Search results for: low-temperature district heating network
1928 Visual Design of Walkable City as Sidewalk Integration with Dukuh Atas MRT Station in Jakarta
Authors: Nadia E. Christiana, Azzahra A. N. Ginting, Ardhito Nurcahya, Havisa P. Novira
Abstract:
One of the quickest ways to do a short trip in urban areas is by walking, either individually, in couple or groups. Walkability nowadays becomes one of the parameters to measure the quality of an urban neighborhood. As a Central Business District and public transport transit hub, Dukuh Atas area becomes one of the highest numbers of commuters that pass by the area and interchange between transportation modes daily. Thus, as a public transport hub, a lot of investment should be focused to speed up the development of the area that would support urban transit activity between transportation modes, one of them is revitalizing pedestrian walkways. The purpose of this research is to formulate the visual design concept of 'Walkable City' based on the results of the observation and a series of rankings. To achieve this objective, it is necessary to accomplish several stages of the research that consists of (1) Identifying the system of pedestrian paths in Dukuh Atas area using descriptive qualitative method (2) Analyzing the sidewalk walkability rate according to the perception and the walkability satisfaction rate using the characteristics of pedestrians and non-pedestrians in Dukuh Atas area by using Global Walkability Index analysis and Multicriteria Satisfaction Analysis (3) Analyzing the factors that determine the integration of pedestrian walkways in Dukuh Atas area using descriptive qualitative method. The results achieved in this study is that the walkability level of Dukuh Atas corridor area is 44.45 where the value is included in the classification of 25-49, which is a bit of facility that can be reached by foot. Furthermore, based on the questionnaire, satisfaction rate of pedestrian walkway in Dukuh Atas area reached a number of 64%. It is concluded that commuters have not been fully satisfied with the condition of the sidewalk. Besides, the factors that influence the integration in Dukuh Atas area have been reasonable as it is supported by the utilization of land and modes such as KRL, Busway, and MRT. From the results of all analyzes conducted, the visual design and the application of the concept of walkable city along the pathway pedestrian corridor of Dukuh Atas area are formulated. Achievement of the results of this study amounted to 80% which needs to be done further review of the results of the analysis. The work of this research is expected to be a recommendation or input for the government in the development of pedestrian paths in maximizing the use of public transportation modes.Keywords: design, global walkability index, mass rapid transit, walkable city
Procedia PDF Downloads 1921927 Contention Window Adjustment in IEEE 802.11-based Industrial Wireless Networks
Authors: Mohsen Maadani, Seyed Ahmad Motamedi
Abstract:
The use of wireless technology in industrial networks has gained vast attraction in recent years. In this paper, we have thoroughly analyzed the effect of contention window (CW) size on the performance of IEEE 802.11-based industrial wireless networks (IWN), from delay and reliability perspective. Results show that the default values of CWmin, CWmax, and retry limit (RL) are far from the optimum performance due to the industrial application characteristics, including short packet and noisy environment. An adaptive CW algorithm (payload-dependent) has been proposed to minimize the average delay. Finally a simple, but effective CW and RL setting has been proposed for industrial applications which outperforms the minimum-average-delay solution from maximum delay and jitter perspective, at the cost of a little higher average delay. Simulation results show an improvement of up to 20%, 25%, and 30% in average delay, maximum delay and jitter respectively.Keywords: average delay, contention window, distributed coordination function (DCF), jitter, industrial wireless network (IWN), maximum delay, reliability, retry limit
Procedia PDF Downloads 4161926 Platform Urbanism: Planning towards Hyper-Personalisation
Authors: Provides Ng
Abstract:
Platform economy is a peer-to-peer model of distributing resources facilitated by community-based digital platforms. In recent years, digital platforms are rapidly reconfiguring the public realm using hyper-personalisation techniques. This paper aims at investigating how urban planning can leapfrog into the digital age to help relieve the rising tension of the global issue of labour flow; it discusses the means to transfer techniques of hyper-personalisation into urban planning for plasticity using platform technologies. This research first denotes the limitations of the current system of urban residency, where the system maintains itself on the circulation of documents, which are data on paper. Then, this paper tabulates how some of the institutions around the world, both public and private, digitise data, and streamline communications between a network of systems and citizens using platform technologies. Subsequently, this paper proposes ways in which hyper-personalisation can be utilised to form a digital planning platform. Finally, this paper concludes by reviewing how the proposed strategy may help to open up new ways of thinking about how we affiliate ourselves with cities.Keywords: platform urbanism, hyper-personalisation, digital inventory, urban accessibility
Procedia PDF Downloads 1151925 Observer-Based Control Design for Double Integrators Systems with Long Sampling Periods and Actuator Uncertainty
Authors: Tomas Menard
Abstract:
The design of control-law for engineering systems has been investigated for many decades. While many results are concerned with continuous systems with continuous output, nowadays, many controlled systems have to transmit their output measurements through network, hence making it discrete-time. But it is well known that the sampling of a system whose control-law is based on the continuous output may render the system unstable, especially when this sampling period is long compared to the system dynamics. The control design then has to be adapted in order to cope with this issue. In this paper, we consider systems which can be modeled as double integrator with uncertainty on the input since many mechanical systems can be put under such form. We present a control scheme based on an observer using only discrete time measurement and which provides continuous time estimation of the state, combined with a continuous control law, which stabilized a system with second-order dynamics even in the presence of uncertainty. It is further shown that arbitrarily long sampling periods can be dealt with properly setting the control scheme parameters.Keywords: dynamical system, control law design, sampled output, observer design
Procedia PDF Downloads 1871924 Environmental Impact of Autoclaved Aerated Concrete in Modern Construction: A Case Study from the New Egyptian Administrative Capital
Authors: Esraa A. Khalil, Mohamed N. AbouZeid
Abstract:
Building materials selection is critical for the sustainability of any project. The choice of building materials has a huge impact on the built environment and cost of projects. Building materials emit huge amount of carbon dioxide (CO2) due to the use of cement as a basic component in the manufacturing process and as a binder, which harms our environment. Energy consumption from buildings has increased in the last few years; a huge amount of energy is being wasted from using unsustainable building and finishing materials, as well as from the process of heating and cooling of buildings. In addition, the construction sector in Egypt is taking a good portion of the economy; however, there is a lack of awareness of buildings environmental impacts on the built environment. Using advanced building materials and different wall systems can help in reducing heat consumption, the project’s initial and long-term costs, and minimizing the environmental impacts. Red Bricks is one of the materials that are being used widely in Egypt. There are many other types of bricks such as Autoclaved Aerated Concrete (AAC); however, the use of Red Bricks is dominating the construction industry due to its affordability and availability. This research focuses on the New Egyptian Administrative Capital as a case study to investigate the potential of the influence of using different wall systems such as AAC on the project’s cost and the environment. The aim of this research is to conduct a comparative analysis between the traditional and most commonly used bricks in Egypt, which is Red Bricks, and AAC wall systems. Through an economic and environmental study, the difference between the two wall systems will be justified to encourage the utilization of uncommon techniques in the construction industry to build more affordable, energy efficient and sustainable buildings. The significance of this research is to show the potential of using AAC in the construction industry and its positive influences. The study analyzes the factors associated with choosing suitable building materials for different projects according to the need and criteria of each project and its nature without harming the environment and wasting materials that could be saved or recycled. The New Egyptian Administrative Capital is considered as the country’s new heart, where ideas regarding energy savings and environmental benefits are taken into consideration. Meaning that, Egypt is taking good steps to move towards more sustainable construction. According to the analysis and site visits, there is a potential in reducing the initial costs of buildings by 12.1% and saving energy by using different techniques up to 25%. Interviews with the mega structures project engineers and managers reveal that they are more open to introducing sustainable building materials that will help in saving the environment and moving towards green construction as well as to studying more effective techniques for energy conservation.Keywords: AAC blocks, building material, environmental impact, modern construction, new Egyptian administrative capital
Procedia PDF Downloads 1211923 Towards Integrating Statistical Color Features for Human Skin Detection
Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani
Abstract:
Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.Keywords: color space, neural network, random forest, skin detection, statistical feature
Procedia PDF Downloads 4621922 Shoreline Variation with Construction of a Pair of Training Walls, Ponnani Inlet, Kerala, India
Authors: Jhoga Parth, T. Nasar, K. V. Anand
Abstract:
An idealized definition of shoreline is that it is the zone of coincidence of three spheres such as atmosphere, lithosphere, and hydrosphere. Despite its apparent simplicity, this definition in practice a challenge to apply. In reality, the shoreline location deviates continually through time, because of various dynamic factors such as wave characteristics, currents, coastal orientation and the bathymetry, which makes the shoreline volatile. This necessitates us to monitor the shoreline in a temporal basis. If shoreline’s nature is understood at particular coastal stretch, it need not be the same trend at the other location, though belonging to the same sea front. Shoreline change is hence a local phenomenon and has to be studied with great intensity considering as many factors involved as possible. Erosion and accretion of sediment are such natures of a shoreline, which needs to be quantified by comparing with its predeceasing variations and understood before implementing any coastal projects. In recent years, advent of Global Positioning System (GPS) and Geographic Information System (GIS) acts as an emerging tool to quantify the intra and inter annual sediment rate getting accreted or deposited compared to other conventional methods in regards with time was taken and man power. Remote sensing data, on the other hand, paves way to acquire historical sets of data where field data is unavailable with a higher resolution. Short term and long term period shoreline change can be accurately tracked and monitored using a software residing in GIS - Digital Shoreline Analysis System (DSAS) developed by United States Geological Survey (USGS). In the present study, using DSAS, End Point Rate (EPR) is calculated analyze the intra-annual changes, and Linear Rate Regression (LRR) is adopted to study inter annual changes of shoreline. The shoreline changes are quantified for the scenario during the construction of breakwater in Ponnani river inlet along Kerala coast, India. Ponnani is a major fishing and landing center located 10°47’12.81”N and 75°54’38.62”E in Malappuram district of Kerala, India. The rate of erosion and accretion is explored using satellite and field data. The full paper contains the rate of change of shoreline, and its analysis would provide us understanding the behavior of the inlet at the study area during the construction of the training walls.Keywords: DSAS, end point rate, field measurements, geo-informatics, shoreline variation
Procedia PDF Downloads 2581921 Community Policing Interventions in the Tribal Hamlets as a Positive Criminal Justice and Social Justice Strategy: A Study Based on the Community Policing Project of the Government of Kerala
Authors: Bharathadas Sandhya
Abstract:
Janamaithri Suraksha Project is the community policing project of Kerala police, fully sponsored by the Government of Kerala and in vogue in Kerala for the last ten years. The socio-economically weaker areas in the hilly terrains consisting of tribal hamlets are given special importance under the project. These hamlets are visited by the beat police officers, and they intervene in various issues in the hamlets. This study is based on data collected from 350 respondents living in the tribal hamlets of the Nilambur area in the District of Malappuram. The respondents were personally interviewed by the research team using a questionnaire consisting of 183 questions, seeking the details regarding their interaction with beat police officers, their ability to prevent or detect crimes, the menace of Maoists (extremist) presence, their interventions in other socio-economic problems like alcoholism, school dropout issues, lack of facilities for preparation for competitive examinations for educated youth, etc. The perception of the tribal population regarding the effectiveness of police intervention in their criminal justice complaints, the attitude of the police officers towards the tribal population when they approach the police station with a criminal complaint, are also studied. The general socio-economic problems of the tribal population as perceived by them are also brought out. Being the visible agency of the government, the police person coming on beat duty to the hamlet is generally seen by the tribal population as a representative to whom they can communicate the issues, even if it’s solution rests with another department like the forest or agriculture. The analysis of the primary data is carried out using computer applications. The amount of social justice benefits the tribal hamlets received through various government schemes, and their deficiencies are brought out in the study. From the conclusions of the study, certain suggestions for positive criminal justice and social justice intervention strategies are made out. The need for various government departments to work in tandem with each other so as to bring out more effectiveness in the socio-economic projects is evident from the study. Whether it is the need to obtain a transport to go to school or problem of drinking water or even opening a bank account, at least occasionally, the visiting beat police officer is of help to the tribal population. Mostly the tribal population feels free to approach the police with a criminal complaint without any inhibitions.Keywords: community policing, beat police officer, criminal justice, social justice
Procedia PDF Downloads 1531920 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents
Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei
Abstract:
With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.Keywords: document processing, framework, formal definition, machine learning
Procedia PDF Downloads 2181919 Recognizing Human Actions by Multi-Layer Growing Grid Architecture
Authors: Z. Gharaee
Abstract:
Recognizing actions performed by others is important in our daily lives since it is necessary for communicating with others in a proper way. We perceive an action by observing the kinematics of motions involved in the performance. We use our experience and concepts to make a correct recognition of the actions. Although building the action concepts is a life-long process, which is repeated throughout life, we are very efficient in applying our learned concepts in analyzing motions and recognizing actions. Experiments on the subjects observing the actions performed by an actor show that an action is recognized after only about two hundred milliseconds of observation. In this study, hierarchical action recognition architecture is proposed by using growing grid layers. The first-layer growing grid receives the pre-processed data of consecutive 3D postures of joint positions and applies some heuristics during the growth phase to allocate areas of the map by inserting new neurons. As a result of training the first-layer growing grid, action pattern vectors are generated by connecting the elicited activations of the learned map. The ordered vector representation layer receives action pattern vectors to create time-invariant vectors of key elicited activations. Time-invariant vectors are sent to second-layer growing grid for categorization. This grid creates the clusters representing the actions. Finally, one-layer neural network developed by a delta rule labels the action categories in the last layer. System performance has been evaluated in an experiment with the publicly available MSR-Action3D dataset. There are actions performed by using different parts of human body: Hand Clap, Two Hands Wave, Side Boxing, Bend, Forward Kick, Side Kick, Jogging, Tennis Serve, Golf Swing, Pick Up and Throw. The growing grid architecture was trained by applying several random selections of generalization test data fed to the system during on average 100 epochs for each training of the first-layer growing grid and around 75 epochs for each training of the second-layer growing grid. The average generalization test accuracy is 92.6%. A comparison analysis between the performance of growing grid architecture and self-organizing map (SOM) architecture in terms of accuracy and learning speed show that the growing grid architecture is superior to the SOM architecture in action recognition task. The SOM architecture completes learning the same dataset of actions in around 150 epochs for each training of the first-layer SOM while it takes 1200 epochs for each training of the second-layer SOM and it achieves the average recognition accuracy of 90% for generalization test data. In summary, using the growing grid network preserves the fundamental features of SOMs, such as topographic organization of neurons, lateral interactions, the abilities of unsupervised learning and representing high dimensional input space in the lower dimensional maps. The architecture also benefits from an automatic size setting mechanism resulting in higher flexibility and robustness. Moreover, by utilizing growing grids the system automatically obtains a prior knowledge of input space during the growth phase and applies this information to expand the map by inserting new neurons wherever there is high representational demand.Keywords: action recognition, growing grid, hierarchical architecture, neural networks, system performance
Procedia PDF Downloads 1571918 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection
Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy
Abstract:
Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks
Procedia PDF Downloads 741917 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction
Authors: Yan Zhang
Abstract:
Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.Keywords: Internet of Things, machine learning, predictive maintenance, streaming data
Procedia PDF Downloads 3861916 Deep learning with Noisy Labels : Learning True Labels as Discrete Latent Variable
Authors: Azeddine El-Hassouny, Chandrashekhar Meshram, Geraldin Nanfack
Abstract:
In recent years, learning from data with noisy labels (Label Noise) has been a major concern in supervised learning. This problem has become even more worrying in Deep Learning, where the generalization capabilities have been questioned lately. Indeed, deep learning requires a large amount of data that is generally collected by search engines, which frequently return data with unreliable labels. In this paper, we investigate the Label Noise in Deep Learning using variational inference. Our contributions are : (1) exploiting Label Noise concept where the true labels are learnt using reparameterization variational inference, while observed labels are learnt discriminatively. (2) the noise transition matrix is learnt during the training without any particular process, neither heuristic nor preliminary phases. The theoretical results shows how true label distribution can be learned by variational inference in any discriminate neural network, and the effectiveness of our approach is proved in several target datasets, such as MNIST and CIFAR32.Keywords: label noise, deep learning, discrete latent variable, variational inference, MNIST, CIFAR32
Procedia PDF Downloads 1281915 Rejuvenate: Face and Body Retouching Using Image Inpainting
Authors: Hossam Abdelrahman, Sama Rostom, Reem Yassein, Yara Mohamed, Salma Salah, Nour Awny
Abstract:
In today’s environment, people are becoming increasingly interested in their appearance. However, they are afraid of their unknown appearance after a plastic surgery or treatment. Accidents, burns and genetic problems such as bowing of body parts of people have a negative impact on their mental health with their appearance and this makes them feel uncomfortable and underestimated. The approach presents a revolutionary deep learning-based image inpainting method that analyses the various picture structures and corrects damaged images. In this study, A model is proposed based on the in-painting of medical images with Stable Diffusion Inpainting method. Reconstructing missing and damaged sections of an image is known as image inpainting is a key progress facilitated by deep neural networks. The system uses the input of the user of an image to indicate a problem, the system will then modify the image and output the fixed image, facilitating for the patient to see the final result.Keywords: generative adversarial network, large mask inpainting, stable diffusion inpainting, plastic surgery
Procedia PDF Downloads 741914 Geo-Spatial Methods to Better Understand Urban Food Deserts
Authors: Brian Ceh, Alison Jackson-Holland
Abstract:
Food deserts are a reality in some cities. These deserts can be described as a shortage of healthy food options within close proximity of consumers. The shortage in this case is typically facilitated by a lack of stores in an urban area that provide adequate fruit and vegetable choices. This study explores new avenues to better understand food deserts by examining modes of transportation that are available to shoppers or consumers, e.g. walking, automobile, or public transit. Further, this study is unique in that it not only explores the location of large grocery stores, but small grocery and convenience stores too. In this study, the relationship between some socio-economic indicators, such as personal income, are also explored to determine any possible association with food deserts. In addition, to help facilitate our understanding of food deserts, complex network spatial models that are built on adequate algorithms are used to investigate the possibility of food deserts in the city of Hamilton, Canada. It is found that Hamilton, Canada is adequate serviced by retailers who provide healthy food choices and that the food desert phenomena is almost absent.Keywords: Canada, desert, food, Hamilton, store
Procedia PDF Downloads 2411913 Effect of Ageing of Laser-Treated Surfaces on Corrosion Resistance of Fusion-bonded Al Joints
Authors: Rio Hirakawa, Christian Gundlach, Sven Hartwig
Abstract:
Aluminium has been used in a wide range of industrial applications due to its numerous advantages, including excellent specific strength, thermal conductivity, corrosion resistance, workability and recyclability. The automotive industry is increasingly adopting multi-materials, including aluminium in structures and components to improve the mechanical usability and performance of individual components. A common method for assembling dissimilar materials is mechanical joining, but mechanical joining requires multiple manufacturing steps, affects the mechanical properties of the base material and increases the weight due to additional metal parts. Fusion bonding is being used in more and more industries as a way of avoiding the above drawbacks. Infusion bonding, and surface pre-treatment of the base material is essential to ensure the long-life durability of the joint. Laser surface treatment of aluminium has been shown to improve the durability of the joint by forming a passive oxide film and roughening the substrate surface. Infusion bonding, the polymer bonds directly to the metal instead of the adhesive, but the sensitivity to interfacial contamination is higher due to the chemical activity and molecular size of the polymer. Laser-treated surfaces are expected to absorb impurities from the storage atmosphere over time, but the effect of such changes in the treated surface over time on the durability of fusion-bonded joints has not yet been fully investigated. In this paper, the effect of the ageing of laser-treated surfaces of aluminum alloys on the corrosion resistance of fusion-bonded joints is therefore investigated. AlMg3 of 1.5 mm thickness was cut using a water-jet cutting machine, cleaned and degreased with isopropanol and surface pre-treated with a pulsed fiber laser at a wavelength of 1060 nm, maximum power of 70 W and repetition rate of 55 kHz. The aluminum surfaces were then stored in air for various periods of time and their corrosion resistance was assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). For the aluminum joints, induction heating was employed as the fusion bonding method and single-lap shear specimens were prepared. The corrosion resistance of the joints was assessed by measuring the lap shear strength before and after neutral salt spray. Cross-sectional observations by scanning electron microscopy (SEM) were also carried out to investigate changes in the microstructure of the bonded interface. Finally, the corrosion resistance of the surface and the joint were compared and the differences in the mechanisms of corrosion resistance enhancement between the two were discussed.Keywords: laser surface treatment, pre-treatment, bonding, corrosion, durability, interface, automotive, aluminium alloys, joint, fusion bonding
Procedia PDF Downloads 771912 Subcontractor Development Practices and Processes: A Conceptual Model for LEED Projects
Authors: Andrea N. Ofori-Boadu
Abstract:
The purpose is to develop a conceptual model of subcontractor development practices and processes that strengthen the integration of subcontractors into construction supply chain systems for improved subcontractor performance on Leadership in Energy and Environmental Design (LEED) certified building projects. The construction management of a LEED project has an important objective of meeting sustainability certification requirements. This is in addition to the typical project management objectives of cost, time, quality, and safety for traditional projects; and, therefore increases the complexity of LEED projects. Considering that construction management organizations rely heavily on subcontractors, poor performance on complex projects such as LEED projects has been largely attributed to the unsatisfactory preparation of subcontractors. Furthermore, the extensive use of unique and non-repetitive short term contracts limits the full integration of subcontractors into construction supply chains and hinders long-term cooperation and benefits that could enhance performance on construction projects. Improved subcontractor development practices are needed to better prepare and manage subcontractors, so that complex objectives can be met or exceeded. While supplier development and supply chain theories and practices for the manufacturing sector have been extensively investigated to address similar challenges, investigations in the construction sector are not that obvious. Consequently, the objective of this research is to investigate effective subcontractor development practices and processes to guide construction management organizations in their development of a strong network of high performing subcontractors. Drawing from foundational supply chain and supplier development theories in the manufacturing sector, a mixed interpretivist and empirical methodology is utilized to assess the body of knowledge within literature for conceptual model development. A self-reporting survey with five-point Likert scale items and open-ended questions is administered to 30 construction professionals to estimate their perceptions of the effectiveness of 37 practices, classified into five subcontractor development categories. Data analysis includes descriptive statistics, weighted means, and t-tests that guide the effectiveness ranking of practices and categories. The results inform the proposed three-phased LEED subcontractor development program model which focuses on preparation, development and implementation, and monitoring. Highly ranked LEED subcontractor pre-qualification, commitment, incentives, evaluation, and feedback practices are perceived as more effective, when compared to practices requiring more direct involvement and linkages between subcontractors and construction management organizations. This is attributed to unfamiliarity, conflicting interests, lack of trust, and resource sharing challenges. With strategic modifications, the recommended practices can be extended to other non-LEED complex projects. Additional research is needed to guide the development of subcontractor development programs that strengthen direct involvement between construction management organizations and their network of high performing subcontractors. Insights from this present research strengthen theoretical foundations to support future research towards more integrated construction supply chains. In the long-term, this would lead to increased performance, profits and client satisfaction.Keywords: construction management, general contractor, supply chain, sustainable construction
Procedia PDF Downloads 1101911 ‘Obuntu Bulamu’: Parental Peer to Peer Support for Inclusion of Children with Disabilities in Central Uganda
Authors: Ruth Nalugya, Claire Nimusiima, Elizabeth Kawesa, Harriet Nambejja, Geert van Hove, Janet Seeley, Femke Bannink Mbazzi
Abstract:
Background: ‘Obuntu bulamu’, an intervention for children, parents, and teachers to improve the participation and inclusion of children with disabilities (CwD) through peer-to-peer support, was developed and tested in central Uganda between 2017 and 2019. The intervention consisted of children, parents, and teachers' training sessions and peer to peer support activities directed at disability inclusion using an African disability framework. In this paper, we discuss parent participation in and parent evaluation of the ‘Obuntu bulamu’ intervention. Methods: This qualitative Afrocentric intervention study was implemented in 10 communities in the Wakiso district in Central Uganda. We purposely selected children aged 8 to 14 years with different impairments, their peers, and parents, with different levels of household income and familial support, who were enrolled in primary schools in the ten communities with on average three children with disabilities per community. Sixty four parents (33 parents of CwDs and 31 peers) participating in the ‘Obuntu bulamu’ study were interviewed at baseline and endline. Two focus group discussions were held with parents at the midline. Parents also participated in a consultative meeting about the intervention design at baseline, and two evaluation workshops held at midline and endline. Thematic data analysis of the interview and focus group data was conducted. Results: Findings showed parents found the group-based activities inspiring and said they built hope and confidence. Parents felt the intervention was acceptable, culturally appropriate, and supportive as it built on values and practices from their own traditions. Parents reported the intervention enhanced a sense of togetherness and belonging through the group meetings and follow-up activities. Parents also mentioned that the training helped them develop more positive attitudes towards CwD and disability inclusion. Parents felt that the invention increased a child’s participation and inclusion at home, school, and in communities. Conclusion: The Obuntu bulamu peer to peer support intervention is an acceptable, culturally appropriate intervention that has the potential to improve the inclusion of CwD. A larger randomized control trial is needed to evaluate the impact of the intervention model.Keywords: inclusion, participation, inclusive education, peer support, belonging, Ubuntu, ‘Obuntu bulamu’
Procedia PDF Downloads 1041910 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites
Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li
Abstract:
Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.Keywords: aerogel, cement-based, composite, fly ash cenosphere, lightweight, sustainable development, thermal conductivity
Procedia PDF Downloads 2241909 Investigation of Preschool Children's Mathematics Concept Acquisition in Terms of Different Variables
Authors: Hilal Karakuş, Berrin Akman
Abstract:
Preschool years are considered as critical years because of shaping the future lives of individuals. All of the knowledge, skills, and concepts are acquired during this period. Also, basis of academic skills is based on this period. As all of the developmental areas are the fastest in that period, the basis of mathematics education should be given in this period, too. Mathematics is seen as a difficult and abstract course by the most people. Therefore, the enjoyable side of mathematics should be presented in a concrete way in this period to avoid any bias of children for mathematics. This study is conducted to examine mathematics concept acquisition of children in terms of different variables. Screening model is used in this study which is carried out in a quantity way. The study group of this research consists of total 300 children, selected from each class randomly in groups of five, who are from public and private preschools in Çankaya, which is district of Ankara, in 2014-2015 academic year and attending children in the nursery classes and preschool institutions are connected to the Ministry of National Education. The study group of the research was determined by stage sampling method. The schools, which formed study group, are chosen by easy sampling method and the children are chosen by simple random method. Research data were collected with Bracken Basic Concept Scale–Revised Form and Child’s Personal Information Form generated by the researcher in order to get information about children and their families. Bracken Basic Concept Scale-Revised Form consists of 11 sub-dimensions (color, letter, number, size, shape, comparison, direction-location, and quantity, individual and social awareness, building- material) and 307 items. Subtests related to the mathematics were used in this research. In the “Child Individual Information Form” there are items containing demographic information as followings: age of children, gender of children, attending preschools educational intuitions for children, school attendance, mother’s and father’s education levels. At the result of the study, while it was found that children’s mathematics skills differ from age, state of attending any preschool educational intuitions , time of attending any preschool educational intuitions, level of education of their mothers and their fathers; it was found that it does not differ by the gender and type of school they attend.Keywords: preschool education, preschool period children, mathematics education, mathematics concept acquisitions
Procedia PDF Downloads 3501908 Development of a Smart Liquid Level Controller
Authors: Adamu Mudi, Ibrahim Wahab Fawole, Abubakar Abba Kolo
Abstract:
In this research paper, we present a microcontroller-based liquid level controller that identifies the various levels of a liquid, carries out certain actions, and is capable of communicating with the human being and other devices through the GSM network. This project is useful in ensuring that a liquid is not wasted. It also contributes to the internet of things paradigm, which is the future of the internet. The method used in this work includes designing the circuit and simulating it. The circuit is then implemented on a solderless breadboard, after which it is implemented on a strip board. A C++ computer program is developed and uploaded into the microcontroller. This program instructs the microcontroller on how to carry out its actions. In other to determine levels of the liquid, an ultrasonic wave is sent to the surface of the liquid similar to radar or the method for detecting the level of sea bed. Message is sent to the phone of the user similar to the way computers send messages to phones of GSM users. It is concluded that the routine of observing the levels of a liquid in a tank, refilling the tank when the liquid level is too low can be entirely handled by a programmable device without wastage of the liquid or bothering a human being with such tasks.Keywords: Arduino Uno, HC-SR04 ultrasonic sensor, internet of things, IoT, SIM900 GSM module
Procedia PDF Downloads 1301907 Empirical Study on Grassroots Innovation for Entrepreneurship Development with Microfinance Provision as Moderator
Authors: Sonal H. Singh, Bhaskar Bhowmick
Abstract:
The research hypothesis formulated in this paper examines the importance of microfinance provision for entrepreneurship development by engendering a high level of entrepreneurial orientation among the grassroots entrepreneurs. A theoretically well supported empirical framework is proposed to identify the influence of financial services and non-financial services provided by microfinance institutes in strengthening the impact of grassroots innovation on entrepreneurial orientation under resource constraints. In this paper, Grassroots innovation is perceived in three dimensions: new learning practice, localized solution, and network development. The study analyzes the moderating effect of microfinance provision on the relationship between grassroots innovation and entrepreneurial orientation. The paper employed structural equation modelling on 400 data entries from the grassroots entrepreneurs in India. The research intends to help policymakers, entrepreneurs and microfinance providers to promote the innovative design of microfinance services for the well-being of grassroots entrepreneurs and to foster sustainable entrepreneurship development.Keywords: entrepreneurship development, grassroots innovation, India, structural equation model
Procedia PDF Downloads 2651906 The Association between Facebook Emotional Dependency with Psychological Well-Being in Eudaimonic Approach among Adolescents 13-16 Years Old
Authors: Somayyeh Naeemi, Ezhar Tamam
Abstract:
In most of the countries, Facebook allocated high rank of usage among other social network sites. Several studies have examined the effect of Facebook intensity on individuals’ psychological well-being. However, few studies have investigated its effect on eudaimonic well-being. The current study explored how emotional dependency to Facebook relates to psychological well-being in terms of eudaimonic well-being. The number of 402 adolescents 13-16 years old who studied in upper secondary school in Malaysia participated in this study. It was expected to find out a negative association between emotional dependency to Facebook and time spent on Facebook and psychological well-being. It also was examined the moderation effects of self-efficacy on psychological well-being. The results by Structural Equation Modeling revealed that emotional dependency to Facebook has a negative effect on adolescents’ psychological well-being. Surprisingly self-efficacy did not have moderation effect on the relationship between emotional dependency to Facebook and psychological well-being. Lastly, the emotional dependency to Facebook and not the time spent on Facebook lessen adolescents’ psychological well-being, suggesting the value of investigating Facebook usage among college students in future studies.Keywords: emotional dependency to facebook, psychological well-being, eudaimonic well-being, self-efficacy, adolescent
Procedia PDF Downloads 5171905 Sliding Mode Control and Its Application in Custom Power Device: A Comprehensive Overview
Authors: Pankaj Negi
Abstract:
Nowadays the demand for receiving the high quality electrical energy is being increasing as consumer wants not only reliable but also quality power. Custom power instruments are of the most well-known compensators of power quality in distributed network. This paper present a comprehensive review of compensating custom power devices mainly DSTATCOM (distribution static compensator),DVR (dynamic voltage restorer), and UPQC (unified power quality compensator) and also deals with sliding mode control and its applications to custom power devices. The sliding mode control strategy provides robustness to custom power device and enhances the dynamic response for compensating voltage sag, swell, voltage flicker, and voltage harmonics. The aim of this paper is to provide a broad perspective on the status of compensating devices in electric power distribution system and sliding mode control strategies to researchers and application engineers who are dealing with power quality and stability issues.Keywords: active power filters(APF), custom power device(CPD), DSTATCOM, DVR, UPQC, sliding mode control (SMC), power quality
Procedia PDF Downloads 4391904 Optimal Placement of Phasor Measurement Units (PMU) Using Mixed Integer Programming (MIP) for Complete Observability in Power System Network
Authors: Harshith Gowda K. S, Tejaskumar N, Shubhanga R. B, Gowtham N, Deekshith Gowda H. S
Abstract:
Phasor measurement units (PMU) are playing an important role in the current power system for state estimation. It is necessary to have complete observability of the power system while minimizing the cost. For this purpose, the optimal location of the phasor measurement units in the power system is essential. In a bus system, zero injection buses need to be evaluated to minimize the number of PMUs. In this paper, the optimization problem is formulated using mixed integer programming to obtain the optimal location of the PMUs with increased observability. The formulation consists of with and without zero injection bus as constraints. The formulated problem is simulated using a CPLEX solver in the GAMS software package. The proposed method is tested on IEEE 30, IEEE 39, IEEE 57, and IEEE 118 bus systems. The results obtained show that the number of PMUs required is minimal with increased observability.Keywords: PMU, observability, mixed integer programming (MIP), zero injection buses (ZIB)
Procedia PDF Downloads 1651903 Objective Evaluation on Medical Image Compression Using Wavelet Transformation
Authors: Amhimmid Mohammed Saffour, Mustafa Mohamed Abdullah
Abstract:
The use of computers for handling image data in the healthcare is growing. However, the amount of data produced by modern image generating techniques is vast. This data might be a problem from a storage point of view or when the data is sent over a network. This paper using wavelet transform technique for medical images compression. MATLAB program, are designed to evaluate medical images storage and transmission time problem at Sebha Medical Center Libya. In this paper, three different Computed Tomography images which are abdomen, brain and chest have been selected and compressed using wavelet transform. Objective evaluation has been performed to measure the quality of the compressed images. For this evaluation, the results show that the Peak Signal to Noise Ratio (PSNR) which indicates the quality of the compressed image is ranging from (25.89db to 34.35db for abdomen images, 23.26db to 33.3db for brain images and 25.5db to 36.11db for chest images. These values shows that the compression ratio is nearly to 30:1 is acceptable.Keywords: medical image, Matlab, image compression, wavelet's, objective evaluation
Procedia PDF Downloads 2851902 Spatial-Temporal Awareness Approach for Extensive Re-Identification
Authors: Tyng-Rong Roan, Fuji Foo, Wenwey Hseush
Abstract:
Recent development of AI and edge computing plays a critical role to capture meaningful events such as detection of an unattended bag. One of the core problems is re-identification across multiple CCTVs. Immediately following the detection of a meaningful event is to track and trace the objects related to the event. In an extensive environment, the challenge becomes severe when the number of CCTVs increases substantially, imposing difficulties in achieving high accuracy while maintaining real-time performance. The algorithm that re-identifies cross-boundary objects for extensive tracking is referred to Extensive Re-Identification, which emphasizes the issues related to the complexity behind a great number of CCTVs. The Spatial-Temporal Awareness approach challenges the conventional thinking and concept of operations which is labor intensive and time consuming. The ability to perform Extensive Re-Identification through a multi-sensory network provides the next-level insights – creating value beyond traditional risk management.Keywords: long-short-term memory, re-identification, security critical application, spatial-temporal awareness
Procedia PDF Downloads 1121901 Computational Code for Solving the Navier-Stokes Equations on Unstructured Meshes Applied to the Leading Edge of the Brazilian Hypersonic Scramjet 14-X
Authors: Jayme R. T. Silva, Paulo G. P. Toro, Angelo Passaro, Giannino P. Camillo, Antonio C. Oliveira
Abstract:
An in-house C++ code has been developed, at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics from the Institute of Advanced Studies (Brazil), to estimate the aerothermodynamic properties around the Hypersonic Vehicle Integrated to the Scramjet. In the future, this code will be applied to the design of the Brazilian Scramjet Technological Demonstrator 14-X B. The first step towards accomplishing this objective, is to apply the in-house C++ code at the leading edge of a flat plate, simulating the leading edge of the 14-X Hypersonic Vehicle, making possible the wave phenomena of oblique shock and boundary layer to be analyzed. The development of modern hypersonic space vehicles requires knowledge regarding the characteristics of hypersonic flows in the vicinity of a leading edge of lifting surfaces. The strong interaction between a shock wave and a boundary layer, in a high supersonic Mach number 4 viscous flow, close to the leading edge of the plate, considering no slip condition, is numerically investigated. The small slip region is neglecting. The study consists of solving the fluid flow equations for unstructured meshes applying the SIMPLE algorithm for Finite Volume Method. Unstructured meshes are generated by the in-house software ‘Modeler’ that was developed at Virtual’s Engineering Laboratory from the Institute of Advanced Studies, initially developed for Finite Element problems and, in this work, adapted to the resolution of the Navier-Stokes equations based on the SIMPLE pressure-correction scheme for all-speed flows, Finite Volume Method based. The in-house C++ code is based on the two-dimensional Navier-Stokes equations considering non-steady flow, with nobody forces, no volumetric heating, and no mass diffusion. Air is considered as calorically perfect gas, with constant Prandtl number and Sutherland's law for the viscosity. Solutions of the flat plate problem for Mach number 4 include pressure, temperature, density and velocity profiles as well as 2-D contours. Also, the boundary layer thickness, boundary conditions, and mesh configurations are presented. The same problem has been solved by the academic license of the software Ansys Fluent and for another C++ in-house code, which solves the fluid flow equations in structured meshes, applying the MacCormack method for Finite Difference Method, and the results will be compared.Keywords: boundary-layer, scramjet, simple algorithm, shock wave
Procedia PDF Downloads 4901900 Neural Network Based Approach of Software Maintenance Prediction for Laboratory Information System
Authors: Vuk M. Popovic, Dunja D. Popovic
Abstract:
Software maintenance phase is started once a software project has been developed and delivered. After that, any modification to it corresponds to maintenance. Software maintenance involves modifications to keep a software project usable in a changed or a changing environment, to correct discovered faults, and modifications, and to improve performance or maintainability. Software maintenance and management of software maintenance are recognized as two most important and most expensive processes in a life of a software product. This research is basing the prediction of maintenance, on risks and time evaluation, and using them as data sets for working with neural networks. The aim of this paper is to provide support to project maintenance managers. They will be able to pass the issues planned for the next software-service-patch to the experts, for risk and working time evaluation, and afterward to put all data to neural networks in order to get software maintenance prediction. This process will lead to the more accurate prediction of the working hours needed for the software-service-patch, which will eventually lead to better planning of budget for the software maintenance projects.Keywords: laboratory information system, maintenance engineering, neural networks, software maintenance, software maintenance costs
Procedia PDF Downloads 3581899 Development Of Diabetes Mellitus In Overweight People
Authors: Ashiraliyev SHavkat
Abstract:
Relevance of the topic: Diabetes mellitus in overweight people development and absence of treatment measures. Objective: to give patients the correct instructions on proper nutrition, to organize a network of preventive and therapeutic measures. Materials and methods: Multidisciplinary Tashkent Medical Academy. As a result of objective observations in patients who applied to the clinic, 28 11 overweight patients had to type 2 diabetes. Diabetesmellituswasdiagnosed. Results: 11.5 mmol / L on an empty stomach in the morning. EDT yes. Pathogenesis: fat content in the diet of patients with diabetes mellitus. Carbohydrate foods make up 60%. Eating disorders and physical inactivity As a result, the accumulation of glucose in the form of fat increases, and this is constantly in the blood, which led to an increase in the number of fatty acids. Clinic: Frequent fasting in 11 patients (hypothalamus). Associated with glucose deficiency), drinking 8-9 liters of water per day of blood in 7 people Systolic pressure 150 diastolic pressures 100. Sensation of ants in 3 people and poor eyesight in 5 people. Conclusion: Explain to patients that nutritional guidelines should be followed. Assign active movement in accordance with the energy entering the body.Keywords: mellitus, diabetes, pathogenesis, clinic
Procedia PDF Downloads 90