Search results for: network complexity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6191

Search results for: network complexity

941 Effectual Role of Local Level Partnership Schemes in Affordable Housing Delivery

Authors: Hala S. Mekawy

Abstract:

Affordable housing delivery for low and lower middle income families is a prominent problem in many developing countries; governments alone are unable to address this challenge due to diverse financial and regulatory constraints, and the private sector's contribution is rare and assists only middle-income households even when institutional and legal reforms are conducted to persuade it to go down market. Also, the market-enabling policy measures advocated by the World Bank since the early nineties have been strongly criticized and proven to be inappropriate to developing country contexts, where it is highly unlikely that the formal private sector can reach low income population. In addition to governments and private developers, affordable housing delivery systems involve an intricate network of relationships between diverse ranges of actors. Collaboration between them was proven to be vital, and hence, an approach towards partnership schemes for affordable housing delivery has emerged. The basic premise of this paper is that addressing housing affordability challenges in Egypt demands direct public support, as markets and market actors alone would never succeed in delivering decent affordable housing to low and lower middle income groups. It argues that this support would ideally be through local level partnership schemes, with a leading decentralized local government role, and partners being identified according to specific local conditions. It attempts to identify major attributes that would ensure the fulfilment of the goals of such schemes in the Egyptian context. This is based upon evidence from diversified worldwide experiences, in addition to the main outcomes of a questionnaire that was conducted to specialists and chief actors in the field.

Keywords: affordable housing, partnership schemes, housing, urban environments

Procedia PDF Downloads 227
940 Assessment of Genetic Diversity and Population Structure of Goldstripe Sardinella, Sardinella gibbosa in the Transboundary Area of Kenya and Tanzania Using mtDNA and msDNA Markers

Authors: Sammy Kibor, Filip Huyghe, Marc Kochzius, James Kairo

Abstract:

Goldstripe Sardinella, Sardinella gibbosa, (Bleeker, 1849) is a commercially and ecologically important small pelagic fish common in the Western Indian Ocean region. The present study aimed to assess genetic diversity and population structure of the species in the Kenya-Tanzania transboundary area using mtDNA and msDNA markers. Some 630 bp sequence in the mitochondrial DNA (mtDNA) Cytochrome C Oxidase I (COI) and five polymorphic microsatellite DNA loci were analyzed. Fin clips of 309 individuals from eight locations within the transboundary area were collected between July and December 2018. The S. gibbosa individuals from the different locations were distinguishable from one another based on the mtDNA variation, as demonstrated with a neighbor-joining tree and minimum spanning network analysis. None of the identified 22 haplotypes were shared between Kenya and Tanzania. Gene diversity per locus was relatively high (0.271-0.751), highest Fis was 0.391. The structure analysis, discriminant analysis of Principal component (DAPC) and the pair-wise (FST = 0.136 P < 0.001) values after Bonferroni correction using five microsatellite loci provided clear inference on genetic differentiation and thus evidence of population structure of S. gibbosa along the Kenya-Tanzania coast. This study shows a high level of genetic diversity and the presence of population structure (Φst =0.078 P < 0.001) resulting to the existence of four populations giving a clear indication of minimum gene flow among the population. This information has application in the designing of marine protected areas, an important tool for marine conservation.

Keywords: marine connectivity, microsatellites, population genetics, transboundary

Procedia PDF Downloads 123
939 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur

Abstract:

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

Keywords: human machine interface, industrial internet of things, internet of things, optical character recognition, video analytics

Procedia PDF Downloads 108
938 Improvement of Water Quality of Al Asfar Lake Using Constructed Wetland System

Authors: Jamal Radaideh

Abstract:

Al-Asfar Lake is located about 14 km east of Al-Ahsa and is one of the most important wetland lakes in the Al Ahsa/Eastern Province of Saudi Arabia. Al-Ahsa is may be the largest oasis in the world, having an area of 20,000 hectares, in addition, it is of the largest and oldest agricultural centers in the region. The surplus farm irrigation water beside additional water supplied by treated wastewater from Al-Hofuf sewage station is collected by a drainage network and discharged into Al-Asfar Lake. The lake has good wetlands, sand dunes as well as large expanses of open and shallow water. Salt tolerant vegetation is present in some of the shallow areas around the lake, and huge stands of Phragmites reeds occur around the lake. The lake presents an important habitat for wildlife and birds, something not expected to find in a large desert. Although high evaporation rates in the range of 3250 mm are common, the water remains in the evaporation lakes during all seasons of the year is used to supply cattle with drinking water and for aquifer recharge. Investigations showed that high concentrations of nitrogen (N), phosphorus (P), biological oxygen demand (BOD), chemical oxygen demand (COD) and salinity discharge to Al Asfar Lake from the D2 drain exist. It is expected that the majority of BOD, COD and N originates from wastewater discharge and leachate from surplus irrigation water which also contribute to the majority of P and salinity. The significant content of nutrients and biological oxygen demand reduces available oxygen in the water. The present project aimed to improve the water quality of the lake using constructed wetland trains which will be built around the lake. Phragmites reeds, which already occur around the lake, will be used.

Keywords: Al Asfar lake, constructed wetland, water quality, water treatment

Procedia PDF Downloads 446
937 Structural Model on Organizational Climate, Leadership Behavior and Organizational Commitment: Work Engagement of Private Secondary School Teachers in Davao City

Authors: Genevaive Melendres

Abstract:

School administrators face the reality of teachers losing their engagement, or schools losing the teachers. This study is then conducted to identify a structural model that best predict work engagement of private secondary teachers in Davao City. Ninety-three teachers from four sectarian schools and 56 teachers from four non-sectarian schools were involved in the completion of four survey instruments namely Organizational Climate Questionnaire, Leader Behavior Descriptive Questionnaire, Organizational Commitment Scales, and Utrecht Work Engagement Scales. Data were analyzed using frequency distribution, mean, standardized deviation, t-test for independent sample, Pearson r, stepwise multiple regression analysis, and structural equation modeling. Results show that schools have high level of organizational climate dimensions; leaders oftentimes show work-oriented and people-oriented behavior; teachers have high normative commitment and they are very often engaged at their work. Teachers from non-sectarian schools have higher organizational commitment than those from sectarian schools. Organizational climate and leadership behavior are positively related to and predict work engagement whereas commitment did not show any relationship. This study underscores the relative effects of three variables on the work engagement of teachers. After testing network of relationships and evaluating several models, a best-fitting model was found between leadership behavior and work engagement. The noteworthy findings suggest that principals pay attention and consistently evaluate their behavior for this best predicts the work engagement of the teachers. The study provides value to administrators who take decisions and create conditions in which teachers derive fulfillment.

Keywords: leadership behavior, organizational climate, organizational commitment, private secondary school teachers, structural model on work engagement

Procedia PDF Downloads 271
936 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models

Authors: Ethan James

Abstract:

Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.

Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina

Procedia PDF Downloads 181
935 A Data-Driven Compartmental Model for Dengue Forecasting and Covariate Inference

Authors: Yichao Liu, Peter Fransson, Julian Heidecke, Jonas Wallin, Joacim Rockloev

Abstract:

Dengue, a mosquito-borne viral disease, poses a significant public health challenge in endemic tropical or subtropical countries, including Sri Lanka. To reveal insights into the complexity of the dynamics of this disease and study the drivers, a comprehensive model capable of both robust forecasting and insightful inference of drivers while capturing the co-circulating of several virus strains is essential. However, existing studies mostly focus on only one aspect at a time and do not integrate and carry insights across the siloed approach. While mechanistic models are developed to capture immunity dynamics, they are often oversimplified and lack integration of all the diverse drivers of disease transmission. On the other hand, purely data-driven methods lack constraints imposed by immuno-epidemiological processes, making them prone to overfitting and inference bias. This research presents a hybrid model that combines machine learning techniques with mechanistic modelling to overcome the limitations of existing approaches. Leveraging eight years of newly reported dengue case data, along with socioeconomic factors, such as human mobility, weekly climate data from 2011 to 2018, genetic data detecting the introduction and presence of new strains, and estimates of seropositivity for different districts in Sri Lanka, we derive a data-driven vector (SEI) to human (SEIR) model across 16 regions in Sri Lanka at the weekly time scale. By conducting ablation studies, the lag effects allowing delays up to 12 weeks of time-varying climate factors were determined. The model demonstrates superior predictive performance over a pure machine learning approach when considering lead times of 5 and 10 weeks on data withheld from model fitting. It further reveals several interesting interpretable findings of drivers while adjusting for the dynamics and influences of immunity and introduction of a new strain. The study uncovers strong influences of socioeconomic variables: population density, mobility, household income and rural vs. urban population. The study reveals substantial sensitivity to the diurnal temperature range and precipitation, while mean temperature and humidity appear less important in the study location. Additionally, the model indicated sensitivity to vegetation index, both max and average. Predictions on testing data reveal high model accuracy. Overall, this study advances the knowledge of dengue transmission in Sri Lanka and demonstrates the importance of incorporating hybrid modelling techniques to use biologically informed model structures with flexible data-driven estimates of model parameters. The findings show the potential to both inference of drivers in situations of complex disease dynamics and robust forecasting models.

Keywords: compartmental model, climate, dengue, machine learning, social-economic

Procedia PDF Downloads 84
934 Cracking Performance of Bituminous Concrete Mixes Containing High Percentage of RAP Material

Authors: Bicky Agarwal, Ambika Behl, Rajiv Kumar, Ashish Dhamaniya

Abstract:

India ranks second for having the largest road network in the world after the United States (U.S.). According to the National Asphalt Pavement Association (NAPA), the U.S. produced about 94.6 million tons of Reclaimed Asphalt Pavement (RAP) in 2021. Despite the benefits of RAP usage, it is not widely adopted in many countries, including India. Rising asphalt binder costs and environmental concerns have spurred interest in using RAP material in asphalt mixtures. However, increasing RAP content may have adverse effects on certain characteristics of asphalt mixtures, such as cracking resistance. Cracking is a common pavement issue that affects the lifespan and durability of hot-mix asphalt pavements. Assessing cracking resistance is crucial in pavement design. Various laboratory tests and performance indicators are utilized to evaluate cracking resistance. This study aims to use the Texas Overlay Tester (TOT) to assess the impact of reclaimed asphalt pavement (RAP) on the cracking resistance of Bituminous Concrete (BC-II) mixes. Following the Marshall Mix Design method, asphalt mixes with RAP contents of 0% (Control), 30%, 40%, 50%, and 60% were prepared and tested at their Optimum Binder Content (OBC). The ITS results showed that the control mix had an ITS value of 1.2 MPa, with slight decreases observed in mixes containing up to 60% RAP, although these changes were not statistically significant (p=0.538>0.05). The TSR tests indicated that all mixes exceeded the minimum requirement of 80%. The Texas Overlay Test (TOT) was used to evaluate cracking performance and revealed that higher RAP contents had a negative impact on fatigue resistance. The 50% RAP mix exhibited the highest CFE, indicating that it has the best resistance to crack propagation despite having a lower number of cycles to failure. All mixes were categorized as falling into the Soft-crack-resistant quadrant, indicating their ability to resist crack propagation while being more susceptible to crack initiation.

Keywords: RAP, BC-II, HMA, TOT

Procedia PDF Downloads 27
933 Economic Policy Promoting Economically Rational Behavior of Start-Up Entrepreneurs in Georgia

Authors: Gulnaz Erkomaishvili

Abstract:

Introduction: The pandemic and the current economic crisis have created problems for entrepreneurship and, therefore for start-up entrepreneurs. The paper presents the challenges of start-up entrepreneurs in Georgia in the time of pandemic and the analysis of the state economic policy measures. Despite many problems, the study found that in 54.2% of start-ups surveyed under the pandemic, innovation opportunities were growing. It can be stated that the pandemic was a good opportunity to increase the innovative capacity of the enterprise. 52% of the surveyed start-up entrepreneurs managed to adapt to the current situation and increase the sale of their products/services through remote channels. As for the assessment of state support measures by start-up entrepreneurs, a large number of Georgian start-ups do not assess the measures implemented by the state positively. Methodology: The research process uses methods of analysis and synthesis, quantitative and qualitative, interview/survey, grouping, relative and average values, graphing, comparison, data analysis, and others. Main Findings: Studies have shown that for the start-up entrepreneurs, the main problem remains: inaccessible funding, workers' qualifications gap, inflation, taxes, regulation, political instability, inadequate provision of infrastructure, amount of taxes, and other factors. Conclusions: The state should take the following measures to support business start-ups: create an attractive environment for investment, availability of soft loans, creation of an insurance system, infrastructure development, increase the effectiveness of tax policy (simplicity of the tax system, clarity, optimal tax level ); promote export growth (develop strategy for opening up international markets, build up a broad marketing network, etc.).

Keywords: start-up entrepreneurs, startups, start-up entrepreneurs support programs, start-up entrepreneurs support economic policy

Procedia PDF Downloads 116
932 Sulfur-Doped Hierarchically Porous Boron Nitride Nanosheets as an Efficient Carbon Dioxide Adsorbent

Authors: Sreetama Ghosh, Sundara Ramaprabhu

Abstract:

Carbon dioxide gas has been a major cause for the worldwide increase in green house effect, which leads to climate change and global warming. So CO₂ capture & sequestration has become an effective way to reduce the concentration of CO₂ in the environment. One such way to capture CO₂ in porous materials is by adsorption process. A potential material in this aspect is porous hexagonal boron nitride or 'white graphene' which is a well-known two-dimensional layered material with very high thermal stability. It had been investigated that the sample with hierarchical pore structure and high specific surface area shows excellent performance in capturing carbon dioxide gas and thereby mitigating the problem of environmental pollution to the certain extent. Besides, the presence of sulfur as well as nitrogen in the sample synergistically helps in the increase in adsorption capacity. In this work, a cost effective single step synthesis of highly porous boron nitride nanosheets doped with sulfur had been demonstrated. Besides, the CO₂ adsorption-desorption studies were carried on using a pressure reduction technique. The studies show that the nanosheets exhibit excellent cyclic stability in storage performance. Thermodynamic studies suggest that the adsorption takes place mainly through physisorption. The studies show that the nanosheets exhibit excellent cyclic stability in storage performance. Further, the surface modification of the highly porous nano sheets carried out by incorporating ionic liquids had further enhanced the capturing capability of CO₂ gas in the nanocomposite, revealing that this particular material has the potential to be an excellent adsorbent of carbon dioxide gas.

Keywords: CO₂ capture, hexagonal boron nitride nanosheets, porous network, sulfur doping

Procedia PDF Downloads 241
931 Bayesian System and Copula for Event Detection and Summarization of Soccer Videos

Authors: Dhanuja S. Patil, Sanjay B. Waykar

Abstract:

Event detection is a standout amongst the most key parts for distinctive sorts of area applications of video data framework. Recently, it has picked up an extensive interest of experts and in scholastics from different zones. While detecting video event has been the subject of broad study efforts recently, impressively less existing methodology has considered multi-model data and issues related efficiency. Start of soccer matches different doubtful circumstances rise that can't be effectively judged by the referee committee. A framework that checks objectively image arrangements would prevent not right interpretations because of some errors, or high velocity of the events. Bayesian networks give a structure for dealing with this vulnerability using an essential graphical structure likewise the probability analytics. We propose an efficient structure for analysing and summarization of soccer videos utilizing object-based features. The proposed work utilizes the t-cherry junction tree, an exceptionally recent advancement in probabilistic graphical models, to create a compact representation and great approximation intractable model for client’s relationships in an interpersonal organization. There are various advantages in this approach firstly; the t-cherry gives best approximation by means of junction trees class. Secondly, to construct a t-cherry junction tree can be to a great extent parallelized; and at last inference can be performed utilizing distributed computation. Examination results demonstrates the effectiveness, adequacy, and the strength of the proposed work which is shown over a far reaching information set, comprising more soccer feature, caught at better places.

Keywords: summarization, detection, Bayesian network, t-cherry tree

Procedia PDF Downloads 323
930 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals

Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou

Abstract:

In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.

Keywords: continuous wavelet transform, convolution neural net-work, gated recurrent unit, health indicators, remaining useful life

Procedia PDF Downloads 132
929 A Mega-Analysis of the Predictive Power of Initial Contact within Minimal Social Network

Authors: Cathal Ffrench, Ryan Barrett, Mike Quayle

Abstract:

It is accepted in social psychology that categorization leads to ingroup favoritism, without further thought given to the processes that may co-occur or even precede categorization. These categorizations move away from the conceptualization of the self as a unique social being toward an increasingly collective identity. Subsequently, many individuals derive much of their self-evaluations from these collective identities. The seminal literature on this topic argues that it is primarily categorization that evokes instances of ingroup favoritism. Apropos to these theories, we argue that categorization acts to enhance and further intergroup processes rather than defining them. More accurately, we propose categorization aids initial ingroup contact and this first contact is predictive of subsequent favoritism on individual and collective levels. This analysis focuses on Virtual Interaction APPLication (VIAPPL) based studies, a software interface that builds on the flaws of the original minimal group studies. The VIAPPL allows the exchange of tokens in an intra and inter-group manner. This token exchange is how we classified the first contact. The study involves binary longitudinal analysis to better understand the subsequent exchanges of individuals based on who they first interacted with. Studies were selected on the criteria of evidence of explicit first interactions and two-group designs. Our findings paint a compelling picture in support of a motivated contact hypothesis, which suggests that an individual’s first motivated contact toward another has strong predictive capabilities for future behavior. This contact can lead to habit formation and specific favoritism towards individuals where contact has been established. This has important implications for understanding how group conflict occurs, and how intra-group individual bias can develop.

Keywords: categorization, group dynamics, initial contact, minimal social networks, momentary contact

Procedia PDF Downloads 146
928 LGR5 and Downstream Intracellular Signaling Proteins Play Critical Roles in the Cell Proliferation of Neuroblastoma, Meningioma and Pituitary Adenoma

Authors: Jin Hwan Cheong, Mina Hwang, Myung Hoon Han, Je Il Ryu, Young ha Oh, Seong Ho Koh, Wu Duck Won, Byung Jin Ha

Abstract:

Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) has been reported to play critical roles in the proliferation of various cancer cells. However, the roles of LGR5 in brain tumors and the specific intracellular signaling proteins directly associated with it remain unknown. Expression of LGR5 was first measured in normal brain tissue, meningioma, and pituitary adenoma of humans. To identify the downstream signaling pathways of LGR5, siRNA-mediated knockdown of LGR5 was performed in SH-SY5Y neuroblastoma cells followed by proteomics analysis with 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE). In addition, the expression of LGR5-associated proteins was evaluated in LGR5-inꠓhibited neuroblastoma cells and in human normal brain, meningioma, and pituitary adenoma tissue. Proteomics analysis showed 12 protein spots were significantly different in expression level (more than two-fold change) and subsequently identified by peptide mass fingerprinting. A protein association network was constructed from the 12 identified proteins altered by LGR5 knockdown. Direct and indirect interactions were identified among the 12 proteins. HSP 90-beta was one of the proteins whose expression was altered by LGR5 knockdown. Likewise, we observed decreased expression of proteins in the hnRNP subfamily following LGR5 knockdown. In addition, we have for the first time identified significantly higher hnRNP family expression in meningioma and pituitary adenoma compared to normal brain tissue. Taken together, LGR5 and its downstream sigꠓnaling play critical roles in neuroblastoma and brain tumors such as meningioma and pituitary adenoma.

Keywords: LGR5, neuroblastoma, meningioma, pituitary adenoma, hnRNP

Procedia PDF Downloads 54
927 TessPy – Spatial Tessellation Made Easy

Authors: Jonas Hamann, Siavash Saki, Tobias Hagen

Abstract:

Discretization of urban areas is a crucial aspect in many spatial analyses. The process of discretization of space into subspaces without overlaps and gaps is called tessellation. It helps understanding spatial space and provides a framework for analyzing geospatial data. Tessellation methods can be divided into two groups: regular tessellations and irregular tessellations. While regular tessellation methods, like squares-grids or hexagons-grids, are suitable for addressing pure geometry problems, they cannot take the unique characteristics of different subareas into account. However, irregular tessellation methods allow the border between the subareas to be defined more realistically based on urban features like a road network or Points of Interest (POI). Even though Python is one of the most used programming languages when it comes to spatial analysis, there is currently no library that combines different tessellation methods to enable users and researchers to compare different techniques. To close this gap, we are proposing TessPy, an open-source Python package, which combines all above-mentioned tessellation methods and makes them easily accessible to everyone. The core functions of TessPy represent the five different tessellation methods: squares, hexagons, adaptive squares, Voronoi polygons, and city blocks. By using regular methods, users can set the resolution of the tessellation which defines the finesse of the discretization and the desired number of tiles. Irregular tessellation methods allow users to define which spatial data to consider (e.g., amenity, building, office) and how fine the tessellation should be. The spatial data used is open-source and provided by OpenStreetMap. This data can be easily extracted and used for further analyses. Besides the methodology of the different techniques, the state-of-the-art, including examples and future work, will be discussed. All dependencies can be installed using conda or pip; however, the former is more recommended.

Keywords: geospatial data science, geospatial data analysis, tessellations, urban studies

Procedia PDF Downloads 126
926 Human-Centred Data Analysis Method for Future Design of Residential Spaces: Coliving Case Study

Authors: Alicia Regodon Puyalto, Alfonso Garcia-Santos

Abstract:

This article presents a method to analyze the use of indoor spaces based on data analytics obtained from inbuilt digital devices. The study uses the data generated by the in-place devices, such as smart locks, Wi-Fi routers, and electrical sensors, to gain additional insights on space occupancy, user behaviour, and comfort. Those devices, originally installed to facilitate remote operations, report data through the internet that the research uses to analyze information on human real-time use of spaces. Using an in-place Internet of Things (IoT) network enables a faster, more affordable, seamless, and scalable solution to analyze building interior spaces without incorporating external data collection systems such as sensors. The methodology is applied to a real case study of coliving, a residential building of 3000m², 7 floors, and 80 users in the centre of Madrid. The case study applies the method to classify IoT devices, assess, clean, and analyze collected data based on the analysis framework. The information is collected remotely, through the different platforms devices' platforms; the first step is to curate the data, understand what insights can be provided from each device according to the objectives of the study, this generates an analysis framework to be escalated for future building assessment even beyond the residential sector. The method will adjust the parameters to be analyzed tailored to the dataset available in the IoT of each building. The research demonstrates how human-centered data analytics can improve the future spatial design of indoor spaces.

Keywords: in-place devices, IoT, human-centred data-analytics, spatial design

Procedia PDF Downloads 196
925 Soccer, a Major Social Changing Factor: Kosovo Case

Authors: Armend Kelmendi, Adnan Ahmeti

Abstract:

The purpose of our study was to assess the impact of soccer in the overall wealth fare (education, health, and economic prosperity) of youth in Kosovo (age: 7-18). The research conducted measured a number of parameters (training methodologies, conditions, community leadership impact) in a sample consisting of 6 different football clubs’ academies across the country. Fifty (50) male and female football youngsters volunteered in this study. To generate more reliable results, the analysis was conducted with the help of a set of effective project management tools and techniques (Gantt chart, Logic Network, PERT chart, Work Breakdown Structure, and Budgeting Analysis). The interviewees were interviewed under a specific lens of categories (impact in education, health, and economic prosperity). A set of questions were asked i.e. what has football provided to you and the community you live in?; Did football increase your confidence and shaped your life for better?; What was the main reason you started training in football? The results generated explain how a single sport, namely that of football in Kosovo can make a huge social change, improving key social factors in a society. There was a considerable difference between the youth clubs as far as training conditions are concerned. The study found out that despite financial constraints, two out of six clubs managed to produce twice as more talented players that were introduced to professional primary league teams in Kosovo and Albania, including other soccer teams in the region, Europe, and Asia. The study indicates that better sports policy must be formulated and associated with important financial investments in soccer for it to be considered fruitful and beneficial for players of 18 plus years of age, namely professionals.

Keywords: youth, prosperity, conditions, investments, growth, free movement

Procedia PDF Downloads 239
924 Adjusting Electricity Demand Data to Account for the Impact of Loadshedding in Forecasting Models

Authors: Migael van Zyl, Stefanie Visser, Awelani Phaswana

Abstract:

The electricity landscape in South Africa is characterized by frequent occurrences of loadshedding, a measure implemented by Eskom to manage electricity generation shortages by curtailing demand. Loadshedding, classified into stages ranging from 1 to 8 based on severity, involves the systematic rotation of power cuts across municipalities according to predefined schedules. However, this practice introduces distortions in recorded electricity demand, posing challenges to accurate forecasting essential for budgeting, network planning, and generation scheduling. Addressing this challenge requires the development of a methodology to quantify the impact of loadshedding and integrate it back into metered electricity demand data. Fortunately, comprehensive records of loadshedding impacts are maintained in a database, enabling the alignment of Loadshedding effects with hourly demand data. This adjustment ensures that forecasts accurately reflect true demand patterns, independent of loadshedding's influence, thereby enhancing the reliability of electricity supply management in South Africa. This paper presents a methodology for determining the hourly impact of load scheduling and subsequently adjusting historical demand data to account for it. Furthermore, two forecasting models are developed: one utilizing the original dataset and the other using the adjusted data. A comparative analysis is conducted to evaluate forecast accuracy improvements resulting from the adjustment process. By implementing this methodology, stakeholders can make more informed decisions regarding electricity infrastructure investments, resource allocation, and operational planning, contributing to the overall stability and efficiency of South Africa's electricity supply system.

Keywords: electricity demand forecasting, load shedding, demand side management, data science

Procedia PDF Downloads 59
923 Ground Short Circuit Contributions of a MV Distribution Line Equipped with PWMSC

Authors: Mohamed Zellagui, Heba Ahmed Hassan

Abstract:

This paper proposes a new approach for the calculation of short-circuit parameters in the presence of Pulse Width Modulated based Series Compensator (PWMSC). PWMSC is a newly Flexible Alternating Current Transmission System (FACTS) device that can modulate the impedance of a transmission line through applying a variation to the duty cycle (D) of a train of pulses with fixed frequency. This results in an improvement of the system performance as it provides virtual compensation of distribution line impedance by injecting controllable apparent reactance in series with the distribution line. This controllable reactance can operate in both capacitive and inductive modes and this makes PWMSC highly effective in controlling the power flow and increasing system stability in the system. The purpose of this work is to study the impact of fault resistance (RF) which varies between 0 to 30 Ω on the fault current calculations in case of a ground fault and a fixed fault location. The case study is for a medium voltage (MV) Algerian distribution line which is compensated by PWMSC in the 30 kV Algerian distribution power network. The analysis is based on symmetrical components method which involves the calculations of symmetrical components of currents and voltages, without and with PWMSC in both cases of maximum and minimum duty cycle value for capacitive and inductive modes. The paper presents simulation results which are verified by the theoretical analysis.

Keywords: pulse width modulated series compensator (pwmsc), duty cycle, distribution line, short-circuit calculations, ground fault, symmetrical components method

Procedia PDF Downloads 498
922 Linking Adaptation to Climate Change and Sustainable Development: The Case of ClimAdaPT.Local in Portugal

Authors: A. F. Alves, L. Schmidt, J. Ferrao

Abstract:

Portugal is one of the more vulnerable European countries to the impacts of climate change. These include: temperature increase; coastal sea level rise; desertification and drought in the countryside; and frequent and intense extreme weather events. Hence, adaptation strategies to climate change are of great importance. This is what was addressed by ClimAdaPT.Local. This policy-oriented project had the main goal of developing 26 Municipal Adaptation Strategies for Climate Change, through the identification of local specific present and future vulnerabilities, the training of municipal officials, and the engagement of local communities. It is intended to be replicated throughout the whole territory and to stimulate the creation of a national network of local adaptation in Portugal. Supported by methodologies and tools specifically developed for this project, our paper is based on the surveys, training and stakeholder engagement workshops implemented at municipal level. In an 'adaptation-as-learning' process, these tools functioned as a social-learning platform and an exercise in knowledge and policy co-production. The results allowed us to explore the nature of local vulnerabilities and the exposure of gaps in the context of reappraisal of both future climate change adaptation opportunities and possible dysfunctionalities in the governance arrangements of municipal Portugal. Development issues are highlighted when we address the sectors and social groups that are both more sensitive and more vulnerable to the impacts of climate change. We argue that a pluralistic dialogue and a common framing can be established between them, with great potential for transformational adaptation. Observed climate change, present-day climate variability and future expectations of change are great societal challenges which should be understood in the context of the sustainable development agenda.

Keywords: adaptation, ClimAdaPT.Local, climate change, Portugal, sustainable development

Procedia PDF Downloads 194
921 Interdisciplinary Method Development - A Way to Realize the Full Potential of Textile Resources

Authors: Nynne Nørup, Julie Helles Eriksen, Rikke M. Moalem, Else Skjold

Abstract:

Despite a growing focus on the high environmental impact of textiles, textile waste is only recently considered as part of the waste field. Consequently, there is a general lack of knowledge and data within this field. Particularly the lack of a common perception of textiles generates several problems e.g., to recognize the full material potential the fraction contains, which is cruel if the textile must enter the circular economy. This study aims to qualify a method to make the resources in textile waste visible in a way that makes it possible to move them as high up in the waste hierarchy as possible. Textiles are complex and cover many different types of products, fibers and combinations of fibers and production methods. In garments alone, there is a great variety, even when narrowing it to only undergarments. However, textile waste is often reduced to one fraction, assessed solely by quantity, and compared to quantities of other waste fractions. Disregarding the complexity and reducing textiles to a single fraction that covers everything made of textiles increase the risk of neglecting the value of the materials, both with regards to their properties and economical. Instead of trying to fit textile waste into the current primarily linear waste system where volume is a key part of the business models, this study focused on integrating textile waste as a resource in the design and production phase. The study combined interdisciplinary methods for determining replacement rates used in Life Cycle Assessments and Mass Flow Analysis methods with the designer’s toolbox to hereby activate the properties of textile waste in a way that can unleash its potential optimally. It was hypothesized that by activating Denmark's tradition for design and high level of craftsmanship, it is possible to find solutions that can be used today and create circular resource models that reduce the use of virgin fibers. Through waste samples, case studies, and testing of various design approaches, this study explored how to functionalize the method so that the product after the end-use is kept as a material and only then processed at fiber level to obtain the best environmental utilization. The study showed that the designers' ability to decode the properties of the materials and understanding of craftsmanship were decisive for how well the materials could be utilized today. The later in the life cycle the textiles appeared as waste, the more demanding the description of the materials to be sufficient, especially if to achieve the best possible use of the resources and thus a higher replacement rate. In addition, it also required adaptation in relation to the current production because the materials often varied more. The study found good indications that part of the solution is to use geodata i.e., where in the life cycle the materials were discarded. An important conclusion is that a fully developed method can help support better utilization of textile resources. However, it stills requires a better understanding of materials by the designers, as well as structural changes in business and society.

Keywords: circular economy, development of sustainable processes, environmental impacts, environmental management of textiles, environmental sustainability through textile recycling, interdisciplinary method development, resource optimization, recycled textile materials and the evaluation of recycling, sustainability and recycling opportunities in the textile and apparel sector

Procedia PDF Downloads 95
920 Barriers to Business Model Innovation in the Agri-Food Industry

Authors: Pia Ulvenblad, Henrik Barth, Jennie Cederholm BjöRklund, Maya Hoveskog, Per-Ola Ulvenblad

Abstract:

The importance of business model innovation (BMI) is widely recognized. This is also valid for firms in the agri-food industry, closely connected to global challenges. Worldwide food production will have to increase 70% by 2050 and the United Nations’ sustainable development goals prioritize research and innovation on food security and sustainable agriculture. The firms of the agri-food industry have opportunities to increase their competitive advantage through BMI. However, the process of BMI is complex and the implementation of new business models is associated with high degree of risk and failure. Thus, managers from all industries and scholars need to better understand how to address this complexity. Therefore, the research presented in this paper (i) explores different categories of barriers in research literature on business models in the agri-food industry, and (ii) illustrates categories of barriers with empirical cases. This study is addressing the rather limited understanding on barriers for BMI in the agri-food industry, through a systematic literature review (SLR) of 570 peer-reviewed journal articles that contained a combination of ‘BM’ or ‘BMI’ with agriculture-related and food-related terms (e.g. ‘agri-food sector’) published in the period 1990-2014. The study classifies the barriers in several categories and illustrates the identified barriers with ten empirical cases. Findings from the literature review show that barriers are mainly identified as outcomes. It can be assumed that a perceived barrier to growth can often be initially exaggerated or underestimated before being challenged by appropriate measures or courses of action. What may be considered by the public mind to be a barrier could in reality be very different from an actual barrier that needs to be challenged. One way of addressing barriers to growth is to define barriers according to their origin (internal/external) and nature (tangible/intangible). The framework encompasses barriers related to the firm (internal addressing in-house conditions) or to the industrial or national levels (external addressing environmental conditions). Tangible barriers can include asset shortages in the area of equipment or facilities, while human resources deficiencies or negative willingness towards growth are examples of intangible barriers. Our findings are consistent with previous research on barriers for BMI that has identified human factors barriers (individuals’ attitudes, histories, etc.); contextual barriers related to company and industry settings; and more abstract barriers (government regulations, value chain position, and weather). However, human factor barriers – and opportunities - related to family-owned businesses with idealistic values and attitudes and owning the real estate where the business is situated, are more frequent in the agri-food industry than other industries. This paper contributes by generating a classification of the barriers for BMI as well as illustrating them with empirical cases. We argue that internal barriers such as human factors barriers; values and attitudes are crucial to overcome in order to develop BMI. However, they can be as hard to overcome as for example institutional barriers such as governments’ regulations. Implications for research and practice are to focus on cognitive barriers and to develop the BMI capability of the owners and managers of agri-industry firms.

Keywords: agri-food, barriers, business model, innovation

Procedia PDF Downloads 232
919 Comparative Analysis of Data Gathering Protocols with Multiple Mobile Elements for Wireless Sensor Network

Authors: Bhat Geetalaxmi Jairam, D. V. Ashoka

Abstract:

Wireless Sensor Networks are used in many applications to collect sensed data from different sources. Sensed data has to be delivered through sensors wireless interface using multi-hop communication towards the sink. The data collection in wireless sensor networks consumes energy. Energy consumption is the major constraints in WSN .Reducing the energy consumption while increasing the amount of generated data is a great challenge. In this paper, we have implemented two data gathering protocols with multiple mobile sinks/elements to collect data from sensor nodes. First, is Energy-Efficient Data Gathering with Tour Length-Constrained Mobile Elements in Wireless Sensor Networks (EEDG), in which mobile sinks uses vehicle routing protocol to collect data. Second is An Intelligent Agent-based Routing Structure for Mobile Sinks in WSNs (IAR), in which mobile sinks uses prim’s algorithm to collect data. Authors have implemented concepts which are common to both protocols like deployment of mobile sinks, generating visiting schedule, collecting data from the cluster member. Authors have compared the performance of both protocols by taking statistics based on performance parameters like Delay, Packet Drop, Packet Delivery Ratio, Energy Available, Control Overhead. Authors have concluded this paper by proving EEDG is more efficient than IAR protocol but with few limitations which include unaddressed issues likes Redundancy removal, Idle listening, Mobile Sink’s pause/wait state at the node. In future work, we plan to concentrate more on these limitations to avail a new energy efficient protocol which will help in improving the life time of the WSN.

Keywords: aggregation, consumption, data gathering, efficiency

Procedia PDF Downloads 497
918 Optimizing Data Transfer and Processing in Multi-Cloud Environments for Big Data Workloads

Authors: Gaurav Kumar Sinha

Abstract:

In an era defined by the proliferation of data and the utilization of cloud computing environments, the efficient transfer and processing of big data workloads across multi-cloud platforms have emerged as critical challenges. This research paper embarks on a comprehensive exploration of the complexities associated with managing and optimizing big data in a multi-cloud ecosystem.The foundation of this study is rooted in the recognition that modern enterprises increasingly rely on multiple cloud providers to meet diverse business needs, enhance redundancy, and reduce vendor lock-in. As a consequence, managing data across these heterogeneous cloud environments has become intricate, necessitating innovative approaches to ensure data integrity, security, and performance.The primary objective of this research is to investigate strategies and techniques for enhancing the efficiency of data transfer and processing in multi-cloud scenarios. It recognizes that big data workloads are characterized by their sheer volume, variety, velocity, and complexity, making traditional data management solutions insufficient for harnessing the full potential of multi-cloud architectures.The study commences by elucidating the challenges posed by multi-cloud environments in the context of big data. These challenges encompass data fragmentation, latency, security concerns, and cost optimization. To address these challenges, the research explores a range of methodologies and solutions. One of the key areas of focus is data transfer optimization. The paper delves into techniques for minimizing data movement latency, optimizing bandwidth utilization, and ensuring secure data transmission between different cloud providers. It evaluates the applicability of dedicated data transfer protocols, intelligent data routing algorithms, and edge computing approaches in reducing transfer times.Furthermore, the study examines strategies for efficient data processing across multi-cloud environments. It acknowledges that big data processing requires distributed and parallel computing capabilities that span across cloud boundaries. The research investigates containerization and orchestration technologies, serverless computing models, and interoperability standards that facilitate seamless data processing workflows.Security and data governance are paramount concerns in multi-cloud environments. The paper explores methods for ensuring data security, access control, and compliance with regulatory frameworks. It considers encryption techniques, identity and access management, and auditing mechanisms as essential components of a robust multi-cloud data security strategy.The research also evaluates cost optimization strategies, recognizing that the dynamic nature of multi-cloud pricing models can impact the overall cost of data transfer and processing. It examines approaches for workload placement, resource allocation, and predictive cost modeling to minimize operational expenses while maximizing performance.Moreover, this study provides insights into real-world case studies and best practices adopted by organizations that have successfully navigated the challenges of multi-cloud big data management. It presents a comparative analysis of various multi-cloud management platforms and tools available in the market.

Keywords: multi-cloud environments, big data workloads, data transfer optimization, data processing strategies

Procedia PDF Downloads 66
917 Multivariate Data Analysis for Automatic Atrial Fibrillation Detection

Authors: Zouhair Haddi, Stephane Delliaux, Jean-Francois Pons, Ismail Kechaf, Jean-Claude De Haro, Mustapha Ouladsine

Abstract:

Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications.

Keywords: atrial fibrillation, multivariate data analysis, automatic detection, telemedicine

Procedia PDF Downloads 266
916 Cognitive Science Based Scheduling in Grid Environment

Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya

Abstract:

Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.

Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence

Procedia PDF Downloads 392
915 Security Report Profiling for Mobile Banking Applications in Indonesia Based on OWASP Mobile Top 10-2016

Authors: Bambang Novianto, Rizal Aditya Herdianto, Raphael Bianco Huwae, Afifah, Alfonso Brolin Sihite, Rudi Lumanto

Abstract:

The mobile banking application is a type of mobile application that is growing rapidly. This is caused by the ease of service and time savings in making transactions. On the other hand, this certainly provides a challenge in security issues. The use of mobile banking can not be separated from cyberattacks that may occur which can result the theft of sensitive information or financial loss. The financial loss and the theft of sensitive information is the most avoided thing because besides harming the user, it can also cause a loss of customer trust in a bank. Cyberattacks that are often carried out against mobile applications are phishing, hacking, theft, misuse of data, etc. Cyberattack can occur when a vulnerability is successfully exploited. OWASP mobile Top 10 has recorded as many as 10 vulnerabilities that are most commonly found in mobile applications. In the others, android permissions also have the potential to cause vulnerabilities. Therefore, an overview of the profile of the mobile banking application becomes an urgency that needs to be known. So that it is expected to be a consideration of the parties involved for improving security. In this study, an experiment has been conducted to capture the profile of the mobile banking applications in Indonesia based on android permission and OWASP mobile top 10 2016. The results show that there are six basic vulnerabilities based on OWASP Mobile Top 10 that are most commonly found in mobile banking applications in Indonesia, i.e. M1:Improper Platform Usage, M2:Insecure Data Storage, M3:Insecure Communication, M5:Insufficient Cryptography, M7:Client Code Quality, and M9:Reverse Engineering. The most permitted android permissions are the internet, status network access, and telephone read status.

Keywords: mobile banking application, OWASP mobile top 10 2016, android permission, sensitive information, financial loss

Procedia PDF Downloads 138
914 Urine Neutrophil Gelatinase-Associated Lipocalin as an Early Marker of Acute Kidney Injury in Hematopoietic Stem Cell Transplantation Patients

Authors: Sara Ataei, Maryam Taghizadeh-Ghehi, Amir Sarayani, Asieh Ashouri, Amirhossein Moslehi, Molouk Hadjibabaie, Kheirollah Gholami

Abstract:

Background: Acute kidney injury (AKI) is common in hematopoietic stem cell transplantation (HSCT) patients with an incidence of 21–73%. Prevention and early diagnosis reduces the frequency and severity of this complication. Predictive biomarkers are of major importance to timely diagnosis. Neutrophil gelatinase associated lipocalin (NGAL) is a widely investigated novel biomarker for early diagnosis of AKI. However, no study assessed NGAL for AKI diagnosis in HSCT patients. Methods: We performed further analyses on gathered data from our recent trial to evaluate the performance of urine NGAL (uNGAL) as an indicator of AKI in 72 allogeneic HSCT patients. AKI diagnosis and severity were assessed using Risk–Injury–Failure–Loss–End-stage renal disease and AKI Network criteria. We assessed uNGAL on days -6, -3, +3, +9 and +15. Results: Time-dependent Cox regression analysis revealed a statistically significant relationship between uNGAL and AKI occurrence. (HR=1.04 (1.008-1.07), P=0.01). There was a relation between uNGAL day +9 to baseline ratio and incidence of AKI (unadjusted HR=.1.047(1.012-1.083), P<0.01). The area under the receiver-operating characteristic curve for day +9 to baseline ratio was 0.86 (0.74-0.99, P<0.01) and a cut-off value of 2.62 was 85% sensitive and 83% specific in predicting AKI. Conclusions: Our results indicated that increase in uNGAL augmented the risk of AKI and the changes of day +9 uNGAL concentrations from baseline could be of value for predicting AKI in HSCT patients. Additionally uNGAL changes preceded serum creatinine rises by nearly 2 days.

Keywords: acute kidney injury, hemtopoietic stem cell transplantation, neutrophil gelatinase-associated lipocalin, Receiver-operating characteristic curve

Procedia PDF Downloads 409
913 Investigate the Rural Mobility and Accessibility Challenges of Seniors

Authors: Tom Ryan

Abstract:

This paper investigates the rural mobility and accessibility challenges of a specific target group - Seniors. The target group is those over 66 years of age who are entitled to use the Public Transport (PT) Free Travel Scheme in rural Ireland. The paper explores at a high level some of the projected rural PT challenges and requirements over the next 10-15 years, noting that statistical predictions show that there will be a significant population demographic shift within the Senior's age profile. Using the PESTEL framework, the literature review explored existing research concerning mobility, accessibility challenges, and the opportunities Seniors face. Twenty-seven qualitative in-depth interviews with stakeholders within the ecosystem were undertaken. The stakeholders included: rural PT customers, Local-Link managers, NTA senior management, a Minister of State, and a European parliament policymaker. Tier 1 interviewee feedback spotlights that the PT network system does not exist for rural patients to access hospital facilities. There was no evidence from the Tier 2 research findings to show that health policymakers and transport planners are working to deliver a national solution to support patients getting access to hospital appointments. Several research interviewees discussed the theme of isolation and the perceived stigma of senior males utilising PT. The findings indicated that MaaS is potentially revolutionary in the PT arena. Finally, this paper suggests several short-, medium- and long-term recommendations based on the research findings. These recommendations are a potential springboard to ensure that rural PT is suitable for future Irish generations.

Keywords: accessibility, active ageing, car dependence, isolation, seniors health issues, behavioural changes, environmental challenges, internet of things, demand responsive, mobility as a service

Procedia PDF Downloads 109
912 Study of Structural Behavior and Proton Conductivity of Inorganic Gel Paste Electrolyte at Various Phosphorous to Silicon Ratio by Multiscale Modelling

Authors: P. Haldar, P. Ghosh, S. Ghoshdastidar, K. Kargupta

Abstract:

In polymer electrolyte membrane fuel cells (PEMFC), the membrane electrode assembly (MEA) is consisting of two platinum coated carbon electrodes, sandwiched with one proton conducting phosphoric acid doped polymeric membrane. Due to low mechanical stability, flooding and fuel cell crossover, application of phosphoric acid in polymeric membrane is very critical. Phosphorous and silica based 3D inorganic gel gains the attention in the field of supercapacitors, fuel cells and metal hydrate batteries due to its thermally stable highly proton conductive behavior. Also as a large amount of water molecule and phosphoric acid can easily get trapped in Si-O-Si network cavities, it causes a prevention in the leaching out. In this study, we have performed molecular dynamics (MD) simulation and first principle calculations to understand the structural, electronics and electrochemical and morphological behavior of this inorganic gel at various P to Si ratios. We have used dipole-dipole interactions, H bonding, and van der Waals forces to study the main interactions between the molecules. A 'structure property-performance' mapping is initiated to determine optimum P to Si ratio for best proton conductivity. We have performed the MD simulations at various temperature to understand the temperature dependency on proton conductivity. The observed results will propose a model which fits well with experimental data and other literature values. We have also studied the mechanism behind proton conductivity. And finally we have proposed a structure for the gel paste with optimum P to Si ratio.

Keywords: first principle calculation, molecular dynamics simulation, phosphorous and silica based 3D inorganic gel, polymer electrolyte membrane fuel cells, proton conductivity

Procedia PDF Downloads 126