Search results for: career model
12072 Tourist Satisfaction: An Experience Study Applied to Tourism Attractions in China
Authors: Min Wei
Abstract:
Objectives: Experience tourism represents an advanced stage of tourism compared with sightseeing tourism and relaxation tourism. Experience tourism reflects the full respect of experience economy to the human natures. This paper chose one of the most popular ocean tourism products in Zhoushan, as a subject and investigated the constructive elements in tourist experience based on the needs of tourists. Methods: This paper started with the influences of tourism product innovation on tourist experience, then proposed a model of the relationship between tourist experience, tourist satisfaction, and the following behavior of tourists, and concluded that tourist experience improves tourist satisfaction and thereby enhances tourist loyalty based on the developmental pathway of experience tourism. To ensure the accuracy of the collected data of the research results, the sample of this questionnaire survey is chosen by the method of occasional sampling, combined with the judgment of the investigators and the convenience of the questionnaire survey, the survey objects are selected from the scenic spots of Putuo Mountain, Zhujiajian, Taohua Island, waiting room of passenger terminal, etc. Before filling in the questionnaire, the author and the respondents have a short communication. On the premise that the respondents can fully understand the purpose and content of the questionnaire, tourists fill in the questionnaire independently and collect it on the spot. Results: The research results of this paper are mainly embodied in the following aspects: it is concluded that there are many constructive factors of tourists' experience in Zhoushan tourism products. Based on Zhoushan tourism products, this paper explores the constructive factors of tourists' experience in Zhoushan tourism products from three aspects: attracting object experience, facility experience and service experience. At present, there are still big differences between Zhoushan tourism products, tourists’ expectations and tourists' experience, mainly in the aspects of transportation, publicity and tour guide service. Corresponding measures should be taken to improve tourists' experience quality and satisfaction. Conclusions: The influence factors of island tourism products are discriminated, and established a structural model of tourist experience, which includes three basic elements: attractions, facilities, and services. This model was further verified by questionnaires and analyses in Putuo Shan, Zhujia Jian, and Taohua Island. Finally, we combined this model and made some suggestions on boost the satisfaction of Zhoushan islands.Keywords: experience tourism, tourists’ expectations, tourists' experience, tourism products
Procedia PDF Downloads 13512071 Application of Continuum Damage Concept to Simulation of the Interaction between Hydraulic Fractures and Natural Fractures
Authors: Anny Zambrano, German Gonzalez, Yair Quintero
Abstract:
The continuum damage concept is used to study the interaction between hydraulic fractures and natural fractures, the objective is representing the path and relation among this two fractures types and predict its complex behavior without the need to pre-define their direction as occurs in other finite element applications, providing results more consistent with the physical behavior of the phenomenon. The approach uses finite element simulations through Abaqus software to model damage fracturing, the fracturing process by damage propagation in a rock. The modeling the phenomenon develops in two dimensional (2D) so that the fracture will be represented by a line and the crack front by a point. It considers nonlinear constitutive behavior, finite strain, time-dependent deformation, complex boundary conditions, strain hardening and softening, and strain based damage evolution in compression and tension. The complete governing equations are provided and the method is described in detail to permit readers to replicate all results. The model is compared to models that are published and available. Comparisons are focused in five interactions between natural fractures (NF) and hydraulic fractures: Fractured arrested at NF, crossing NF with or without offset, branching at intersecting NFs, branching at end of NF and NF dilation due to shear slippage. The most significant new finding is, that is not necessary to use pre-defined addresses propagation and stress condition can be evaluated as a dominant factor in the process. This is important because it can model in a more real way the generated complex hydraulic fractures, and be a valuable tool to predict potential problems and different geometries of the fracture network in the process of fracturing due to fluid injection.Keywords: continuum damage, hydraulic fractures, natural fractures, complex fracture network, stiffness
Procedia PDF Downloads 34612070 A Theoretical Framework: The Influence of Luxury Companies' Corporate Social Activities on Consumer Purchase Intention
Authors: Kveta Olsanova, Gina Cook, Marija Zlatic
Abstract:
This paper discusses the theoretical framework suggesting the dependencies between luxury brands’ CSR (Corporate Social Responsibility) variables and the purchase intention of luxury shoppers. The framework is based on a literature review and in-depth individual interviews with a sample of luxury users and buyers. The measures of the model are based on existing research and the authors' qualitative research results. The model suggests that purchase intention in the luxury segment is dependent on the luxury values (symbolic, experiential, functional and social), individual sustainable dimension (composed of societal, environmental and economic variables) and awareness of the brand’s CSR, the last two relationships being potentially moderated by certain conditions such as demographics and general attitudes towards CSR and sustainability. The model’s output is in the formulation of several hypotheses, to be tested in an upcoming quantitative study. The qualitative phase indicated that the perceived symbolic, functional and experiential value dimensions of luxury brands were stronger drivers of purchase intention compared to the sustainable dimension. The contribution of the research consists of highlighting CSR’s impact on customer purchase intent as a potential implication for luxury brand management due to two aspects: (i) consumer awareness of the existing CSR activities of luxury brands is low, and this might be challenged by the demands of Gen Z entrants into the lux industry as they are known for their positive approach to CSR; (ii) the UN’s SDGs will bring CSR to the attention of all industries, including currently 'CSR silent' segments represented by luxury. Our research should contribute to incorporation of strategic CSR into the policies and strategies of the luxury segment by providing evidence that luxury customers do care.Keywords: CSR, luxury shoppers, purchase intention, sustainability
Procedia PDF Downloads 15512069 A Geosynchronous Orbit Synthetic Aperture Radar Simulator for Moving Ship Targets
Authors: Linjie Zhang, Baifen Ren, Xi Zhang, Genwang Liu
Abstract:
Ship detection is of great significance for both military and civilian applications. Synthetic aperture radar (SAR) with all-day, all-weather, ultra-long-range characteristics, has been used widely. In view of the low time resolution of low orbit SAR and the needs for high time resolution SAR data, GEO (Geosynchronous orbit) SAR is getting more and more attention. Since GEO SAR has short revisiting period and large coverage area, it is expected to be well utilized in marine ship targets monitoring. However, the height of the orbit increases the time of integration by almost two orders of magnitude. For moving marine vessels, the utility and efficacy of GEO SAR are still not sure. This paper attempts to find the feasibility of GEO SAR by giving a GEO SAR simulator of moving ships. This presented GEO SAR simulator is a kind of geometrical-based radar imaging simulator, which focus on geometrical quality rather than high radiometric. Inputs of this simulator are 3D ship model (.obj format, produced by most 3D design software, such as 3D Max), ship's velocity, and the parameters of satellite orbit and SAR platform. Its outputs are simulated GEO SAR raw signal data and SAR image. This simulating process is accomplished by the following four steps. (1) Reading 3D model, including the ship rotations (pitch, yaw, and roll) and velocity (speed and direction) parameters, extract information of those little primitives (triangles) which is visible from the SAR platform. (2) Computing the radar scattering from the ship with physical optics (PO) method. In this step, the vessel is sliced into many little rectangles primitives along the azimuth. The radiometric calculation of each primitive is carried out separately. Since this simulator only focuses on the complex structure of ships, only single-bounce reflection and double-bounce reflection are considered. (3) Generating the raw data with GEO SAR signal modeling. Since the normal ‘stop and go’ model is not available for GEO SAR, the range model should be reconsidered. (4) At last, generating GEO SAR image with improved Range Doppler method. Numerical simulation of fishing boat and cargo ship will be given. GEO SAR images of different posture, velocity, satellite orbit, and SAR platform will be simulated. By analyzing these simulated results, the effectiveness of GEO SAR for the detection of marine moving vessels is evaluated.Keywords: GEO SAR, radar, simulation, ship
Procedia PDF Downloads 18112068 Characteristics and Drivers of Greenhouse Gas (GHG) emissions from China’s Manufacturing Industry: A Threshold Analysis
Abstract:
Only a handful of literature have used to non-linear model to investigate the influencing factors of greenhouse gas (GHG) emissions in China’s manufacturing sectors. And there is a limit in investigating quantitatively and systematically the mechanism of correlation between economic development and GHG emissions considering inherent differences among manufacturing sub-sectors. Considering the sectorial characteristics, the manufacturing sub-sectors with various impacts of output on GHG emissions may be explained by different development modes in each manufacturing sub-sector, such as investment scale, technology level and the level of international competition. In order to assess the environmental impact associated with any specific level of economic development and explore the factors that affect GHG emissions in China’s manufacturing industry during the process of economic growth, using the threshold Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT) model, this paper investigated the influence impacts of GHG emissions for China’s manufacturing sectors of different stages of economic development. A data set from 28 manufacturing sectors covering an 18-year period was used. Results demonstrate that output per capita and investment scale contribute to increasing GHG emissions while energy efficiency, R&D intensity and FDI mitigate GHG emissions. Results also verify the nonlinear effect of output per capita on emissions as: (1) the Environmental Kuznets Curve (EKC) hypothesis is supported when threshold point RMB 31.19 million is surpassed; (2) the driving strength of output per capita on GHG emissions becomes stronger as increasing investment scale; (3) the threshold exists for energy efficiency with the positive coefficient first and negative coefficient later; (4) the coefficient of output per capita on GHG emissions decreases as R&D intensity increases. (5) FDI shows a reduction in elasticity when the threshold is compassed.Keywords: China, GHG emissions, manufacturing industry, threshold STIRPAT model
Procedia PDF Downloads 43312067 Characterization and Modelling of Aerosol Droplet in Absorption Columns
Authors: Hammad Majeed, Hanna Knuutila, Magne Hillestad, Hallvard F. Svendsen
Abstract:
Formation of aerosols can cause serious complications in industrial exhaust gas CO2 capture processes. SO3 present in the flue gas can cause aerosol formation in an absorption based capture process. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. In absorption processes aerosols are generated by spontaneous condensation or desublimation processes in supersaturated gas phases. Undesired aerosol development may lead to amine emissions many times larger than what would be encountered in a mist free gas phase in PCCC development. It is thus of crucial importance to understand the formation and build-up of these aerosols in order to mitigate the problem. Rigorous modelling of aerosol dynamics leads to a system of partial differential equations. In order to understand mechanics of a particle entering an absorber an implementation of the model is created in Matlab. The model predicts the droplet size, the droplet internal variable profiles and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. The model comprises a set of mass transfer equations for transferring components and the essential diffusion reaction equations to describe the droplet internal profiles for all relevant constituents. Also included is heat transfer across the interface and inside the droplet. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and gives examples as to how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles.Keywords: absorption columns, aerosol formation, amine emissions, internal droplet profiles, monoethanolamine (MEA), post combustion CO2 capture, simulation
Procedia PDF Downloads 24812066 In-Flight Aircraft Performance Model Enhancement Using Adaptive Lookup Tables
Authors: Georges Ghazi, Magali Gelhaye, Ruxandra Botez
Abstract:
Over the years, the Flight Management System (FMS) has experienced a continuous improvement of its many features, to the point of becoming the pilot’s primary interface for flight planning operation on the airplane. With the assistance of the FMS, the concept of distance and time has been completely revolutionized, providing the crew members with the determination of the optimized route (or flight plan) from the departure airport to the arrival airport. To accomplish this function, the FMS needs an accurate Aircraft Performance Model (APM) of the aircraft. In general, APMs that equipped most modern FMSs are established before the entry into service of an individual aircraft, and results from the combination of a set of ordinary differential equations and a set of performance databases. Unfortunately, an aircraft in service is constantly exposed to dynamic loads that degrade its flight characteristics. These degradations endow two main origins: airframe deterioration (control surfaces rigging, seals missing or damaged, etc.) and engine performance degradation (fuel consumption increase for a given thrust). Thus, after several years of service, the performance databases and the APM associated to a specific aircraft are no longer representative enough of the actual aircraft performance. It is important to monitor the trend of the performance deterioration and correct the uncertainties of the aircraft model in order to improve the accuracy the flight management system predictions. The basis of this research lies in the new ability to continuously update an Aircraft Performance Model (APM) during flight using an adaptive lookup table technique. This methodology was developed and applied to the well-known Cessna Citation X business aircraft. For the purpose of this study, a level D Research Aircraft Flight Simulator (RAFS) was used as a test aircraft. According to Federal Aviation Administration the level D is the highest certification level for the flight dynamics modeling. Basically, using data available in the Flight Crew Operating Manual (FCOM), a first APM describing the variation of the engine fan speed and aircraft fuel flow w.r.t flight conditions was derived. This model was next improved using the proposed methodology. To do that, several cruise flights were performed using the RAFS. An algorithm was developed to frequently sample the aircraft sensors measurements during the flight and compare the model prediction with the actual measurements. Based on these comparisons, a correction was performed on the actual APM in order to minimize the error between the predicted data and the measured data. In this way, as the aircraft flies, the APM will be continuously enhanced, making the FMS more and more precise and the prediction of trajectories more realistic and more reliable. The results obtained are very encouraging. Indeed, using the tables initialized with the FCOM data, only a few iterations were needed to reduce the fuel flow prediction error from an average relative error of 12% to 0.3%. Similarly, the FCOM prediction regarding the engine fan speed was reduced from a maximum error deviation of 5.0% to 0.2% after only ten flights.Keywords: aircraft performance, cruise, trajectory optimization, adaptive lookup tables, Cessna Citation X
Procedia PDF Downloads 26712065 Combined Effect of Moving and Open Boundary Conditions in the Simulation of Inland Inundation Due to Far Field Tsunami
Authors: M. Ashaque Meah, Md. Fazlul Karim, M. Shah Noor, Nazmun Nahar Papri, M. Khalid Hossen, M. Ismoen
Abstract:
Tsunami and inundation modelling due to far field tsunami propagation in a limited area is a very challenging numerical task because it involves many aspects such as the formation of various types of waves and the irregularities of coastal boundaries. To compute the effect of far field tsunami and extent of inland inundation due to far field tsunami along the coastal belts of west coast of Malaysia and Southern Thailand, a formulated boundary condition and a moving boundary condition are simultaneously used. In this study, a boundary fitted curvilinear grid system is used in order to incorporate the coastal and island boundaries accurately as the boundaries of the model domain are curvilinear in nature and the bending is high. The tsunami response of the event 26 December 2004 along the west open boundary of the model domain is computed to simulate the effect of far field tsunami. Based on the data of the tsunami source at the west open boundary of the model domain, a boundary condition is formulated and applied to simulate the tsunami response along the coastal and island boundaries. During the simulation process, a moving boundary condition is initiated instead of fixed vertical seaside wall. The extent of inland inundation and tsunami propagation pattern are computed. Some comparisons are carried out to test the validation of the simultaneous use of the two boundary conditions. All simulations show excellent agreement with the data of observation.Keywords: open boundary condition, moving boundary condition, boundary-fitted curvilinear grids, far-field tsunami, shallow water equations, tsunami source, Indonesian tsunami of 2004
Procedia PDF Downloads 44812064 Research on Construction of Subject Knowledge Base Based on Literature Knowledge Extraction
Authors: Yumeng Ma, Fang Wang, Jinxia Huang
Abstract:
Researchers put forward higher requirements for efficient acquisition and utilization of domain knowledge in the big data era. As literature is an effective way for researchers to quickly and accurately understand the research situation in their field, the knowledge discovery based on literature has become a new research method. As a tool to organize and manage knowledge in a specific domain, the subject knowledge base can be used to mine and present the knowledge behind the literature to meet the users' personalized needs. This study designs the construction route of the subject knowledge base for specific research problems. Information extraction method based on knowledge engineering is adopted. Firstly, the subject knowledge model is built through the abstraction of the research elements. Then under the guidance of the knowledge model, extraction rules of knowledge points are compiled to analyze, extract and correlate entities, relations, and attributes in literature. Finally, a database platform based on this structured knowledge is developed that can provide a variety of services such as knowledge retrieval, knowledge browsing, knowledge q&a, and visualization correlation. Taking the construction practices in the field of activating blood circulation and removing stasis as an example, this study analyzes how to construct subject knowledge base based on literature knowledge extraction. As the system functional test shows, this subject knowledge base can realize the expected service scenarios such as a quick query of knowledge, related discovery of knowledge and literature, knowledge organization. As this study enables subject knowledge base to help researchers locate and acquire deep domain knowledge quickly and accurately, it provides a transformation mode of knowledge resource construction and personalized precision knowledge services in the data-intensive research environment.Keywords: knowledge model, literature knowledge extraction, precision knowledge services, subject knowledge base
Procedia PDF Downloads 16712063 Adaptive Neuro Fuzzy Inference System Model Based on Support Vector Regression for Stock Time Series Forecasting
Authors: Anita Setianingrum, Oki S. Jaya, Zuherman Rustam
Abstract:
Forecasting stock price is a challenging task due to the complex time series of the data. The complexity arises from many variables that affect the stock market. Many time series models have been proposed before, but those previous models still have some problems: 1) put the subjectivity of choosing the technical indicators, and 2) rely upon some assumptions about the variables, so it is limited to be applied to all datasets. Therefore, this paper studied a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) time series model based on Support Vector Regression (SVR) for forecasting the stock market. In order to evaluate the performance of proposed models, stock market transaction data of TAIEX and HIS from January to December 2015 is collected as experimental datasets. As a result, the method has outperformed its counterparts in terms of accuracy.Keywords: ANFIS, fuzzy time series, stock forecasting, SVR
Procedia PDF Downloads 25112062 Supervisory Board in the Governance of Cooperatives: Disclosing Power Elements in the Selection of Directors
Authors: Kari Huhtala, Iiro Jussila
Abstract:
The supervisory board is assumed to use power in the governance of a firm, but the actual use of power has been scantly investigated. The research question of the paper is “How does the supervisory board use power in the selection of the board of directors”. The data stem from 11 large Finnish agricultural cooperatives. The research approach was qualitative including semi-structured interviews of the board of directors and supervisory board chairpersons. The results were analyzed and interpreted against theories of social power. As a result, the use of power is approached from two perspectives: (1) formal position-based authority and (2) informal power. Central elements of power were the mandate of the supervisory board, the role of the supervisory board, the supervisory board chair, the nomination committee, collaboration between the supervisory board and the board of directors, the role of regions and the role of the board of directors. The study contributes to the academic discussion on corporate governance in cooperatives and on the supervisory board in the context of the two-tier model. Additional research of the model in other countries and of other types of cooperatives would further academic understanding of supervisory boards.Keywords: board, co-operative, supervisory board, selection, director
Procedia PDF Downloads 18012061 Synthesis and Characterization of Thiourea-Formaldehyde Coated Fe3O4 (TUF@Fe3O4) and Its Application for Adsorption of Methylene Blue
Authors: Saad M. Alshehri, Tansir Ahamad
Abstract:
Thiourea-Formaldehyde Pre-Polymer (TUF) was prepared by the reaction thiourea and formaldehyde in basic medium and used as a coating materials for magnetite Fe3O4. The synthesized polymer coated microspheres (TUF@Fe3O4) was characterized using FTIR, TGA SEM and TEM. Its BET surface area was up to 1680 m2 g_1. The adsorption capacity of this ACF product was evaluated in its adsorption of Methylene Blue (MB) in water under different pH values and different temperature. We found that the adsorption process was well described both by the Langmuir and Freundlich isotherm model. The kinetic processes of MB adsorption onto TUF@Fe3O4 were described in order to provide a more clear interpretation of the adsorption rate and uptake mechanism. The overall kinetic data was acceptably explained by a pseudo second-order rate model. Evaluated ∆Go and ∆Ho specify the spontaneous and exothermic nature of the reaction. The adsorption takes place with a decrease in entropy (∆So is negative). The monolayer capacity for MB was up to 450 mg g_1 and was one of the highest among similar polymeric products. It was due to its large BET surface area.Keywords: TGA, FTIR, magentite, thiourea formaldehyde resin, methylene blue, adsorption
Procedia PDF Downloads 35712060 Numerical Crashworthiness Investigations of a Full-Scale Composite Fuselage Section
Authors: Redouane Lombarkia
Abstract:
To apply a new material model developed and validated for plain weave fabric CFRP composites usually used in stanchions in sub-cargo section in aircrafts. This work deals with the development of a numerical model of the fuselage section of commercial aircraft based on the pure explicit finite element method FEM within Abaqus/Explicit commercial code. The aim of this work is the evaluation of the energy absorption capabilities of a full-scale composite fuselage section, including sub-cargo stanchions, Drop tests were carried out from a free fall height of about 5 m and impact velocity of about 6 m∕s. To asses, the prediction efficiency of the proposed numerical modeling procedure, a comparison with literature existed experimental results was performed. We demonstrate the efficiency of the proposed methodology to well capture crash damage mechanisms compared to experimental resultsKeywords: crashworthiness, fuselage section, finite elements method (FEM), stanchions, specific energy absorption SEA
Procedia PDF Downloads 10012059 Long-Term Resilience Performance Assessment of Dual and Singular Water Distribution Infrastructures Using a Complex Systems Approach
Authors: Kambiz Rasoulkhani, Jeanne Cole, Sybil Sharvelle, Ali Mostafavi
Abstract:
Dual water distribution systems have been proposed as solutions to enhance the sustainability and resilience of urban water systems by improving performance and decreasing energy consumption. The objective of this study was to evaluate the long-term resilience and robustness of dual water distribution systems versus singular water distribution systems under various stressors such as demand fluctuation, aging infrastructure, and funding constraints. To this end, the long-term dynamics of these infrastructure systems was captured using a simulation model that integrates institutional agency decision-making processes with physical infrastructure degradation to evaluate the long-term transformation of water infrastructure. A set of model parameters that varies for dual and singular distribution infrastructure based on the system attributes, such as pipes length and material, energy intensity, water demand, water price, average pressure and flow rate, as well as operational expenditures, were considered and input in the simulation model. Accordingly, the model was used to simulate various scenarios of demand changes, funding levels, water price growth, and renewal strategies. The long-term resilience and robustness of each distribution infrastructure were evaluated based on various performance measures including network average condition, break frequency, network leakage, and energy use. An ecologically-based resilience approach was used to examine regime shifts and tipping points in the long-term performance of the systems under different stressors. Also, Classification and Regression Tree analysis was adopted to assess the robustness of each system under various scenarios. Using data from the City of Fort Collins, the long-term resilience and robustness of the dual and singular water distribution systems were evaluated over a 100-year analysis horizon for various scenarios. The results of the analysis enabled: (i) comparison between dual and singular water distribution systems in terms of long-term performance, resilience, and robustness; (ii) identification of renewal strategies and decision factors that enhance the long-term resiliency and robustness of dual and singular water distribution systems under different stressors.Keywords: complex systems, dual water distribution systems, long-term resilience performance, multi-agent modeling, sustainable and resilient water systems
Procedia PDF Downloads 29512058 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection
Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang
Abstract:
To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detections is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15um/10m and the accuracy of the machine tool is significant improved.Keywords: thermal expansion error of grating scale, error compensation, machine tools, integral method
Procedia PDF Downloads 37512057 Statistical Channel Modeling for Multiple-Input-Multiple-Output Communication System
Authors: M. I. Youssef, A. E. Emam, M. Abd Elghany
Abstract:
The performance of wireless communication systems is affected mainly by the environment of its associated channel, which is characterized by dynamic and unpredictable behavior. In this paper, different statistical earth-satellite channel models are studied with emphasize on two main models, first is the Rice-Log normal model, due to its representation for the environment including shadowing and multi-path components that affect the propagated signal along its path, and a three-state model that take into account different fading conditions (clear area, moderate shadow and heavy shadowing). The provided models are based on AWGN, Rician, Rayleigh, and log-normal distributions were their Probability Density Functions (PDFs) are presented. The transmission system Bit Error Rate (BER), Peak-Average-Power Ratio (PAPR), and the channel capacity vs. fading models are measured and analyzed. These simulations are implemented using MATLAB tool, and the results had shown the performance of transmission system over different channel models.Keywords: fading channels, MIMO communication, RNS scheme, statistical modeling
Procedia PDF Downloads 15312056 Two-Dimensional Analysis and Numerical Simulation of the Navier-Stokes Equations for Principles of Turbulence around Isothermal Bodies Immersed in Incompressible Newtonian Fluids
Authors: Romulo D. C. Santos, Silvio M. A. Gama, Ramiro G. R. Camacho
Abstract:
In this present paper, the thermos-fluid dynamics considering the mixed convection (natural and forced convections) and the principles of turbulence flow around complex geometries have been studied. In these applications, it was necessary to analyze the influence between the flow field and the heated immersed body with constant temperature on its surface. This paper presents a study about the Newtonian incompressible two-dimensional fluid around isothermal geometry using the immersed boundary method (IBM) with the virtual physical model (VPM). The numerical code proposed for all simulations satisfy the calculation of temperature considering Dirichlet boundary conditions. Important dimensionless numbers such as Strouhal number is calculated using the Fast Fourier Transform (FFT), Nusselt number, drag and lift coefficients, velocity and pressure. Streamlines and isothermal lines are presented for each simulation showing the flow dynamics and patterns. The Navier-Stokes and energy equations for mixed convection were discretized using the finite difference method for space and a second order Adams-Bashforth and Runge-Kuta 4th order methods for time considering the fractional step method to couple the calculation of pressure, velocity, and temperature. This work used for simulation of turbulence, the Smagorinsky, and Spalart-Allmaras models. The first model is based on the local equilibrium hypothesis for small scales and hypothesis of Boussinesq, such that the energy is injected into spectrum of the turbulence, being equal to the energy dissipated by the convective effects. The Spalart-Allmaras model, use only one transport equation for turbulent viscosity. The results were compared with numerical data, validating the effect of heat-transfer together with turbulence models. The IBM/VPM is a powerful tool to simulate flow around complex geometries. The results showed a good numerical convergence in relation the references adopted.Keywords: immersed boundary method, mixed convection, turbulence methods, virtual physical model
Procedia PDF Downloads 11912055 [Keynote Speech]: Feature Selection and Predictive Modeling of Housing Data Using Random Forest
Authors: Bharatendra Rai
Abstract:
Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).Keywords: housing data, feature selection, random forest, Boruta algorithm, root mean square error
Procedia PDF Downloads 32712054 Study of ANFIS and ARIMA Model for Weather Forecasting
Authors: Bandreddy Anand Babu, Srinivasa Rao Mandadi, C. Pradeep Reddy, N. Ramesh Babu
Abstract:
In this paper quickly illustrate the correlation investigation of Auto-Regressive Integrated Moving and Average (ARIMA) and daptive Network Based Fuzzy Inference System (ANFIS) models done by climate estimating. The climate determining is taken from University of Waterloo. The information is taken as Relative Humidity, Ambient Air Temperature, Barometric Pressure and Wind Direction utilized within this paper. The paper is carried out by analyzing the exhibitions are seen by demonstrating of ARIMA and ANIFIS model like with Sum of average of errors. Versatile Network Based Fuzzy Inference System (ANFIS) demonstrating is carried out by Mat lab programming and Auto-Regressive Integrated Moving and Average (ARIMA) displaying is produced by utilizing XLSTAT programming. ANFIS is carried out in Fuzzy Logic Toolbox in Mat Lab programming.Keywords: ARIMA, ANFIS, fuzzy surmising tool stash, weather forecasting, MATLAB
Procedia PDF Downloads 42412053 Conflation Methodology Applied to Flood Recovery
Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong
Abstract:
Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.Keywords: community resilience, conflation, flood risk, nuisance flooding
Procedia PDF Downloads 10812052 Hybrid Robust Estimation via Median Filter and Wavelet Thresholding with Automatic Boundary Correction
Authors: Alsaidi M. Altaher, Mohd Tahir Ismail
Abstract:
Wavelet thresholding has been a power tool in curve estimation and data analysis. In the presence of outliers this non parametric estimator can not suppress the outliers involved. This study proposes a new two-stage combined method based on the use of the median filter as primary step before applying wavelet thresholding. After suppressing the outliers in a signal through the median filter, the classical wavelet thresholding is then applied for removing the remaining noise. We use automatic boundary corrections; using a low order polynomial model or local polynomial model as a more realistic rule to correct the bias at the boundary region; instead of using the classical assumptions such periodic or symmetric. A simulation experiment has been conducted to evaluate the numerical performance of the proposed method. Results show strong evidences that the proposed method is extremely effective in terms of correcting the boundary bias and eliminating outlier’s sensitivity.Keywords: boundary correction, median filter, simulation, wavelet thresholding
Procedia PDF Downloads 43112051 Bi-objective Network Optimization in Disaster Relief Logistics
Authors: Katharina Eberhardt, Florian Klaus Kaiser, Frank Schultmann
Abstract:
Last-mile distribution is one of the most critical parts of a disaster relief operation. Various uncertainties, such as infrastructure conditions, resource availability, and fluctuating beneficiary demand, render last-mile distribution challenging in disaster relief operations. The need to balance critical performance criteria like response time, meeting demand and cost-effectiveness further complicates the task. The occurrence of disasters cannot be controlled, and the magnitude is often challenging to assess. In summary, these uncertainties create a need for additional flexibility, agility, and preparedness in logistics operations. As a result, strategic planning and efficient network design are critical for an effective and efficient response. Furthermore, the increasing frequency of disasters and the rising cost of logistical operations amplify the need to provide robust and resilient solutions in this area. Therefore, we formulate a scenario-based bi-objective optimization model that integrates pre-positioning, allocation, and distribution of relief supplies extending the general form of a covering location problem. The proposed model aims to minimize underlying logistics costs while maximizing demand coverage. Using a set of disruption scenarios, the model allows decision-makers to identify optimal network solutions to address the risk of disruptions. We provide an empirical case study of the public authorities’ emergency food storage strategy in Germany to illustrate the potential applicability of the model and provide implications for decision-makers in a real-world setting. Also, we conduct a sensitivity analysis focusing on the impact of varying stockpile capacities, single-site outages, and limited transportation capacities on the objective value. The results show that the stockpiling strategy needs to be consistent with the optimal number of depots and inventory based on minimizing costs and maximizing demand satisfaction. The strategy has the potential for optimization, as network coverage is insufficient and relies on very high transportation and personnel capacity levels. As such, the model provides decision support for public authorities to determine an efficient stockpiling strategy and distribution network and provides recommendations for increased resilience. However, certain factors have yet to be considered in this study and should be addressed in future works, such as additional network constraints and heuristic algorithms.Keywords: humanitarian logistics, bi-objective optimization, pre-positioning, last mile distribution, decision support, disaster relief networks
Procedia PDF Downloads 8512050 Climate Changes in Albania and Their Effect on Cereal Yield
Authors: Lule Basha, Eralda Gjika
Abstract:
This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine-learning methods, such as random forest, are used to predict cereal yield responses to climacteric and other variables. Random Forest showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the Random Forest method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods.Keywords: cereal yield, climate change, machine learning, multiple regression model, random forest
Procedia PDF Downloads 9912049 A Model of the Adoption of Maritime Autonomous Surface Ship
Authors: Chin-Shan Lu, Yi-Pei Liu
Abstract:
This study examines the factors influencing the adoption of MASS in Taiwan's shipping industry. Digital technology and unmanned vehicle advancements have enhanced efficiency and reduced environmental impact in the shipping industry. The IMO has set regulations to promote low-carbon emissions and autonomous ship technology. Using the TOE framework and DOI theory, a research model was constructed, and data from 132 Taiwanese shipping companies were collected via a questionnaire survey. A structural equation modeling (SEM) was conducted to examine the relationships between variables. Results show that technological and environmental factors significantly influence operators' attitudes toward MASS, while organizational factors impact their willingness to adopt. Enhancing technological support, internal resource allocation, top management support, and cost management are crucial for promoting adoption. This study identifies key factors and provides recommendations for adopting autonomous ships in Taiwan's shipping industry.Keywords: MASS, technology-organization-environment, diffusion of innovations theory, shipping industry
Procedia PDF Downloads 2912048 Computational Fluids Dynamics Investigation of the Effect of Geometric Parameters on the Ejector Performance
Authors: Michel Wakim, Rodrigo Rivera Tinoco
Abstract:
Supersonic ejector is an economical device that use high pressure vapor to compress a low pressure vapor without any rotating parts or external power sources. Entrainment ratio is a major characteristic of the ejector performance, so the ejector performance is highly dependent on its geometry. The aim of this paper is to design ejector geometry, based on pre-specified operating conditions, and to study the flow behavior inside the ejector by using computational fluid dynamics ‘CFD’ by using ‘ANSYS FLUENT 15.0’ software. In the first section; 1-D mathematical model is carried out to predict the ejector geometry. The second part describes the flow behavior inside the designed model. CFD is the most reliable tool to reveal the mixing process at different parts of the supersonic turbulent flow and to study the effect of the geometry on the effective ejector area. Finally, the results show the effect of the geometry on the entrainment ratio.Keywords: computational fluids dynamics, ejector, entrainment ratio, geometry optimization, performance
Procedia PDF Downloads 28112047 Cross Analysis of Gender Discrimination in Print Media of Subcontinent via James Paul Gee Model
Authors: Luqman Shah
Abstract:
The myopic gender discrimination is now a well-documented and recognized fact. However, gender is only one facet of an individual’s multiple identities. The aim of this work is to investigate gender discrimination highlighted in print media in the subcontinent with a specific focus on Pakistan and India. In this study, an approach is adopted by using the James Paul Gee model for the identification of gender discrimination. As a matter of fact, gender discrimination is not consistent in its nature and intensity across global societies and varies as social, geographical, and cultural background change. The World has been changed enormously in every aspect of life, and there are also obvious changes towards gender discrimination, prejudices, and biases, but still, the world has a long way to go to recognize women as equal as men in every sphere of life. The history of the world is full of gender-based incidents and violence. Now the time came that this issue must be seriously addressed and to eradicate this evil, which will lead to harmonize society and consequently heading towards peace and prosperity. The study was carried out by a mixed model research method. The data was extracted from the contents of five Pakistani English newspapers out of a total of 23 daily English newspapers, and likewise, five Indian daily English newspapers out of 52 those were published 2018-2019. Two news stories from each of these newspapers, in total, twenty news stories were taken as sampling for this research. Content and semiotic analysis techniques were used to analyze through James Paul Gee's seven building tasks of language. The resources of renowned e-papers are utilized, and the highlighted cases in Pakistani newspapers of Indian gender-based stories and vice versa are scrutinized as per the requirement of this research paper. For analysis of the written stretches of discourse taken from e-papers and processing of data for the focused problem, James Paul Gee 'Seven Building Tasks of Language' is used. Tabulation of findings is carried to pinpoint the issue with certainty. Findings after processing the data showed that there is a gross human rights violation on the basis of gender discrimination. The print media needs a more realistic representation of what is what not what seems to be. The study recommends the equality and parity of genders.Keywords: gender discrimination, print media, Paul Gee model, subcontinent
Procedia PDF Downloads 22412046 Structure of Tourists’ Shopping Behavior: From the Tyranny of Hotels to Public Markets
Authors: Asmaa M. Marzouk, Abdallah M. Elshaer
Abstract:
Despite the well-recognized value of shopping as a revenue-generating resource, little effort was made to investigate what is the structure of tourists’ shopping behavior, which in turn, affect their travel experience. The purpose of this paper is to study the structure of tourists’ shopping process to better understand their shopping behavior by investigating factors that influence this activity other than hotels tyranny. This study specifically aims to propose a model incorporating those all variables. This empirical study investigates the shopping experience of international tourists using a questionnaire aimed to examine multinational samples selected from the tourist population visiting a specific destination in Egypt. This study highlights the various stakeholders that make tourists do shop independent of hotels. The results, therefore, demonstrate the relationship between the shopping process entities involved and configure the variables within the model in a way that provides a viable solution for visitors to avoid the tyranny of hotel facilities and amenities on the public markets.Keywords: hotels’ amenities, shopping process, tourist behavior, tourist satisfaction
Procedia PDF Downloads 13512045 Regression Model Evaluation on Depth Camera Data for Gaze Estimation
Authors: James Purnama, Riri Fitri Sari
Abstract:
We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python
Procedia PDF Downloads 54112044 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis
Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim
Abstract:
This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model
Procedia PDF Downloads 37212043 On Energy Condition Violation for Shifting Negative Mass Black Holes
Authors: Manuel Urueña Palomo
Abstract:
In this paper, we introduce the study of a new solution to gravitational singularities by violating the energy conditions of the Penrose Hawking singularity theorems. We consider that a shift to negative energies, and thus, to negative masses, takes place at the event horizon of a black hole, justified by the original, singular and exact Schwarzschild solution. These negative energies are supported by relativistic particle physics considering the negative energy solutions of the Dirac equation, which states that a time transformation shifts to a negative energy particle. In either general relativity or full Newtonian mechanics, these negative masses are predicted to be repulsive. It is demonstrated that the model fits actual observations, and could possibly clarify the size of observed and unexplained supermassive black holes, when considering the inflation that would take place inside the event horizon where massive particles interact antigravitationally. An approximated solution of the model proposed could be simulated in order to compare it with these observations.Keywords: black holes, CPT symmetry, negative mass, time transformation
Procedia PDF Downloads 154