Search results for: solar thermal systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12899

Search results for: solar thermal systems

7649 Effects of LED Lighting on Visual Comfort with Respect to the Reading Task

Authors: Ayşe Nihan Avcı, İpek Memikoğlu

Abstract:

Lighting systems in interior architecture need to be designed according to the function of the space, the type of task within the space, user comfort and needs. Desired and comfortable lighting levels increase task efficiency. When natural lighting is inadequate in a space, artificial lighting is additionally used to support the level of light. With the technological developments, the characteristics of light are being researched comprehensively and several business segments have focused on its qualitative and quantitative characteristics. These studies have increased awareness and usage of artificial lighting systems and researchers have investigated the effects of lighting on physical and psychological aspects of human in various ways. The aim of this study is to research the effects of illuminance levels of LED lighting on user visual comfort. Eighty participants from the Department of Interior Architecture of Çankaya University participated in three lighting scenarios consisting of 200 lux, 500 lux and 800 lux that are created with LED lighting. Each lighting scenario is evaluated according to six visual comfort criteria in which a reading task is performed. The results of the study indicated that LED lighting with three different illuminance levels affect visual comfort in different ways. The results are limited to the participants and questions that are attended and used in this study.

Keywords: illuminance levels, LED lighting, reading task, visual comfort criteria

Procedia PDF Downloads 243
7648 Teachers' Knowledge, Perceptions, and Attitudes towards Renewable Energy Policy in Malaysia

Authors: Kazi Enamul Hoque

Abstract:

Initiatives on sustainable development are currently aggressively pursued throughout the world. The Malaysian government has developed key policies and strategies for over 30 years to achieve the nation’s policy objectives which are designed to mitigate the issues of security, energy efficiency and environmental impact to meet the rising energy demand. Malaysia’s current focus is on developing effective policies on renewable energy (RE) in order to reduce dependency on fossil fuel and contribute towards mitigating the effects of climate change. In this light mass awareness should be considered as the highest priority to protect the environment and to escape disaster due to climate change. Schools can be the reliable and effective foundation to prepare students to get familiar with environmental issues such as renewable and non-renewable energy sources. Teachers can play a vital role to create awareness among students about the advantages and disadvantages of using different renewable and nonrenewable energy resources. Thus, this study aims to investigate teachers’ knowledge, perceptions and attitudes towards renewable energy through a survey aiming a sustainable energy future. Five hundred sets of questionnaires were distributed to the school teachers in Malaysia. Total 420 questionnaires were returned of which 410 were complete to analyze. Finding shows that teachers are very familiar with the renewable energy like solar, wind and also geothermal. Most teachers were not sure about the Photovoltaics and biodiesel. Furthermore, teachers are also aware that primary energy in Malaysia is imported fossil fuels. Most teachers heard about the renewable energy in Malaysia and only few claims that they did not hear of such things and the others said that they never heard of it. The outcomes of the study will assist the energy policy makers to use teachers to create mass awareness of energy usages for future planning.

Keywords: Malaysia, non-renewable energy, renewable energy, school teacher

Procedia PDF Downloads 420
7647 Naturally Occurring Abietic Acid for Liquid Crystalline Epoxy Curing Agents

Authors: Rasha A.Ibrahim El-Ghazawy, Ashraf M. El-Saeed, Heusin El-Shafey, M. Abdel-Raheim, Maher A. El-Sockary

Abstract:

Two thermotropic liquid crystalline curing agents based on abietic acid with different mesogens (LCC1 and LCC2) were synthesized for producing thermally stable liquid crystal networks suitable for high performance epoxy coatings. Differential scanning calorimetry (DSC) and polarized optical microscope (POM) was used to identify the liquid crystal phase transformation temperatures and texture, respectively. POM micro graphs for both LCCs revealing cholesteric texture. A multifunctional epoxy resin with two abietic acid moieties was also synthesized. Dynamic mechanical (DMA) and thermogravimetric (TGA) analyses show that the fully bio-based cured epoxies by either LCCs possess high glass transition temperature (Tg), high modulus (G`) and improved thermal stability. The chemical structure of the synthesized LCCs and epoxy resin was investigated through FTIR and 1HNMR spectroscopic techniques.

Keywords: abietic acid, dynamic mechanical analysis, epoxy resin, liquid crystal, thermo gravimetric analysis

Procedia PDF Downloads 349
7646 Internal Power Recovery in Cryogenic Cooling Plants Part I: Expander Development

Authors: Ambra Giovannelli, Erika Maria Archilei

Abstract:

The amount of the electrical power required by refrigeration systems is relevant worldwide. It is evaluated in the order of 15% of the total electricity production taking refrigeration and air-conditioning into consideration. For this reason, in the last years several energy saving techniques have been proposed to reduce the power demand of such plants. The paper deals with the development of an innovative internal recovery system for cryogenic cooling plants. Such a system consists in a Compressor-Expander Group (CEG) designed on the basis of the automotive turbocharging technology. In particular, the paper is focused on the design of the expander, the critical component of the CEG system. Due to the low volumetric flow entering the expander and the high expansion ratio, a commercial turbocharger expander wheel was strongly modified. It was equipped with a transonic nozzle, designed to have a radially inflow full admission. To verify the performance of such a machine and suggest improvements, two different set of nozzles have been designed and modelled by means of the commercial Ansys-CFX software. steady-state 3D CFD simulations of the second-generation prototype are presented and compared with the initial ones.

Keywords: vapour cCompression systems, energy saving, refrigeration plant, organic fluids, radial turbine

Procedia PDF Downloads 194
7645 Upcycling of Inorganic Waste: Lessons Learned and Outlook for the Future

Authors: Miroslava Hujová, Patricia Rabello Monich, Jozef Kraxner, Dusan Galusek, Enrico Bernardo

Abstract:

Inorganic waste upcycling offers a solution how to avoid landfilling and how to save raw materials at the same time. However, its practical implementations in Slovakia and elsewhere in Europe, are rather limited despite the potential smaller countries like Slovakia have their advantage in closely-knitted inorganic materials industry. One part of discussion should include an overview of wastes that can be possibly used for upcycling, i.e. fly ashes, red mud, glass cullets, vitrified bottom ashes etc. These wastes can be processed by a variety of strategies, the one of our choice, alkali activation, opens the possibility for the formation of novel materials at almost negligible energetic expense. In the research, these materials are characterized by comprehensive means (X-Ray Fluorescece, Diffraction methods, Thermal Analysis, Scanning Electron Microscopy, Mechanical tests and Chemical stability), which time and time again demonstrate their competitive properties against traditional materials available at the market. It is just a question for discussion why these materials do not receive more significant attention from industry and there is pressing interest for the solution of standing situation.

Keywords: upcycling, inorganic wastes, glass ceramics, alkali-activation

Procedia PDF Downloads 128
7644 Risk Based Building Information Modeling (BIM) for Urban Infrastructure Transportation Project

Authors: Debasis Sarkar

Abstract:

Building Information Modeling (BIM) is a holistic documentation process for operational visualization, design coordination, estimation and project scheduling. BIM software defines objects parametrically and it is a tool for virtual reality. Primary advantage of implementing BIM is the visual coordination of the building structure and systems such as Mechanical, Electrical and Plumbing (MEP) and it also identifies the possible conflicts between the building systems. This paper is an attempt to develop a risk based BIM model which would highlight the primary advantages of application of BIM pertaining to urban infrastructure transportation project. It has been observed that about 40% of the Architecture, Engineering and Construction (AEC) companies use BIM but primarily for their outsourced projects. Also, 65% of the respondents agree that BIM would be used quiet strongly for future construction projects in India. The 3D models developed with Revit 2015 software would reduce co-ordination problems amongst the architects, structural engineers, contractors and building service providers (MEP). Integration of risk management along with BIM would provide enhanced co-ordination, collaboration and high probability of successful completion of the complex infrastructure transportation project within stipulated time and cost frame.

Keywords: building information modeling (BIM), infrastructure transportation, project risk management, underground metro rail

Procedia PDF Downloads 296
7643 Spatially Downscaling Land Surface Temperature with a Non-Linear Model

Authors: Kai Liu

Abstract:

Remote sensing-derived land surface temperature (LST) can provide an indication of the temporal and spatial patterns of surface evapotranspiration (ET). However, the spatial resolution achieved by existing commonly satellite products is ~1 km, which remains too coarse for ET estimations. This paper proposed a model that can disaggregate coarse resolution MODIS LST at 1 km scale to fine spatial resolutions at the scale of 250 m. Our approach attempted to weaken the impacts of soil moisture and growing statues on LST variations. The proposed model spatially disaggregates the coarse thermal data by using a non-linear model involving Bowen ratio, normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI). This LST disaggregation model was tested on two heterogeneous landscapes in central Iowa, USA and Heihe River, China, during the growing seasons. Statistical results demonstrated that our model achieved better than the two classical methods (DisTrad and TsHARP). Furthermore, using the surface energy balance model, it was observed that the estimated ETs using the disaggregated LST from our model were more accurate than those using the disaggregated LST from DisTrad and TsHARP.

Keywords: Bowen ration, downscaling, evapotranspiration, land surface temperature

Procedia PDF Downloads 317
7642 Location Uncertainty – A Probablistic Solution for Automatic Train Control

Authors: Monish Sengupta, Benjamin Heydecker, Daniel Woodland

Abstract:

New train control systems rely mainly on Automatic Train Protection (ATP) and Automatic Train Operation (ATO) dynamically to control the speed and hence performance. The ATP and the ATO form the vital element within the CBTC (Communication Based Train Control) and within the ERTMS (European Rail Traffic Management System) system architectures. Reliable and accurate measurement of train location, speed and acceleration are vital to the operation of train control systems. In the past, all CBTC and ERTMS system have deployed a balise or equivalent to correct the uncertainty element of the train location. Typically a CBTC train is allowed to miss only one balise on the track, after which the Automatic Train Protection (ATP) system applies emergency brake to halt the service. This is because the location uncertainty, which grows within the train control system, cannot tolerate missing more than one balise. Balises contribute a significant amount towards wayside maintenance and studies have shown that balises on the track also forms a constraint for future track layout change and change in speed profile.This paper investigates the causes of the location uncertainty that is currently experienced and considers whether it is possible to identify an effective filter to ascertain, in conjunction with appropriate sensors, more accurate speed, distance and location for a CBTC driven train without the need of any external balises. An appropriate sensor fusion algorithm and intelligent sensor selection methodology will be deployed to ascertain the railway location and speed measurement at its highest precision. Similar techniques are already in use in aviation, satellite, submarine and other navigation systems. Developing a model for the speed control and the use of Kalman filter is a key element in this research. This paper will summarize the research undertaken and its significant findings, highlighting the potential for introducing alternative approaches to train positioning that would enable removal of all trackside location correction balises, leading to huge reduction in maintenances and more flexibility in future track design.

Keywords: ERTMS, CBTC, ATP, ATO

Procedia PDF Downloads 401
7641 Automation of Process Waste-Free Air Filtration in Production of Concrete, Reinforced with Basalt Fiber

Authors: Stanislav Perepechko

Abstract:

Industrial companies - one of the major sources of harmful substances to the atmosphere. The main cause of pollution on the concrete plants are cement dust emissions. All the cement silos, pneumatic transport, and ventilation systems equipped with filters, to avoid this. Today, many Russian companies have to decide on replacement morally and physically outdated filters and guided back to the electrostatic filters as usual equipment. The offered way of a cleaning of waste-free filtering of air differs in the fact that a filtering medium of the filter is used in concrete manufacture. Basalt is widespread and pollution-free material. In the course of cleaning, one part of basalt fiber and cement immediately goes to the mixer through flow-control units of initial basalt fiber and cement. Another part of basalt fiber goes to filters for purification of the air used in systems of an air lift, and ventilating emissions passes through them, and with trapped particles also goes to the mixer through flow-control units of the basalt fiber fulfilled in filters. At the same time, regulators are adjusted in such a way that total supply of basalt fiber and cement into the mixer remains invariable and corresponds to a given technological mode.

Keywords: waste-free air filtration, concrete, basalt fiber, building automation

Procedia PDF Downloads 420
7640 Influence of Stacking Sequence on Properties of Sheep-Wool/Glass Reinforced Epoxy Hybrid Composites

Authors: G. B. Manjunatha

Abstract:

Natural fibers have been considerable demand in recent years due to their ecofriendly and renewable nature. The advantages of low density, acceptable specific properties, better thermal and insulate properties with low cost.In the present study, hybrid composite associating Sheep wool fiber and glass fiber reinforced with epoxy were developed and investigated the effect of stacking sequence on physical and chemical properties. The hybrid composite was designed for engineering applications as an alternative material to glass fiber composites. The hybrid composite laminates were fabricated by using hand lay-up technique at total fiber volume fraction of 60% (Sheep wool fiber 30% and Glass fiber 30%) and 40% reinforcement. The specimen preparation and testing were conducted as per American Society for Testing and Materials (ASTM) standards. Three different stacking are used. The result shows that tensile and bending tests of sequence of glass fiber between sheep wool fiber have high strength and maximum bending compared to other sequence of composites. At the same time better moisture and chemical absorption were observed.

Keywords: hybrid composites, mechanical properties, polymer composites, stacking sequence

Procedia PDF Downloads 141
7639 A Comparative Analysis of Various Companding Techniques Used to Reduce PAPR in VLC Systems

Authors: Arushi Singh, Anjana Jain, Prakash Vyavahare

Abstract:

Recently, Li-Fi(light-fiedelity) has been launched based on VLC(visible light communication) technique, 100 times faster than WiFi. Now 5G mobile communication system is proposed to use VLC-OFDM as the transmission technique. The VLC system focused on visible rays, is considered for efficient spectrum use and easy intensity modulation through LEDs. The reason of high speed in VLC is LED, as they flicker incredibly fast(order of MHz). Another advantage of employing LED is-it acts as low pass filter results no out-of-band emission. The VLC system falls under the category of ‘green technology’ for utilizing LEDs. In present scenario, OFDM is used for high data-rates, interference immunity and high spectral efficiency. Inspite of the advantages OFDM suffers from large PAPR, ICI among carriers and frequency offset errors. Since, the data transmission technique used in VLC system is OFDM, the system suffers the drawbacks of OFDM as well as VLC, the non-linearity dues to non-linear characteristics of LED and PAPR of OFDM due to which the high power amplifier enters in non-linear region. The proposed paper focuses on reduction of PAPR in VLC-OFDM systems. Many techniques are applied to reduce PAPR such as-clipping-introduces distortion in the carrier; selective mapping technique-suffers wastage of bandwidth; partial transmit sequence-very complex due to exponentially increased number of sub-blocks. The paper discusses three companding techniques namely- µ-law, A-law and advance A-law companding technique. The analysis shows that the advance A-law companding techniques reduces the PAPR of the signal by adjusting the companding parameter within the range. VLC-OFDM systems are the future of the wireless communication but non-linearity in VLC-OFDM is a severe issue. The proposed paper discusses the techniques to reduce PAPR, one of the non-linearities of the system. The companding techniques mentioned in this paper provides better results without increasing the complexity of the system.

Keywords: non-linear companding techniques, peak to average power ratio (PAPR), visible light communication (VLC), VLC-OFDM

Procedia PDF Downloads 276
7638 Influence of Cure Degree in GO and CNT-Epoxy Nanocomposites

Authors: Marina Borgert Moraes, Wesley Francisco, Filipe Vargas, Gilmar Patrocínio Thim

Abstract:

In recent years, carbon nanotubes (CNT) and graphene oxide (GO), especially the functionalized ones, have been added to epoxy resin in order to increase the mechanical, electrical and thermal properties of nanocomposites. However, it's still unknown how the presence of these nanoparticles influences the curing process and the final mechanical properties as well. In this work, kinetic and mechanical properties of the nanocomposites were analyzed, where the kinetic process was followed by DSC and the mechanical properties by DMA. Initially, CNT was annealed at high temperature (1800 °C) under vacuum atmosphere, followed by a chemical treatment using acids and ethylenediamine. GO was synthesized through chemical route, washed clean, dried and ground to #200. The presence of functional groups on CNT and GO surface was confirmed by XPS spectra and FT-IR. Then, epoxy resin, nanoparticles and acetone were mixed by sonication in order to obtain the composites. DSC analyses were performed on samples with different curing cycles (1h 80°C + 2h 120°C; 3h 80°C + 2h 120°C; 5h 80°C) and samples with different times at constant temperature (120°C). Results showed that the kinetic process and the mechanical strength are very dependent on the presence of graphene and functionalized-CNT in the nanocomposites.

Keywords: carbon nanotube, epoxy resin, Graphene oxide, nanocomposite

Procedia PDF Downloads 304
7637 Factors Affecting Visual Environment in Mine Lighting

Authors: N. Lakshmipathy, Ch. S. N. Murthy, M. Aruna

Abstract:

The design of lighting systems for surface mines is not an easy task because of the unique environment and work procedures encountered in the mines. The primary objective of this paper is to identify the major problems encountered in mine lighting application and to provide guidance in the solution of these problems. In the surface mining reflectance of surrounding surfaces is one of the important factors, which improve the vision, in the night hours. But due to typical working nature in the mines it is very difficult to fulfill these requirements, and also the orientation of the light at work site is a challenging task. Due to this reason machine operator and other workers in a mine need to be able to orient themselves in a difficult visual environment. The haul roads always keep on changing to tune with the mining activity. Other critical area such as dumpyards, stackyards etc. also change their phase with time, and it is difficult to illuminate such areas. Mining is a hazardous occupation, with workers exposed to adverse conditions; apart from the need for hard physical labor, there is exposure to stress and environmental pollutants like dust, noise, heat, vibration, poor illumination, radiation, etc. Visibility is restricted when operating load haul dumper and Heavy Earth Moving Machinery (HEMM) vehicles resulting in a number of serious accidents. one of the leading causes of these accidents is the inability of the equipment operator to see clearly people, objects or hazards around the machine. Results indicate blind spots are caused primarily by posts, the back of the operator's cab, and by lights and light brackets. The careful designed and implemented, lighting systems provide mine workers improved visibility and contribute to improved safety, productivity and morale. Properly designed lighting systems can improve visibility and safety during working in the opencast mines.

Keywords: contrast, efficacy, illuminance, illumination, light, luminaire, luminance, reflectance, visibility

Procedia PDF Downloads 350
7636 Electrical and Structural Properties of Solid Electrolyte Systems

Authors: Yasin Polat, Yılmaz Dağdemir, Mehmet Arı

Abstract:

Samarium (III) oxide and Ytterbium (III) oxide doped Bismuth trioxide solid solutions, the nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y ternary system were obtained with x=5, 20 mol %, and y=5, 20 mol % dopant concentrations have been synthesized in air atmosphere with solid state reaction. Temperature dependent electrical conductivity of the samples have been investigated by 4-point probe technique by heating and cooling process. Doped-Bi2O3 materials of solid electrolyte systems are good oxygen anions O2-conductors which have collected much attention as potential solid ceramic electrolytes for solid oxide fuel cells (SOFCs) because of their relatively high oxygen ionic conductivity at lower temperatures.(Bi2O3)-based electrolytes have also wide other technological applications in devices with high economical interest such as oxygen sensors, ceramic membranes for oxygen separation, oxygen pumps, catalyzing of some heterogeneous reactions, partial oxidation of the hydrocarbons, and additive material in paints. In recent years, many experimental researches have mostly focused on improving of the Bi-based electrolytes which have high oxide ionic conductivity at low temperatures and better performance as alternatives to traditional stabilized zirconia has taken place. Generally, these systems are much better solid electrolytes than well-known stabilized zirconia, because some of the bismuth trioxide phases exhibit higher ion conductivity than other oxide ionic conductors. Crystal structure of the Nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y has been determined by X-Ray powder diffractions (XRD) measurements before and after electrical conductivity measurements of the samples. Surface and grain structure properties of the samples were determined by SEM analysis. The samples which synthesized in this study can be used in industrial applications such as electrolytes of the solid oxide fuel cells (SOFC).

Keywords: 4-point probe technique, bismuth trioxide, solid state reaction, solid oxide fuel cell

Procedia PDF Downloads 283
7635 Smart Side View Mirror Camera for Real Time System

Authors: Nunziata Ivana Guarneri, Arcangelo Bruna, Giuseppe Spampinato, Antonio Buemi

Abstract:

In the last decade, automotive companies have invested a lot in terms of innovation about many aspects regarding the automatic driver assistance systems. One innovation regards the usage of a smart camera placed on the car’s side mirror for monitoring the back and lateral road situation. A common road scenario is the overtaking of the preceding car and, in this case, a brief distraction or a loss of concentration can lead the driver to undertake this action, even if there is an already overtaking vehicle, leading to serious accidents. A valid support for a secure drive can be a smart camera system, which is able to automatically analyze the road scenario and consequentially to warn the driver when another vehicle is overtaking. This paper describes a method for monitoring the side view of a vehicle by using camera optical flow motion vectors. The proposed solution detects the presence of incoming vehicles, assesses their distance from the host car, and warns the driver through different levels of alert according to the estimated distance. Due to the low complexity and computational cost, the proposed system ensures real time performances.

Keywords: camera calibration, ego-motion, Kalman filters, object tracking, real time systems

Procedia PDF Downloads 214
7634 Derivation of Runoff Susceptibility Map Using Slope-Adjusted SCS-CN in a Tropical River Basin

Authors: Abolghasem Akbari

Abstract:

The Natural Resources Conservation Service Curve Number (NRCS-CN) method is widely used for predicting direct runoff from rainfall. It employs the hydrologic soil groups and land use information along with period soil moisture conditions to derive NRCS-CN. This method has been well documented and available in popular rainfall-runoff models such as HEC-HMS, SWAT, SWMM and much more. Despite all benefits and advantages of this well documented and easy-to-use method, it does not take into account the effect of terrain slope and drainage area. This study aimed to first investigate the effect of slope on CN and then slope-adjusted runoff potential map is generated for Kuantan River Basin, Malaysia. The Hanng method was used to adjust CN values provided in National Handbook of Engineering and The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) version 2 is used to derive slope map with the spatial resolution of 30 m for Kuantan River Basin (KRB). The study significantly enhanced the application of GIS tools and recent advances in earth observation technology to analyze the hydrological process.

Keywords: Kuantan, ASTER-GDEM, SCS-CN, runoff

Procedia PDF Downloads 274
7633 The Future Control Rooms for Sustainable Power Systems: Current Landscape and Operational Challenges

Authors: Signe Svensson, Remy Rey, Anna-Lisa Osvalder, Henrik Artman, Lars Nordström

Abstract:

The electric power system is undergoing significant changes. Thereby, the operation and control are becoming partly modified, more multifaceted and automated, and thereby supplementary operator skills might be required. This paper discusses developing operational challenges in future power system control rooms, posed by the evolving landscape of sustainable power systems, driven in turn by the shift towards electrification and renewable energy sources. A literature review followed by interviews and a comparison to other related domains with similar characteristics, a descriptive analysis was performed from a human factors perspective. Analysis is meant to identify trends, relationships, and challenges. A power control domain taxonomy includes a temporal domain (planning and real-time operation) and three operational domains within the power system (generation, switching and balancing). Within each operational domain, there are different control actions, either in the planning stage or in the real-time operation, that affect the overall operation of the power system. In addition to the temporal dimension, the control domains are divided in space between a multitude of different actors distributed across many different locations. A control room is a central location where different types of information are monitored and controlled, alarms are responded to, and deviations are handled by the control room operators. The operators’ competencies, teamwork skills, team shift patterns as well as control system designs are all important factors in ensuring efficient and safe electricity grid management. As the power system evolves with sustainable energy technologies, challenges are found. Questions are raised regarding whether the operators’ tacit knowledge, experience and operation skills of today are sufficient to make constructive decisions to solve modified and new control tasks, especially during disturbed operations or abnormalities. Which new skills need to be developed in planning and real-time operation to provide efficient generation and delivery of energy through the system? How should the user interfaces be developed to assist operators in processing the increasing amount of information? Are some skills at risk of being lost when the systems change? How should the physical environment and collaborations between different stakeholders within and outside the control room develop to support operator control? To conclude, the system change will provide many benefits related to electrification and renewable energy sources, but it is important to address the operators’ challenges with increasing complexity. The control tasks will be modified, and additional operator skills are needed to perform efficient and safe operations. Also, the whole human-technology-organization system needs to be considered, including the physical environment, the technical aids and the information systems, the operators’ physical and mental well-being, as well as the social and organizational systems.

Keywords: operator, process control, energy system, sustainability, future control room, skill

Procedia PDF Downloads 70
7632 Experimental Investigation of Air Gap Membrane Distillation System with Heat Recovery

Authors: Yasser Elhenaw, A. Farag, Mohamed El-Ghandour, M. Shatat, G. H. Moustafa

Abstract:

This study investigates the performance of two spiral-wound Air Gap Membrane Distillation (AGMD) units. These units are connected in two different configurations in order to be tested and compared experimentally. In AGMD, the coolant water is used to condensate water vapor leaving membrane via condensing plate. The rejected cooling water has a relativity high temperature which can be used, depending on operation parameters, to increase the thermal efficiency and water productivity. In the first configuration, the seawater feed flows parallel and equally through both units then rejected. The coolant water is divided into the two units, and the heat source is divided into the two heat exchangers. In the second one, only the feed of the first unit is heated while the cooling rejected from the unit is used in heating the feed to the second. The performance of the system, estimated by the water productivity as well as the Gain Output Ratio (GOR), is measured for the two configurations at different feed flow rates, temperatures and salinities. The results show that at steady state condition, the heat recovery configurations lead to an increase in water productivity by 25%.

Keywords: membrane distillation, heat transfer, heat recovery, desalination

Procedia PDF Downloads 250
7631 Tool Condition Monitoring of Ceramic Inserted Tools in High Speed Machining through Image Processing

Authors: Javier A. Dominguez Caballero, Graeme A. Manson, Matthew B. Marshall

Abstract:

Cutting tools with ceramic inserts are often used in the process of machining many types of superalloy, mainly due to their high strength and thermal resistance. Nevertheless, during the cutting process, the plastic flow wear generated in these inserts enhances and propagates cracks due to high temperature and high mechanical stress. This leads to a very variable failure of the cutting tool. This article explores the relationship between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 structure) inserts experience during a high-speed machining process and the evolution of sparks created during the same process. These sparks were analysed through pictures of the cutting process recorded using an SLR camera. Features relating to the intensity and area of the cutting sparks were extracted from the individual pictures using image processing techniques. These features were then related to the ceramic insert’s crater wear area.

Keywords: ceramic cutting tools, high speed machining, image processing, tool condition monitoring, tool wear

Procedia PDF Downloads 285
7630 Investigation into Micro-Grids with Renewable Energy Sources for Use as High Reliability Electrical Power Supply in a Nuclear Facility

Authors: Gerard R. Lekhema, Willie A Cronje, Ian Korir

Abstract:

The objective of this research work is to investigate the use of a micro-grid system to improve the reliability and availability of emergency electrical power in a nuclear facility. The nuclear facility is a safety-critical application that requires reliable electrical power for safe startup, operation and normal or emergency shutdown conditions. The majority of the nuclear facilities around the world utilize diesel generators as emergency power supply during loss of offsite power events. This study proposes the micro-grid system with distributed energy sources and energy storage systems for use as emergency power supply. The systems analyzed include renewable energy sources, decay heat recovery system and large scale energy storage system. The configuration of the micro-grid system is realized with guidelines of nuclear safety standards and requirements. The investigation results presented include performance analysis of the micro-grid system in terms of reliability and availability.

Keywords: emergency power supply, micro-grid, nuclear facility, renewable energy sources

Procedia PDF Downloads 379
7629 Energy Conversion from Waste Paper Industry Using Fluidized Bed Combustion

Authors: M. Dyah Ayu Yuli, S. Faisal Dhio, P. Johandi, P. Muhammad Sofyan

Abstract:

Pulp and paper mills generate various quantities of energy-rich biomass as wastes, depending on technological level, pulp and paper grades and wood quality. These wastes are produced in all stages of the process: wood preparation, pulp and paper manufacture, chemical recovery, recycled paper processing, waste water treatment. Energy recovery from wastes of different origin has become a generally accepted alternative to their disposal. Pulp and paper industry expresses an interest in adapting and integrating advanced biomass energy conversion technologies into its mill operations using Fluidized Bed Combustion. Industrial adoption of these new technologies has the potential for higher efficiency, lower capital cost, and safer operation than conventional operations that burn fossil fuels for energy. Incineration with energy recovery has the advantage of hygienic disposal, volume reduction, and the recovery of thermal energy by means of steam or super heated water that can be used for heating and power generation.

Keywords: biomass, fluidized bed combustion, pulp and paper mills, waste

Procedia PDF Downloads 457
7628 Potential Effects of Green Infrastructures on the Land Surface Temperatures in Arid Areas

Authors: Adila Shafqat

Abstract:

Climate change and urbanization has changed the face of many cities in developing countries. Urbanization is linked with land use and land cover change, that is further intensify by the effects of changing climates. Green infrastructures provide numerous ecosystem services which effect the physical set up of the cities in the long run. Land surface temperatures is considered as defining parameter in the studies of the thermal impact on the land cover. Current study is conducted in the semi-arid urban areas of the Bahawalpur region. Accordingly, Land Surface Temperatures and land cover maps are derived from Landsat image through remote sensing techniques. The cooling impact of green infrastructure is determined by calculating land surface temperature of buffered zones around green infrastructures. A regression model is applied for results. It is seen that land surface temperature around green infrastructures in 1 to 3 degrees lower than the built up surroundings. The result indicates that the urban green infrastructures should be planned according to the local needs and characteristics of landuse so that they can effectively tackle land surface temperatures of urban areas.

Keywords: climate change, surface temperatures, green spaces, urban planning

Procedia PDF Downloads 103
7627 Validating Condition-Based Maintenance Algorithms through Simulation

Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile

Abstract:

Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.

Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning

Procedia PDF Downloads 116
7626 A Review of Farmer Participation in Information and Communication Technology through Mobile Banking and Mobile Marketing in Rural Agricultural Systems

Authors: J. Cadby, K. Miyazawa

Abstract:

Information and Communication Technology (ICT) has been widely adopted into the agricultural landscape with advancements of mobile connectivity and data accessibility. In developed nations, mobile-technology is well integrated into marketing transactions, and also plays a crucial role in making data-driven decisions on-farm. In developing nations, mobile banking and access to agricultural extension services allow for informed decision-making and smoother transactions. In addition, the availability of updated and readily available market and climate data provides a negotiation platform, reducing economic risks for farmers worldwide. The total usage of mobile technology has risen over the past 20 years, and almost three-quarters of the world’s population subscribes to mobile technology. This study reviewed mobile technology integration into agricultural systems in developing and developed nations. Data from secondary sources were collected and investigated. The objectives of the study include a review of the success of mobile banking transactions in developing nations, and a review of application and SMS based services for direct marketing in both developed and developing nations. Rural farmers in developing countries with access to diverse m-banking options experienced increased access to farm investment resources with the use of mobile banking technology. Rural farmers involved in perishable crop production were also more likely to benefit from mobile platform sales participation. ICT programs reached through mobile application and SMS increased access to agricultural extension materials and marketing tools for demographics that faced literacy-challenges and isolated markets. As mobile technology becomes more ubiquitous in the global agricultural system, training and market opportunities to facilitate mobile usage in developing agricultural systems are necessary. Digital skills training programs are necessary in order to improve equal global adoption of ICT in agriculture.

Keywords: market participation, mobile banking, mobile technology, rural farming

Procedia PDF Downloads 237
7625 Automotive Emotions: An Investigation of Their Natures, Frequencies of Occurrence and Causes

Authors: Marlene Weber, Joseph Giacomin, Alessio Malizia, Lee Skrypchuk, Voula Gkatzidou

Abstract:

Technological and sociological developments in the automotive sector are shifting the focus of design towards developing a better understanding of driver needs, desires and emotions. Human centred design methods are being more frequently applied to automotive research, including the use of systems to detect human emotions in real-time. One method for a non-contact measurement of emotion with low intrusiveness is Facial-Expression Analysis (FEA). This paper describes a research study investigating emotional responses of 22 participants in a naturalistic driving environment by applying a multi-method approach. The research explored the possibility to investigate emotional responses and their frequencies during naturalistic driving through real-time FEA. Observational analysis was conducted to assign causes to the collected emotional responses. In total, 730 emotional responses were measured in the collective study time of 440 minutes. Causes were assigned to 92% of the measured emotional responses. This research establishes and validates a methodology for the study of emotions and their causes in the driving environment through which systems and factors causing positive and negative emotional effects can be identified.

Keywords: affective computing, case study, emotion recognition, human computer interaction

Procedia PDF Downloads 189
7624 Design and Implement a Remote Control Robot Controlled by Zigbee Wireless Network

Authors: Sinan Alsaadi, Mustafa Merdan

Abstract:

Communication and access systems can be made with many methods in today’s world. These systems are such standards as Wifi, Wimax, Bluetooth, GPS and GPRS. Devices which use these standards also use system resources excessively in direct proportion to their transmission speed. However, large-scale data communication is not always needed. In such cases, a technology which will use system resources as little as possible and support smart network topologies has been needed in order to enable the transmissions of such small packet data and provide the control for this kind of devices. IEEE issued 802.15.4 standard upon this necessity and enabled the production of Zigbee protocol which takes these standards as its basis and devices which support this protocol. In our project, this communication protocol was preferred. The aim of this study is to provide the immediate data transmission of our robot from the field within the scope of the project. In addition, making the communication with the robot through Zigbee Protocol has also been aimed. While sitting on the computer, obtaining the desired data from the region where the robot is located has been taken as the basis. Arduino Uno R3 microcontroller which provides the control mechanism, 1298 shield as the motor driver.

Keywords: ZigBee, wireless network, remote monitoring, smart home, agricultural industry

Procedia PDF Downloads 266
7623 An Improved Method on Static Binary Analysis to Enhance the Context-Sensitive CFI

Authors: Qintao Shen, Lei Luo, Jun Ma, Jie Yu, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Control Flow Integrity (CFI) is one of the most promising technique to defend Code-Reuse Attacks (CRAs). Traditional CFI Systems and recent Context-Sensitive CFI use coarse control flow graphs (CFGs) to analyze whether the control flow hijack occurs, left vast space for attackers at indirect call-sites. Coarse CFGs make it difficult to decide which target to execute at indirect control-flow transfers, and weaken the existing CFI systems actually. It is an unsolved problem to extract CFGs precisely and perfectly from binaries now. In this paper, we present an algorithm to get a more precise CFG from binaries. Parameters are analyzed at indirect call-sites and functions firstly. By comparing counts of parameters prepared before call-sites and consumed by functions, targets of indirect calls are reduced. Then the control flow would be more constrained at indirect call-sites in runtime. Combined with CCFI, we implement our policy. Experimental results on some popular programs show that our approach is efficient. Further analysis show that it can mitigate COOP and other advanced attacks.

Keywords: contex-sensitive, CFI, binary analysis, code reuse attack

Procedia PDF Downloads 308
7622 Photoluminescence Study of Erbium-Mixed Alkylated Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks

Abstract:

Alkylated silicon nanocrystals (C11-SiNCs) were prepared successfully by galvanostatic etching of p-Si(100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract C11-SiNCs from porous silicon. Erbium trichloride was added to alkylated SiNCs using a simple mixing chemical route. To the best of our knowledge, this is the first investigation on mixing SiNCs with erbium ions (III) by this chemical method. The chemical characterization of C11-SiNCs and their mixtures with Er3+ (Er/C11-SiNCs) were carried out using X-ray photoemission spectroscopy (XPS). The optical properties of C11-SiNCs and their mixtures with Er3+ were investigated using Raman spectroscopy and photoluminescence (PL). The erbium-mixed alkylated SiNCs shows an orange PL emission peak at around 595 nm that originates from radiative recombination of Si. Er/C11-SiNCs mixture also exhibits a weak PL emission peak at 1536 nm that originates from the intra-4f transition in erbium ions (Er3+). The PL peak of Si in Er/C11-SiNCs mixture is increased in the intensity up to three times as compared to pure C11-SiNCs. The collected data suggest that this chemical mixing route leads instead to a transfer of energy from erbium ions to alkylated SiNCs.

Keywords: photoluminescence, silicon nanocrystals, erbium, Raman spectroscopy

Procedia PDF Downloads 351
7621 Influence of Machining Process on Surface Integrity of Plasma Coating

Authors: T. Zlámal, J. Petrů, M. Pagáč, P. Krajkovič

Abstract:

For the required function of components with the thermal spray coating, it is necessary to perform additional machining of the coated surface. The paper deals with assessing the surface integrity of Metco 2042, a plasma sprayed coating, after its machining. The selected plasma sprayed coating serves as an abradable sealing coating in a jet engine. Therefore, the spray and its surface must meet high quality and functional requirements. Plasma sprayed coatings are characterized by lamellar structure, which requires a special approach to their machining. Therefore, the experimental part involves the set-up of special cutting tools and cutting parameters under which the applied coating was machined. For the assessment of suitably set machining parameters, selected parameters of surface integrity were measured and evaluated during the experiment. To determine the size of surface irregularities and the effect of the selected machining technology on the sprayed coating surface, the surface roughness parameters Ra and Rz were measured. Furthermore, the measurement of sprayed coating surface hardness by the HR 15 Y method before and after machining process was used to determine the surface strengthening. The changes of strengthening were detected after the machining. The impact of chosen cutting parameters on the surface roughness after the machining was not proven.

Keywords: machining, plasma sprayed coating, surface integrity, strengthening

Procedia PDF Downloads 252
7620 Gas-Phase Noncovalent Functionalization of Pristine Single-Walled Carbon Nanotubes with 3D Metal(II) Phthalocyanines

Authors: Vladimir A. Basiuk, Laura J. Flores-Sanchez, Victor Meza-Laguna, Jose O. Flores-Flores, Lauro Bucio-Galindo, Elena V. Basiuk

Abstract:

Noncovalent nanohybrid materials combining carbon nanotubes (CNTs) with phthalocyanines (Pcs) is a subject of increasing research effort, with a particular emphasis on the design of new heterogeneous catalysts, efficient organic photovoltaic cells, lithium batteries, gas sensors, field effect transistors, among other possible applications. The possibility of using unsubstituted Pcs for CNT functionalization is very attractive due to their very moderate cost and easy commercial availability. However, unfortunately, the deposition of unsubstituted Pcs onto nanotube sidewalls through the traditional liquid-phase protocols turns to be very problematic due to extremely poor solubility of Pcs. On the other hand, unsubstituted free-base H₂Pc phthalocyanine ligand, as well as many of its transition metal complexes, exhibit very high thermal stability and considerable volatility under reduced pressure, which opens the possibility for their physical vapor deposition onto solid surfaces, including nanotube sidewalls. In the present work, we show the possibility of simple, fast and efficient noncovalent functionalization of single-walled carbon nanotubes (SWNTs) with a series of 3d metal(II) phthalocyanines Me(II)Pc, where Me= Co, Ni, Cu, and Zn. The functionalization can be performed in a temperature range of 400-500 °C under moderate vacuum and requires about 2-3 h only. The functionalized materials obtained were characterized by means of Fourier-transform infrared (FTIR), Raman, UV-visible and energy-dispersive X-ray spectroscopy (EDS), scanning and transmission electron microscopy (SEM and TEM, respectively) and thermogravimetric analysis (TGA). TGA suggested that Me(II)Pc weight content is 30%, 17% and 35% for NiPc, CuPc, and ZnPc, respectively (CoPc exhibited anomalous thermal decomposition behavior). The above values are consistent with those estimated from EDS spectra, namely, of 24-39%, 27-36% and 27-44% for CoPc, CuPc, and ZnPc, respectively. A strong increase in intensity of D band in the Raman spectra of SWNT‒Me(II)Pc hybrids, as compared to that of pristine nanotubes, implies very strong interactions between Pc molecules and SWNT sidewalls. Very high absolute values of binding energies of 32.46-37.12 kcal/mol and the highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO, respectively) distribution patterns, calculated with density functional theory by using Perdew-Burke-Ernzerhof general gradient approximation correlation functional in combination with the Grimme’s empirical dispersion correction (PBE-D) and the double numerical basis set (DNP), also suggested that the interactions between Me(II) phthalocyanines and nanotube sidewalls are very strong. The authors thank the National Autonomous University of Mexico (grant DGAPA-IN200516) and the National Council of Science and Technology of Mexico (CONACYT, grant 250655) for financial support. The authors are also grateful to Dr. Natalia Alzate-Carvajal (CCADET of UNAM), Eréndira Martínez (IF of UNAM) and Iván Puente-Lee (Faculty of Chemistry of UNAM) for technical assistance with FTIR, TGA measurements, and TEM imaging, respectively.

Keywords: carbon nanotubes, functionalization, gas-phase, metal(II) phthalocyanines

Procedia PDF Downloads 117