
13460 Aspects of Semiotics in Contemporary Design: A Case Study on Dice Brand

Authors: Laila Zahran Mohammed Alsibani

Abstract:

The aim of the research is to understand the aspects of semiotics in contemporary designs by redesigning an Omani donut brand with localized cultural identity. To do so, visual identity samples of Dice brand of donuts in Oman has been selected to be a case study. This study conducted based on semiotic theory by using mixed method research tools which are: documentation analysis, interview and survey. The literature review concentrates on key areas of semiotics in visual elements used in the brand designs. Also, it spotlights on the categories of semiotics in visual design. In addition, this research explores the visual cues in brand identity. The objectives of the research are to investigate the aspects of semiotics in providing meaning to visual cues and to identify visual cues for each visual element. It is hoped that this study will have the contribution to a better understanding of the different ways of using semiotics in contemporary designs. Moreover, this research can be a review of further studies in understanding and explaining current and future design trends. Future research can also focus on how brand-related signs are perceived by consumers.

Keywords: brands, semiotics, visual arts, visual communication

Procedia PDF Downloads 165
13459 Business-to-Business Deals Based on a Co-Utile Collaboration Mechanism: Designing Trust Company of the Future

Authors: Riccardo Bonazzi, Michaël Poli, Abeba Nigussie Turi

Abstract:

This paper presents an applied research of a new module for the financial administration and management industry, Personalizable and Automated Checklists Integrator, Overseeing Legal Investigations (PACIOLI). It aims at designing the business model of the trust company of the future. By identifying the key stakeholders, we draw a general business process design of the industry. The business model focuses on disintermediating the traditional form of business through the new technological solutions of a software company based in Switzerland and hence creating a new interactive platform. The key stakeholders of this interactive platform are identified as IT experts, legal experts, and the New Edge Trust Company (NATC). The mechanism we design and propose has a great importance in improving the efficiency of the financial business administration and management industry, and it also helps to foster the provision of high value added services in the sector.

Keywords: new edge trust company, business model design, automated checklists, financial technology

Procedia PDF Downloads 380
13458 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks

Authors: Bahareh Golchin, Nooshin Riahi

Abstract:

One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.

Keywords: emotion classification, sentiment analysis, social networks, deep neural networks

Procedia PDF Downloads 143
13457 Assessment of E-Portfolio on Teacher Reflections on English Language Education

Authors: Hsiaoping Wu

Abstract:

With the wide use of Internet, learners are exposed to the wider world. This exposure permits learners to discover new information and combine a variety of media in order to reach in-depth and broader understanding of their literacy and the world. Many paper-based teaching, learning and assessment modalities can be transferred to a digital platform. This study examines the use of e-portfolios for ESL (English as a second language) pre-service teacher. The data were collected by reviewing 100 E-portfolio from 2013 to 2015 in order to synthesize meaningful information about e-portfolios for ESL pre-service teachers. Participants were generalists, bilingual and ESL pre-service teachers. The studies were coded into two main categories: learning gains, including assessment, and technical skills. The findings showed that using e-portfolios enhanced and developed ESL pre-service teachers’ teaching and assessment skills. Also, the E-portfolio also developed the pre-service teachers’ technical stills to prepare a comprehensible portfolio to present who they are. Finally, the study and presentation suggested e-portfolios for ecological issues and educational purposes.

Keywords: assessment, e-portfolio, pre-service teacher, reflection

Procedia PDF Downloads 320
13456 Rotterdam in Transition: A Design Case for a Low-Carbon Transport Node in Lombardijen

Authors: Halina Veloso e Zarate, Manuela Triggianese

Abstract:

The urban challenges posed by rapid population growth, climate adaptation, and sustainable living have compelled Dutch cities to reimagine their built environment and transportation systems. As a pivotal contributor to CO₂ emissions, the transportation sector in the Netherlands demands innovative solutions for transitioning to low-carbon mobility. This study investigates the potential of transit oriented development (TOD) as a strategy for achieving carbon reduction and sustainable urban transformation. Focusing on the Lombardijen station area in Rotterdam, which is targeted for significant densification, this paper presents a design-oriented exploration of a low-carbon transport node. By employing a research-by-design methodology, this study delves into multifaceted factors and scales, aiming to propose future scenarios for Lombardijen. Drawing from a synthesis of existing literature, applied research, and practical insights, a robust design framework emerges. To inform this framework, governmental data concerning the built environment and material embodied carbon are harnessed. However, the restricted access to crucial datasets, such as property ownership information from the cadastre and embodied carbon data from De Nationale Milieudatabase, underscores the need for improved data accessibility, especially during the concept design phase. The findings of this research contribute fundamental insights not only to the Lombardijen case but also to TOD studies across Rotterdam's 13 nodes and similar global contexts. Spatial data related to property ownership facilitated the identification of potential densification sites, underscoring its importance for informed urban design decisions. Additionally, the paper highlights the disparity between the essential role of embodied carbon data in environmental assessments for building permits and its limited accessibility due to proprietary barriers. Although this study lays the groundwork for sustainable urbanization through TOD-based design, it acknowledges an area of future research worthy of exploration: the socio-economic dimension. Given the complex socio-economic challenges inherent in the Lombardijen area, extending beyond spatial constraints, a comprehensive approach demands integration of mobility infrastructure expansion, land-use diversification, programmatic enhancements, and climate adaptation. While the paper adopts a TOD lens, it refrains from an in-depth examination of issues concerning equity and inclusivity, opening doors for subsequent research to address these aspects crucial for holistic urban development.

Keywords: Rotterdam zuid, transport oriented development, carbon emissions, low-carbon design, cross-scale design, data-supported design

Procedia PDF Downloads 92
13455 Application of Single Subject Experimental Designs in Adapted Physical Activity Research: A Descriptive Analysis

Authors: Jiabei Zhang, Ying Qi

Abstract:

The purpose of this study was to develop a descriptive profile of the adapted physical activity research using single subject experimental designs. All research articles using single subject experimental designs published in the journal of Adapted Physical Activity Quarterly from 1984 to 2013 were employed as the data source. Each of the articles was coded in a subcategory of seven categories: (a) the size of sample; (b) the age of participants; (c) the type of disabilities; (d) the type of data analysis; (e) the type of designs, (f) the independent variable, and (g) the dependent variable. Frequencies, percentages, and trend inspection were used to analyze the data and develop a profile. The profile developed characterizes a small portion of research articles used single subject designs, in which most researchers used a small sample size, recruited children as subjects, emphasized learning and behavior impairments, selected visual inspection with descriptive statistics, preferred a multiple baseline design, focused on effects of therapy, inclusion, and strategy, and measured desired behaviors more often, with a decreasing trend over years.

Keywords: adapted physical activity research, single subject experimental designs, physical education, sport science

Procedia PDF Downloads 469
13454 Design a Small-Scale Irrigation Wind-Powered Water Pump Using a Savonius Type VAWT

Authors: Getnet Ayele Kebede, Tasew Tadiwose Zewdie

Abstract:

In this study, a novel design of a wind-powered water pump for small-scale irrigation application by using the Savonius wind turbine of Vertical Axis Wind Turbine(VAWT) with 2 blades has been used. Calculations have been made on the energy available in the wind and an energy analysis was then performed to see what wind speed is required for the system to work. The rotor has a radius of 0.53 m giving a swept area of 1.27 m2 and this gives a solidity of 0.5, which is the minimum theoretical optimum value for wind turbine. The average extracted torque of the wind turbine is 0.922 Nm and Tip speed ratio is one this shows, the tips are moving at equal the speed of the wind and by 2 rotating of blades. This is sufficient to sustain the desired flow rate of (0.3125X 10-3) m3 per second with a maximum head of 10m and the expected working is 4hr/day, and also overcome other barriers to motion such as friction. Based on this novel design, we are able to achieve a cost-effective solution and simultaneously effective in self-starting under low wind speeds and it can catch the wind from all directions.

Keywords: Savonius wind turbine, Small-scale irrigation, Vertical Axis Wind Turbine, Water pump

Procedia PDF Downloads 166
13453 An Interior Design Project Interventions about Changing Student Beliefs about Poverty, Homelessness, and Community Service

Authors: Alireza Derambakhsh

Abstract:

The reason for this study was to inspect undergraduate interior design student state of mind toward destitution, vagrancy, and group administration. An auxiliary intention was to figure out whether introduction to plan ventures for the individuals who have encountered hardship would change student convictions. All first year recruits (n = 18), sophomore (n = 26), junior (n = 17), and senior (n = 25) interior design undergraduate students at a public university completed a questionnaire in light of a few current scales. Amid the semester, the sophomores dealt with assignments that were intended to provide exposure to different socio-economic groups. Students finished three projects. Initially, the outline of a makeshift destitute asylum. Second, a re-model of a childcare focus office and gathering region that gives administrations to low-salary families, and third, the outline of a low-wage, private home. In these ventures, students were obliged to direct broad data assembling so they could better comprehend the issues connected with destitution. Toward the end of the semester, the sophomores finished the survey again and were asked extra inquiries in regards to the class and projects. Students’ sentiments towards the poor were more individualistic when contrasted with the white collar class, yet when the working class correlation was uprooted, some of their mentality gave a more unpredictable comprehension of destitution and vagrancy. The semester-long intercession fundamentally moved students' understanding that underscored auxiliary and multifaceted reason.

Keywords: interior design, destitution, vagrancy, group administration

Procedia PDF Downloads 436
13452 Experimental Setup of Corona Discharge on Dye Degradation for Science Education

Authors: Shivam Dubey, Vinit Srivastava, Abhay Singh Thakur, Rahul Vaish

Abstract:

The presence of organic dyes in water is a critical issue that poses a significant threat to the environment and human health. We have investigated the use of corona discharge as a potential method for degrading organic dyes in water. Methylene Blue dye was exposed to corona discharge, and its photo-absorbance was measured over time to determine the extent of degradation. The results depicted a decreased absorbance for the dye and the loss of the characteristic colour of methylene blue. The effects of various parameters, including current, voltage, gas phase, salinity, and electrode spacing, on the reaction rates, were investigated. The highest reaction rates were observed at the highest current and voltage (up to 10kV), lowest salinity, smallest electrode spacing, and an environment containing enhanced levels of oxygen. These findings have possible applications for science education curriculum. By investigating the use of corona discharge for destroying organic dyes, we can provide students with a practical application of scientific principles that they can apply to real-world problems. This research can demonstrate the importance of understanding the chemical and physical properties of organic dyes and the effects of corona discharge on their degradation and provide a holistic understanding of the applications of scientific research. Moreover, our study also emphasizes the importance of considering the various parameters that can affect reaction rates. By investigating the effects of current, voltage, matter phase, salinity, and electrode spacing, we can provide students with an opportunity to learn about the importance of experimental design and how to evade constraints that can limit meaningful results. In conclusion, this study has the potential to provide valuable insights into the use of corona discharge for destroying organic dyes in water and has significant implications for science education. By highlighting the practical applications of scientific principles, experimental design, and the importance of considering various parameters, this research can help students develop critical thinking skills and prepare them for future careers in science and engineering.

Keywords: dye degradation, corona discharge, science education, hands-on learning, chemical education

Procedia PDF Downloads 73
13451 On Enabling Miner Self-Rescue with In-Mine Robots using Real-Time Object Detection with Thermal Images

Authors: Cyrus Addy, Venkata Sriram Siddhardh Nadendla, Kwame Awuah-Offei

Abstract:

Surface robots in modern underground mine rescue operations suffer from several limitations in enabling a prompt self-rescue. Therefore, the possibility of designing and deploying in-mine robots to expedite miner self-rescue can have a transformative impact on miner safety. These in-mine robots for miner self-rescue can be envisioned to carry out diverse tasks such as object detection, autonomous navigation, and payload delivery. Specifically, this paper investigates the challenges in the design of object detection algorithms for in-mine robots using thermal images, especially to detect people in real-time. A total of 125 thermal images were collected in the Missouri S&T Experimental Mine with the help of student volunteers using the FLIR TG 297 infrared camera, which were pre-processed into training and validation datasets with 100 and 25 images, respectively. Three state-of-the-art, pre-trained real-time object detection models, namely YOLOv5, YOLO-FIRI, and YOLOv8, were considered and re-trained using transfer learning techniques on the training dataset. On the validation dataset, the re-trained YOLOv8 outperforms the re-trained versions of both YOLOv5, and YOLO-FIRI.

Keywords: miner self-rescue, object detection, underground mine, YOLO

Procedia PDF Downloads 86
13450 The Chromatic Identity of the Ancestral Architecture of the Ksour of Bechar, Algeria

Authors: Racha Ghariri, Khaldia Belkheir, Assil Ghariri

Abstract:

In this paper, the researchers present a part of their research on the colors of the city of Bechar (Algeria). It is about a chromatic study of the ancient architecture of the Ksour. Being a subject of intervention, regarding their degradable state, the Ksour are the case of their study, especially that the subject of color does not occupy, virtually, the involved on these heritage sites. This research aims to put the basics for methods which allow to know what to preserve as a color and how to do so, especially during a restoration, and to understand the evolution of the chromatic state of the city.

Keywords: architecture/colours, chromatic identity, geography of colour, regional palette, chromatic architectural analysis

Procedia PDF Downloads 310
13449 Hidden Stones When Implementing Artificial Intelligence Solutions in the Engineering, Procurement, and Construction Industry

Authors: Rimma Dzhusupova, Jan Bosch, Helena Holmström Olsson

Abstract:

Artificial Intelligence (AI) in the Engineering, Procurement, and Construction (EPC) industry has not yet a proven track record in large-scale projects. Since AI solutions for industrial applications became available only recently, deployment experience and lessons learned are still to be built up. Nevertheless, AI has become an attractive technology for organizations looking to automate repetitive tasks to reduce manual work. Meanwhile, the current AI market has started offering various solutions and services. The contribution of this research is that we explore in detail the challenges and obstacles faced in developing and deploying AI in a large-scale project in the EPC industry based on real-life use cases performed in an EPC company. Those identified challenges are not linked to a specific technology or a company's know-how and, therefore, are universal. The findings in this paper aim to provide feedback to academia to reduce the gap between research and practice experience. They also help reveal the hidden stones when implementing AI solutions in the industry.

Keywords: artificial intelligence, machine learning, deep learning, innovation, engineering, procurement and construction industry, AI in the EPC industry

Procedia PDF Downloads 124
13448 Implementing Simulation-Based Education as a Transformative Learning Strategy in Nursing and Midwifery Curricula in Resource-Constrained Countries: The Case of Malawi

Authors: Patrick Mapulanga, Chisomo Petros Ganya

Abstract:

Purpose: This study aimed to investigate the integration of Simulation-Based Education (SBE) into nursing and midwifery curricula in resource-constrained countries using Malawi as a case study. The purpose of this study is to assess the extent to which SBE is mentioned in curricula and explore the associated content, assessment criteria, and guidelines. Methodology: The research methodology involved a desk study of nursing and midwifery curricula in Malawi. A comprehensive review was conducted to identify references to SBE by examining documents such as official curriculum guides, syllabi, and educational policies. The focus is on understanding the prevalence of SBE without delving into the specific content or assessment details. Findings: The findings revealed that SBE is indeed mentioned in the nursing and midwifery curricula in Malawi; however, there is a notable absence of detailed content and assessment criteria. While acknowledgement of SBE is a positive step, the lack of specific guidelines poses a challenge to its effective implementation and assessment within the educational framework. Conclusion: The study concludes that although the recognition of SBE in Malawian nursing and midwifery curricula signifies a potential openness to innovative learning strategies, the absence of detailed content and assessment criteria raises concerns about the practical application of SBE. Addressing this gap is crucial for harnessing the full transformative potential of SBE in resource-constrained environments. Areas for Further Research: Future research endeavours should focus on a more in-depth exploration of the content and assessment criteria related to SBE in nursing and midwifery curricula. Investigating faculty perspectives and students’ experiences with SBE could provide valuable insights into the challenges and opportunities associated with its implementation. Study Limitations and Implications: The study's limitations include reliance on desk-based analysis, which limits the depth of understanding regarding SBE implementation. Despite this constraint, the implications of the findings underscore the need for curriculum developers, educators, and policymakers to collaboratively address the gaps in SBE integration and ensure a comprehensive and effective learning experience for nursing and midwifery students in resource-constrained countries.

Keywords: simulation based education, transformative learning, nursing and midwifery, curricula, Malawi

Procedia PDF Downloads 73
13447 A Methodology for Seismic Performance Enhancement of RC Structures Equipped with Friction Energy Dissipation Devices

Authors: Neda Nabid

Abstract:

Friction-based supplemental devices have been extensively used for seismic protection and strengthening of structures, however, the conventional use of these dampers may not necessarily lead to an efficient structural performance. Conventionally designed friction dampers follow a uniform height-wise distribution pattern of slip load values for more practical simplicity. This can lead to localizing structural damage in certain story levels, while the other stories accommodate a negligible amount of relative displacement demand. A practical performance-based optimization methodology is developed to tackle with structural damage localization of RC frame buildings with friction energy dissipation devices under severe earthquakes. The proposed methodology is based on the concept of uniform damage distribution theory. According to this theory, the slip load values of the friction dampers redistribute and shift from stories with lower relative displacement demand to the stories with higher inter-story drifts to narrow down the discrepancy between the structural damage levels in different stories. In this study, the efficacy of the proposed design methodology is evaluated through the seismic performance of five different low to high-rise RC frames equipped with friction wall dampers under six real spectrum-compatible design earthquakes. The results indicate that compared to the conventional design, using the suggested methodology to design friction wall systems can lead to, by average, up to 40% reduction of maximum inter-story drift; and incredibly more uniform height-wise distribution of relative displacement demands under the design earthquakes.

Keywords: friction damper, nonlinear dynamic analysis, RC structures, seismic performance, structural damage

Procedia PDF Downloads 228
13446 Field-Testing a Digital Music Notebook

Authors: Rena Upitis, Philip C. Abrami, Karen Boese

Abstract:

The success of one-on-one music study relies heavily on the ability of the teacher to provide sufficient direction to students during weekly lessons so that they can successfully practice from one lesson to the next. Traditionally, these instructions are given in a paper notebook, where the teacher makes notes for the students after describing a task or demonstrating a technique. The ability of students to make sense of these notes varies according to their understanding of the teacher’s directions, their motivation to practice, their memory of the lesson, and their abilities to self-regulate. At best, the notes enable the student to progress successfully. At worst, the student is left rudderless until the next lesson takes place. Digital notebooks have the potential to provide a more interactive and effective bridge between music lessons than traditional pen-and-paper notebooks. One such digital notebook, Cadenza, was designed to streamline and improve teachers’ instruction, to enhance student practicing, and to provide the means for teachers and students to communicate between lessons. For example, Cadenza contains a video annotator, where teachers can offer real-time guidance on uploaded student performances. Using the checklist feature, teachers and students negotiate the frequency and type of practice during the lesson, which the student can then access during subsequent practice sessions. Following the tenets of self-regulated learning, goal setting and reflection are also featured. Accordingly, the present paper addressed the following research questions: (1) How does the use of the Cadenza digital music notebook engage students and their teachers?, (2) Which features of Cadenza are most successful?, (3) Which features could be improved?, and (4) Is student learning and motivation enhanced with the use of the Cadenza digital music notebook? The paper describes the results 10 months of field-testing of Cadenza, structured around the four research questions outlined. Six teachers and 65 students took part in the study. Data were collected through video-recorded lesson observations, digital screen captures, surveys, and interviews. Standard qualitative protocols for coding results and identifying themes were employed to analyze the results. The results consistently indicated that teachers and students embraced the digital platform offered by Cadenza. The practice log and timer, the real-time annotation tool, the checklists, the lesson summaries, and the commenting features were found to be the most valuable functions, by students and teachers alike. Teachers also reported that students progressed more quickly with Cadenza, and received higher results in examinations than those students who were not using Cadenza. Teachers identified modifications to Cadenza that would make it an even more powerful way to support student learning. These modifications, once implemented, will move the tool well past its traditional notebook uses to new ways of motivating students to practise between lessons and to communicate with teachers about their learning. Improvements to the tool called for by the teachers included the ability to duplicate archived lessons, allowing for split screen viewing, and adding goal setting to the teacher window. In the concluding section, proposed modifications and their implications for self-regulated learning are discussed.

Keywords: digital music technologies, electronic notebooks, self-regulated learning, studio music instruction

Procedia PDF Downloads 256
13445 Preference Heterogeneity as a Positive Rather Than Negative Factor towards Acceptable Monitoring Schemes: Co-Management of Artisanal Fishing Communities in Vietnam

Authors: Chi Nguyen Thi Quynh, Steven Schilizzi, Atakelty Hailu, Sayed Iftekhar

Abstract:

Territorial Use Rights for Fisheries (TURFs) have been emerged as a promising tool for fisheries conservation and management. However, illegal fishing has undermined the effectiveness of TURFs, profoundly degrading global fish stocks and marine ecosystems. Conservation and management of fisheries, therefore, largely depends on effectiveness of enforcing fishing regulations, which needs co-enforcement by fishers. However, fishers tend to resist monitoring participation, as their views towards monitoring scheme design has not been received adequate attention. Fishers’ acceptability of a monitoring scheme is likely to be achieved if there is a mechanism allowing fishers to engage in the early planning and design stages. This study carried out a choice experiment with 396 fishers in Vietnam to elicit fishers’ preferences for monitoring scheme and to estimate the relative importance that fishers place on the key design elements. Preference heterogeneity was investigated using a Scale-Adjusted Latent Class Model that accounts for both preference and scale variance. Welfare changes associated with the proposed monitoring schemes were also examined. It is found that there are five distinct preference classes, suggesting that there is no one-size-fits-all scheme well-suited to all fishers. Although fishers prefer to be compensated more for their participation, compensation is not a driving element affecting fishers’ choice. Most fishers place higher value on other elements, such as institutional arrangements and monitoring capacity. Fishers’ preferences are driven by their socio-demographic and psychological characteristics. Understanding of how changes in design elements’ levels affect the participation of fishers could provide policy makers with insights useful for monitoring scheme designs tailored to the needs of different fisher classes.

Keywords: Design of monitoring scheme, Enforcement, Heterogeneity, Illegal Fishing, Territorial Use Rights for Fisheries

Procedia PDF Downloads 326
13444 Design and Development of Data Mining Application for Medical Centers in Remote Areas

Authors: Grace Omowunmi Soyebi

Abstract:

Data Mining is the extraction of information from a large database which helps in predicting a trend or behavior, thereby helping management make knowledge-driven decisions. One principal problem of most hospitals in rural areas is making use of the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved; this may cause an unexpected to happen to the patient. This Data Mining application is to be designed using a Structured System Analysis and design method, which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the Design and Implementation of a Computerized medical record system. This Computerized system will replace the file management system and help to easily retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.

Keywords: data mining, medical record system, systems programming, computing

Procedia PDF Downloads 213
13443 Artificial Intelligent Methodology for Liquid Propellant Engine Design Optimization

Authors: Hassan Naseh, Javad Roozgard

Abstract:

This paper represents the methodology based on Artificial Intelligent (AI) applied to Liquid Propellant Engine (LPE) optimization. The AI methodology utilized from Adaptive neural Fuzzy Inference System (ANFIS). In this methodology, the optimum objective function means to achieve maximum performance (specific impulse). The independent design variables in ANFIS modeling are combustion chamber pressure and temperature and oxidizer to fuel ratio and output of this modeling are specific impulse that can be applied with other objective functions in LPE design optimization. To this end, the LPE’s parameter has been modeled in ANFIS methodology based on generating fuzzy inference system structure by using grid partitioning, subtractive clustering and Fuzzy C-Means (FCM) clustering for both inferences (Mamdani and Sugeno) and various types of membership functions. The final comparing optimization results shown accuracy and processing run time of the Gaussian ANFIS Methodology between all methods.

Keywords: ANFIS methodology, artificial intelligent, liquid propellant engine, optimization

Procedia PDF Downloads 596
13442 Experimental Investigation on the Optimal Operating Frequency of a Thermoacoustic Refrigerator

Authors: Kriengkrai Assawamartbunlue, Channarong Wantha

Abstract:

This paper presents the effects of the mean operating pressure on the optimal operating frequency based on temperature differences across stack ends in a thermoacoustic refrigerator. In addition to the length of the resonance tube, components of the thermoacoustic refrigerator have an influence on the operating frequency due to their acoustic properties, i.e. absorptivity, reflectivity and transmissivity. The interference of waves incurs and distorts the original frequency generated by the driver so that the optimal operating frequency differs from the designs. These acoustic properties are not parameters in the designs and it is very complicated to infer their responses. A prototype thermoacoustic refrigerator is constructed and used to investigate its optimal operating frequency compared to the design at various operating pressures. Helium and air are used as working fluids during the experiments. The results indicate that the optimal operating frequency of the prototype thermoacoustic refrigerator using helium is at 6 bar and 490Hz or approximately 20% away from the design frequency. The optimal operating frequency at other mean pressures differs from the design in an unpredictable manner, however, the optimal operating frequency and pressure can be identified by testing.

Keywords: acoustic properties, Carnot’s efficiency, interference of waves, operating pressure, optimal operating frequency, stack performance, standing wave, thermoacoustic refrigerator

Procedia PDF Downloads 488
13441 Environmental Variables as Determinants of Students Achievement in Biology Secondary Schools in South West Nigeria

Authors: Ayeni Margaret Foluso, K. A. Omotayo

Abstract:

This study investigated the impact of selected environmental variables as determinants of students’ achievements in biology in secondary schools. The selected environmental variables are class size and laboratory adequacy. The purpose was to find out whether these environmental variables can bring about improvement in the learning of biology by Senior Secondary School Students. The study design used was descriptive research of the survey type. Two instruments were used that is, Biology Achievement Test and School Environment Questionnaire .The population of the study consisted of all Biology students in both public and private Senior Secondary Schools class III (SSIII) in all the three selected states in South West Nigeria. A sample of 900 Biology students and 45 Biology Teachers from both public and private Senior Secondary Schools Class III were used. Two research hypotheses were generated for the study. The data collected were subjected to both descriptive statistics of mean and standard deviation; and the inferential statistics of regression Analyses was employed to test the hypotheses formulated. From the results, it was revealed that the selected environmental variables had influence on the students’ achievement in biology.

Keywords: environmental variables, determinants, students’ achievement, school science

Procedia PDF Downloads 499
13440 Design of a Surveillance Drone with Computer Aided Durability

Authors: Maram Shahad Dana Anfal

Abstract:

This research paper presents the design of a surveillance drone with computer-aided durability and model analyses that provides a cost-effective and efficient solution for various applications. The quadcopter's design is based on a lightweight and strong structure made of materials such as aluminum and titanium, which provide a durable structure for the quadcopter. The structure of this product and the computer-aided durability system are both designed to ensure frequent repairs or replacements, which will save time and money in the long run. Moreover, the study discusses the drone's ability to track, investigate, and deliver objects more quickly than traditional methods, makes it a highly efficient and cost-effective technology. In this paper, a comprehensive analysis of the quadcopter's operation dynamics and limitations is presented. In both simulation and experimental data, the computer-aided durability system and the drone's design demonstrate their effectiveness, highlighting the potential for a variety of applications, such as search and rescue missions, infrastructure monitoring, and agricultural operations. Also, the findings provide insights into possible areas for improvement in the design and operation of the drone. Ultimately, this paper presents a reliable and cost-effective solution for surveillance applications by designing a drone with computer-aided durability and modeling. With its potential to save time and money, increase reliability, and enhance safety, it is a promising technology for the future of surveillance drones. operation dynamic equations have been evaluated successfully for different flight conditions of a quadcopter. Also, CAE modeling techniques have been applied for the modal risk assessment at operating conditions.Stress analysis have been performed under the loadings of the worst-case combined motion flight conditions.

Keywords: drone, material, solidwork, hypermesh

Procedia PDF Downloads 150
13439 Design of a Solar Water Heating System with Thermal Storage for a Three-Bedroom House in Newfoundland

Authors: Ahmed Aisa, Tariq Iqbal

Abstract:

This letter talks about the ready-to-use design of a solar water heating system because, in Canada, the average consumption of hot water per person is approximately 50 to 75 L per day and the average Canadian household uses 225 L. Therefore, this paper will demonstrate the method of designing a solar water heating system with thermal storage. It highlights the renewable hybrid power system, allowing you to obtain a reliable, independent system with the optimization of the ingredient size and at an improved capital cost. The system can provide hot water for a big building. The main power for the system comes from solar panels. Solar Advisory Model (SAM) and HOMER are used. HOMER and SAM are design models that calculate the consumption of hot water and cost for a house. Some results, obtained through simulation, were for monthly energy production, annual energy production, after tax cash flow, the lifetime of the system and monthly energy usage represented by three types of energy. These are system energy, electricity load electricity and net metering credit.

Keywords: water heating, thermal storage, capital cost solar, consumption

Procedia PDF Downloads 432
13438 Capturing the Stress States in Video Conferences by Photoplethysmographic Pulse Detection

Authors: Jarek Krajewski, David Daxberger

Abstract:

We propose a stress detection method based on an RGB camera using heart rate detection, also known as Photoplethysmography Imaging (PPGI). This technique focuses on the measurement of the small changes in skin colour caused by blood perfusion. A stationary lab setting with simulated video conferences is chosen using constant light conditions and a sampling rate of 30 fps. The ground truth measurement of heart rate is conducted with a common PPG system. The proposed approach for pulse peak detection is based on a machine learning-based approach, applying brute force feature extraction for the prediction of heart rate pulses. The statistical analysis showed good agreement (correlation r = .79, p<0.05) between the reference heart rate system and the proposed method. Based on these findings, the proposed method could provide a reliable, low-cost, and contactless way of measuring HR parameters in daily-life environments.

Keywords: heart rate, PPGI, machine learning, brute force feature extraction

Procedia PDF Downloads 126
13437 Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method

Authors: K. Tejasri, K. Suvarna Vani, S. Prathyusha, S. Ramya

Abstract:

Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms.

Keywords: proteins, secondary structure elements, beta-sheets, beta-strands, alpha-helices, machine learning algorithms

Procedia PDF Downloads 96
13436 Design Approach to Incorporate Unique Performance Characteristics of Special Concrete

Authors: Devendra Kumar Pandey, Debabrata Chakraborty

Abstract:

The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.

Keywords: high performance concrete, special concrete, structural design, structural lightweight concrete

Procedia PDF Downloads 308
13435 Use of Generative Adversarial Networks (GANs) in Neuroimaging and Clinical Neuroscience Applications

Authors: Niloufar Yadgari

Abstract:

GANs are a potent form of deep learning models that have found success in various fields. They are part of the larger group of generative techniques, which aim to produce authentic data using a probabilistic model that learns distributions from actual samples. In clinical settings, GANs have demonstrated improved abilities in capturing spatially intricate, nonlinear, and possibly subtle disease impacts in contrast to conventional generative techniques. This review critically evaluates the current research on how GANs are being used in imaging studies of different neurological conditions like Alzheimer's disease, brain tumors, aging of the brain, and multiple sclerosis. We offer a clear explanation of different GAN techniques for each use case in neuroimaging and delve into the key hurdles, unanswered queries, and potential advancements in utilizing GANs in this field. Our goal is to connect advanced deep learning techniques with neurology studies, showcasing how GANs can assist in clinical decision-making and enhance our comprehension of the structural and functional aspects of brain disorders.

Keywords: GAN, pathology, generative adversarial network, neuro imaging

Procedia PDF Downloads 40
13434 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 98
13433 Perceptions of Educators on the Learners’ Youngest Age for the Introduction of ICTs in Schools: A Personality Theory Approach

Authors: Kayode E. Oyetade, Seraphin D. Eyono Obono

Abstract:

Age ratings are very helpful in providing parents with relevant information for the purchase and use of digital technologies by the children; this is why the non-definition of age ratings for the use of ICT's by children in schools is a major concern; and this problem serves as a motivation for this study whose aim is to examine the factors affecting the perceptions of educators on the learners’ youngest age for the introduction of ICT's in schools. This aim is achieved through two types of research objectives: the identification and design of theories and models on age ratings, and the empirical testing of such theories and models in a survey of educators from the Camperdown district of the South African KwaZulu-Natal province. A questionnaire is used for the collection of the data of this survey whose validity and reliability is checked in SPSS prior to its descriptive and correlative quantitative analysis. The main hypothesis supporting this research is the association between the demographics of educators, their personality, and their perceptions on the learners’ youngest age for the introduction of ICT's in schools; as claimed by existing research; except that the present study looks at personality from three dimensions: self-actualized personalities, fully functioning personalities, and healthy personalities. This hypothesis was fully confirmed by the empirical study conducted by this research except for the demographic factor where only the educators’ grade or class was found to be associated with the personality of educators.

Keywords: age ratings, educators, e-learning, personality theories

Procedia PDF Downloads 241
13432 An Ecological Approach to Understanding Student Absenteeism in a Suburban, Kansas School

Authors: Andrew Kipp

Abstract:

Student absenteeism is harmful to both the school and the absentee student. One approach to improving student absenteeism is targeting contextual factors within the students’ learning environment. However, contemporary literature has not taken an ecological agency approach to understanding student absenteeism. Ecological agency is a theoretical framework that magnifies the interplay between the environment and the actions of people within the environment. To elaborate, the person’s personal history and aspirations and the environmental conditions provide potential outlets or restrictions to their intended action. The framework provides the unique perspective of understanding absentee students’ decision-making through the affordances and constraints found in their learning environment. To that effect, the study was guided by the question, “Why do absentee students decide to engage in absenteeism in a suburban Kansas school?” A case study methodology was used to answer the research question. Four suburban, Kansas high school absentee students in the 2020-2021 school year were selected for the study. The fall 2020 semester was in a remote learning setting, and the spring 2021 semester was in an in-person learning setting. The study captured their decision-making with respect to school attendance throughsemi-structured interviews, prolonged observations, drawings, and concept maps. The data was analyzed through thematic analysis. The findings revealed that peer socialization opportunities, methods of instruction, shifts in cultural beliefs due to COVID-19, manifestations of anxiety and lack of space to escape their anxiety, social media bullying, and the inability to receive academic tutoring motivated the participants’ daily decision to either attend or miss school. The findings provided a basis to improve several institutional and classroom practices. These practices included more student-led instruction and less teacher-led instruction in both in-person and remote learning environments, promoting socialization through classroom collaboration and clubs based on emerging student interests, reducing instances of bullying through prosocial education, safe spaces for students to escape the classroom to manage their anxiety, and more opportunities for one-on-one tutoring to improve grades. The study provides an example of using the ecological agency approach to better understand the personal and environmental factors that lead to absenteeism. The study also informs educational policies and classroom practices to better promote student attendance. Further research should investigate other school contexts using the ecological agency theoretical framework to better understand the influence of the school environment on student absenteeism.

Keywords: student absenteeism, ecological agency, classroom practices, educational policy, student decision-making

Procedia PDF Downloads 149