Search results for: degradation study
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 51079

Search results for: degradation study

19 Location3: A Location Scouting Platform for the Support of Film and Multimedia Industries

Authors: Dimitrios Tzilopoulos, Panagiotis Symeonidis, Michael Loufakis, Dimosthenis Ioannidis, Dimitrios Tzovaras

Abstract:

The domestic film industry in Greece has traditionally relied heavily on state support. While film productions are crucial for the country's economy, it has not fully capitalized on attracting and promoting foreign productions. The lack of motivation, organized state support for attraction and licensing, and the absence of location scouting have hindered its potential. Although recent legislative changes have addressed the first two of these issues, the development of a comprehensive location database and a search engine that would effectively support location scouting at the pre-production location scouting is still in its early stages. In addition to the expected benefits of the film, television, marketing, and multimedia industries, a location-scouting service platform has the potential to yield significant financial gains locally and nationally. By promoting featured places like cultural and archaeological sites, natural monuments, and attraction points for visitors, it plays a vital role in both cultural promotion and facilitating tourism development. This study introduces LOCATION3, an internet platform revolutionizing film production location management. It interconnects location providers, film crews, and multimedia stakeholders, offering a comprehensive environment for seamless collaboration. The platform's central geodatabase (PostgreSQL) stores each location’s attributes, while web technologies like HTML, JavaScript, CSS, React.js, and Redux power the user-friendly interface. Advanced functionalities, utilizing deep learning models, developed in Python, are integrated via Node.js. Visual data presentation is achieved using the JS Leaflet library, delivering an interactive map experience. LOCATION3 sets a new standard, offering a range of essential features to enhance the management of film production locations. Firstly, it empowers users to effortlessly upload audiovisual material enriched with geospatial and temporal data, such as location coordinates, photographs, videos, 360-degree panoramas, and 3D location models. With the help of cutting-edge deep learning algorithms, the application automatically tags these materials, while users can also manually tag them. Moreover, the application allows users to record locations directly through its user-friendly mobile application. Users can then embark on seamless location searches, employing spatial or descriptive criteria. This intelligent search functionality considers a combination of relevant tags, dominant colors, architectural characteristics, emotional associations, and unique location traits. One of the application's standout features is the ability to explore locations by their visual similarity to other materials, facilitated by a reverse image search. Also, the interactive map serves as both a dynamic display for locations and a versatile filter, adapting to the user's preferences and effortlessly enhancing location searches. To further streamline the process, the application facilitates the creation of location lightboxes, enabling users to efficiently organize and share their content via email. Going above and beyond location management, the platform also provides invaluable liaison, matchmaking, and online marketplace services. This powerful functionality bridges the gap between visual and three-dimensional geospatial material providers, local agencies, film companies, production companies, etc. so that those interested in a specific location can access additional material beyond what is stored on the platform, as well as access production services supporting the functioning and completion of productions in a location (equipment provision, transportation, catering, accommodation, etc.).

Keywords: deep learning models, film industry, geospatial data management, location scouting

Procedia PDF Downloads 71
18 Targeting Tumour Survival and Angiogenic Migration after Radiosensitization with an Estrone Analogue in an in vitro Bone Metastasis Model

Authors: Jolene M. Helena, Annie M. Joubert, Peace Mabeta, Magdalena Coetzee, Roy Lakier, Anne E. Mercier

Abstract:

Targeting the distant tumour and its microenvironment whilst preserving bone density is important in improving the outcomes of patients with bone metastases. 2-Ethyl-3-O-sulphamoyl-estra1,3,5(10)16-tetraene (ESE-16) is an in-silico-designed 2- methoxyestradiol analogue which aimed at enhancing the parent compound’s cytotoxicity and providing a more favourable pharmacokinetic profile. In this study, the potential radiosensitization effects of ESE-16 were investigated in an in vitro bone metastasis model consisting of murine pre-osteoblastic (MC3T3-E1) and pre-osteoclastic (RAW 264.7) bone cells, metastatic prostate (DU 145) and breast (MDA-MB-231) cancer cells, as well as human umbilical vein endothelial cells (HUVECs). Cytotoxicity studies were conducted on all cell lines via spectrophotometric quantification of 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide. The experimental set-up consisted of flow cytometric analysis of cell cycle progression and apoptosis detection (Annexin V-fluorescein isothiocyanate) to determine the lowest ESE-16 and radiation doses to induce apoptosis and significantly reduce cell viability. Subsequent experiments entailed a 24-hour low-dose ESE-16-exposure followed by a single dose of radiation. Termination proceeded 2, 24 or 48 hours thereafter. The effect of the combination treatment was investigated on osteoclasts via tartrate-resistant acid phosphatase (TRAP) activity- and actin ring formation assays. Tumour cell experiments included investigation of mitotic indices via haematoxylin and eosin staining; pro-apoptotic signalling via spectrophotometric quantification of caspase 3; deoxyribonucleic acid (DNA) damage via micronuclei analysis and histone H2A.X phosphorylation (γ-H2A.X); and Western blot analyses of bone morphogenetic protein-7 and matrix metalloproteinase-9. HUVEC experiments included flow cytometric quantification of cell cycle progression and free radical production; fluorescent examination of cytoskeletal morphology; invasion and migration studies on an xCELLigence platform; and Western blot analyses of hypoxia-inducible factor 1-alpha and vascular endothelial growth factor receptor 1 and 2. Tumour cells yielded half-maximal growth inhibitory concentration (GI50) values in the nanomolar range. ESE-16 concentrations of 235 nM (DU 145) and 176 nM (MDA-MB-231) and a radiation dose of 4 Gy were found to be significant in cell cycle and apoptosis experiments. Bone and endothelial cells were exposed to the same doses as DU 145 cells. Cytotoxicity studies on bone cells reported that RAW 264.7 cells were more sensitive to the combination treatment than MC3T3-E1 cells. Mature osteoclasts were more sensitive than pre-osteoclasts with respect to TRAP activity. However, actin ring morphology was retained. The mitotic arrest was evident in tumour and endothelial cells in the mitotic index and cell cycle experiments. Increased caspase 3 activity and superoxide production indicated pro-apoptotic signalling in tumour and endothelial cells. Increased micronuclei numbers and γ-H2A.X foci indicated increased DNA damage in tumour cells. Compromised actin and tubulin morphologies and decreased invasion and migration were observed in endothelial cells. Western blot analyses revealed reduced metastatic and angiogenic signalling. ESE-16-induced radiosensitization inhibits metastatic signalling and tumour cell survival whilst preferentially preserving bone cells. This low-dose combination treatment strategy may promote the quality of life of patients with metastatic bone disease. Future studies will include 3-dimensional in-vitro and murine in-vivo models.

Keywords: angiogenesis, apoptosis, bone metastasis, cancer, cell migration, cytoskeleton, DNA damage, ESE-16, radiosensitization.

Procedia PDF Downloads 162
17 Sustainable Development Goal (SDG)-Driven Intercultural Citizenship Education through Dance-Fitness Development: A Classroom Research Project Based on History Research into Japanese Traditional Performing Art (Menburyu)

Authors: Stephanie Ann Houghton

Abstract:

SDG-driven intercultural citizenship education through performing arts and history research, combined with dance-fitness development inspired by performing arts, can provide a third space in which performing arts, local history, and contemporary society drive educational and social development, supporting the performing arts in student-generated ways, reflecting their sense, priorities, and goals. Within a string of rugged volcanic peninsulas along the north-western coastline of the Ariake Sea, Kyushu, southern Japan, are found a range of traditional performing arts endangered in Japan’s ageing society, including Menburyu mask dance. From 2017, Menburyu culture and history were explored with Menburyu veterans and students within Houghton’s FURYU Educational Program (FEP) at Saga University. Through collaboration with professional fitness instructor Kazuki Miyata, basic Menburyu movements and concepts were blended into aerobics routines to generate Menburyu-Inspired Dance-Fitness (MIDF). Drawing on history, legends, and myths, three important storylines for understanding Menburyu, captured in students’ bilingual (English/Japanese) exhibition panels, emerged: harvest, demons and gods, and the Battle of Tadenawate 1530. Houghton and Miyata performed the first MIDF routine at the 22nd Traditional Performing Arts Festival at Yutoku Inari Shrine, Kashima, in September 2019. FEP exhibitions, dance-fitness events, and MIDF performance have been reported in the media locally and nationally. In an action research case study, a classroom research project was conducted with four female Japanese students over fifteen three-hour online lessons (April-July 2020). Part 1 of each lesson focused on Menburyu history. This included a guest lecture by Kensuke Ryuzoji. The three Menburyu storylines served as keys for exploring Menburyu history from international standpoints.Part 2 focused on the development of MIDF basic steps and an online MIDF event with outside guests. Through post-lesson reflective diaries and reports/videos documenting their experience, students engaged in heritage management, intercultural dialogue, health/fitness, technology and art generation activities within the FEP, centring on UN Sustainable Development Goals (SDGs) including health and wellness (SDG3), and quality education (SDG4), taking a glocal approach. In this presentation, qualitative analysis of student-generated reflective diary and reports will be presented to reveal educational processes, learning outcomes,and apparent areas of (potential) social impact of this classroom research project. Data will be presented in two main parts: (1) The mutually beneficial relationship between local traditional performing arts research and local history researchwill be addressed. One has the power both inform and illuminate the other given their deep connections. This can drive the development of students’ intercultural history competence related to and through the performing arts. (2) The development of dance-fitness inspired by traditional performing arts provides a third space in which performing arts, local history and contemporary society can be connected through SDG-driven education inside the classroom in ways that can also drive social innovation outside the classroom, potentially supporting the performing arts itself in student-generated ways, reflecting their own sense, priorities and social goals. Links will be drawn with intercultural citizenship, strengths and weaknesses of this teaching approach will be highlighted, and avenues for future research in this exciting new area will be suggested.

Keywords: cultural traditions, dance-fitness performance and participation, intercultural communication approach, mask dance origins

Procedia PDF Downloads 140
16 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 150
15 An Integrated Multisensor/Modeling Approach Addressing Climate Related Extreme Events

Authors: H. M. El-Askary, S. A. Abd El-Mawla, M. Allali, M. M. El-Hattab, M. El-Raey, A. M. Farahat, M. Kafatos, S. Nickovic, S. K. Park, A. K. Prasad, C. Rakovski, W. Sprigg, D. Struppa, A. Vukovic

Abstract:

A clear distinction between weather and climate is a necessity because while they are closely related, there are still important differences. Climate change is identified when we compute the statistics of the observed changes in weather over space and time. In this work we will show how the changing climate contribute to the frequency, magnitude and extent of different extreme events using a multi sensor approach with some synergistic modeling activities. We are exploring satellite observations of dust over North Africa, Gulf Region and the Indo Gangetic basin as well as dust versus anthropogenic pollution events over the Delta region in Egypt and Seoul through remote sensing and utilize the behavior of the dust and haze on the aerosol optical properties. Dust impact on the retreat of the glaciers in the Himalayas is also presented. In this study we also focus on the identification and monitoring of a massive dust plume that blew off the western coast of Africa towards the Atlantic on October 8th, 2012 right before the development of Hurricane Sandy. There is evidence that dust aerosols played a non-trivial role in the cyclogenesis process of Sandy. Moreover, a special dust event "An American Haboob" in Arizona is discussed as it was predicted hours in advance because of the great improvement we have in numerical, land–atmosphere modeling, computing power and remote sensing of dust events. Therefore we performed a full numerical simulation to that event using the coupled atmospheric-dust model NMME–DREAM after generating a mask of the potentially dust productive regions using land cover and vegetation data obtained from satellites. Climate change also contributes to the deterioration of different marine habitats. In that regard we are also presenting some work dealing with change detection analysis of Marine Habitats over the city of Hurghada, Red Sea, Egypt. The motivation for this work came from the fact that coral reefs at Hurghada have undergone significant decline. They are damaged, displaced, polluted, stepped on, and blasted off, in addition to the effects of climate change on the reefs. One of the most pressing issues affecting reef health is mass coral bleaching that result from an interaction between human activities and climatic changes. Over another location, namely California, we have observed that it exhibits highly-variable amounts of precipitation across many timescales, from the hourly to the climate timescale. Frequently, heavy precipitation occurs, causing damage to property and life (floods, landslides, etc.). These extreme events, variability, and the lack of good, medium to long-range predictability of precipitation are already a challenge to those who manage wetlands, coastal infrastructure, agriculture and fresh water supply. Adding on to the current challenges for long-range planning is climate change issue. It is known that La Niña and El Niño affect precipitation patterns, which in turn are entwined with global climate patterns. We have studied ENSO impact on precipitation variability over different climate divisions in California. On the other hand the Nile Delta has experienced lately an increase in the underground water table as well as water logging, bogging and soil salinization. Those impacts would pose a major threat to the Delta region inheritance and existing communities. There has been an undergoing effort to address those vulnerabilities by looking into many adaptation strategies.

Keywords: remote sensing, modeling, long range transport, dust storms, North Africa, Gulf Region, India, California, climate extremes, sea level rise, coral reefs

Procedia PDF Downloads 489
14 Hydrocarbon Source Rocks of the Maragh Low

Authors: Elhadi Nasr, Ibrahim Ramadan

Abstract:

Biostratigraphical analyses of well sections from the Maragh Low in the Eastern Sirt Basin has allowed high resolution correlations to be undertaken. Full integration of this data with available palaeoenvironmental, lithological, gravity, seismic, aeromagnetic, igneous, radiometric and wireline log information and a geochemical analysis of source rock quality and distribution has led to a more detailed understanding of the geological and the structural history of this area. Pre Sirt Unconformity two superimposed rifting cycles have been identified. The oldest is represented by the Amal Group of sediments and is of Late Carboniferous, Kasimovian / Gzelian to Middle Triassic, Anisian age. Unconformably overlying is a younger rift cycle which is represented the Sarir Group of sediments and is of Early Cretaceous, late Neocomian to Aptian in age. Overlying the Sirt Unconformity is the marine Late Cretaceous section. An assessment of pyrolysis results and a palynofacies analysis has allowed hydrocarbon source facies and quality to be determined. There are a number of hydrocarbon source rock horizons in the Maragh Low, these are sometimes vertically stacked and they are of fair to excellent quality. The oldest identified source rock is the Triassic Shale, this unit is unconformably overlain by sandstones belonging to the Sarir Group and conformably overlies a Triassic Siltstone unit. Palynological dating of the Triassic Shale unit indicates a Middle Triassic, Anisian age. The Triassic Shale is interpreted to have been deposited in a lacustrine palaeoenvironment. This particularly is evidenced by the dark, fine grained, organic rich nature of the sediment and is supported by palynofacies analysis and by the recovery of fish fossils. Geochemical analysis of the Triassic Shale indicates total organic carbon varying between 1.37 and 3.53. S2 pyrolysate yields vary between 2.15 mg/g and 6.61 mg/g and hydrogen indices vary between 156.91 and 278.91. The source quality of the Triassic Shale varies from being of fair to very good / rich. Linked to thermal maturity it is now a very good source for light oil and gas. It was once a very good to rich oil source. The Early Barremian Shale was also deposited in a lacustrine palaeoenvironment. Recovered palynomorphs indicate an Early Cretaceous, late Neocomian to early Barremian age. The Early Barremian Shale is conformably underlain and overlain by sandstone units belonging to the Sarir Group of sediments which are also of Early Cretaceous age. Geochemical analysis of the Early Barremian Shale indicates that it is a good oil source and was originally very good. Total organic carbon varies between 3.59% and 7%. S2 varies between 6.30 mg/g and 10.39 mg/g and the hydrogen indices vary between 148.4 and 175.5. A Late Barremian Shale unit of this age has also been identified in the central Maragh Low. Geochemical analyses indicate that total organic carbon varies between 1.05 and 2.38%, S2 pyrolysate between 1.6 and 5.34 mg/g and the hydrogen index between 152.4 and 224.4. It is a good oil source rock which is now mature. In addition to the non marine hydrocarbon source rocks pre Sirt Unconformity, three formations in the overlying Late Cretaceous section also provide hydrocarbon quality source rocks. Interbedded shales within the Rachmat Formation of Late Cretaceous, early Campanian age have total organic carbon ranging between, 0.7 and 1.47%, S2 pyrolysate varying between 1.37 and 4.00 mg/g and hydrogen indices varying between 195.7 and 272.1. The indication is that this unit would provide a fair gas source to a good oil source. Geochemical analyses of the overlying Tagrifet Limestone indicate that total organic carbon varies between 0.26% and 1.01%. S2 pyrolysate varies between 1.21 and 2.16 mg/g and hydrogen indices vary between 195.7 and 465.4. For the overlying Sirt Shale Formation of Late Cretaceous, late Campanian age, total organic carbon varies between 1.04% and 1.51%, S2 pyrolysate varies between 4.65 mg/g and 6.99 mg/g and the hydrogen indices vary between 151 and 462.9. The study has proven that both the Sirt Shale Formation and the Tagrifet Limestone are good to very good and rich sources for oil in the Maragh Low. High resolution biostratigraphical interpretations have been integrated and calibrated with thermal maturity determinations (Vitrinite Reflectance (%Ro), Spore Colour Index (SCI) and Tmax (ºC) and the determined present day geothermal gradient of 25ºC / Km for the Maragh Low. Interpretation of generated basin modelling profiles allows a detailed prediction of timing of maturation development of these source horizons and leads to a determination of amounts of missing section at major unconformities. From the results the top of the oil window (0.72% Ro) is picked as high as 10,700’ and the base of the oil window (1.35% Ro) assuming a linear trend and by projection is picked as low as 18,000’ in the Maragh Low. For the Triassic Shale the early phase of oil generation was in the Late Palaeocene / Early to Middle Eocene and the main phase of oil generation was in the Middle to Late Eocene. The Early Barremian Shale reached the main phase of oil generation in the Early Oligocene with late generation being reached in the Middle Miocene. For the Rakb Group section (Rachmat Formation, Tagrifet Limestone and Sirt Shale Formation) the early phase of oil generation started in the Late Eocene with the main phase of generation being between the Early Oligocene and the Early Miocene. From studying maturity profiles and from regional considerations it can be predicted that up to 500’ of sediment may have been deposited and eroded by the Sirt Unconformity in the central Maragh Low while up to 2000’ of sediment may have been deposited and then eroded to the south of the trough.

Keywords: Geochemical analysis of the source rocks from wells in Eastern Sirt Basin.

Procedia PDF Downloads 409
13 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines

Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri

Abstract:

This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.

Keywords: wind turbines, aeroelasticity, repetitive control, periodic systems

Procedia PDF Downloads 251
12 The Impact of Neighborhood Effects on the Economic Mobility of the Inhabitants of Three Segregated Communities in Salvador (Brazil)

Authors: Stephan Treuke

Abstract:

The paper analyses the neighbourhood effects on the economic mobility of the inhabitants of three segregated communities of Salvador (Brazil), in other words, the socio-economic advantages and disadvantages affecting the lives of poor people due to their embeddedness in specific socio-residential contexts. Recent studies performed in Brazilian metropolis have concentrated on the structural dimensions of negative externalities in order to explain neighbourhood-level variations in a field of different phenomena (delinquency, violence, access to the labour market and education) in spatial isolated and socially homogeneous slum areas (favelas). However, major disagreement remains whether the contiguity between residents of poor neighbourhoods and higher-class condominio-dwellers provides structures of opportunities or whether it fosters socio-spatial stigmatization. Based on a set of interviews, investigating the variability of interpersonal networks and their activation in the struggle for economic inclusion, the study confirms that the proximity of Nordeste de Amaralina to middle-/upper-class communities affects positively the access to labour opportunities. Nevertheless, residential stigmatization, as well as structures of social segmentation, annihilate these potentials. The lack of exposition to individuals and groups extrapolating from the favela’s social, educational and cultural context restricts the structures of opportunities to local level. Therefore, residents´ interpersonal networks reveal a high degree of redundancy and localism, based on bonding ties connecting family and neighbourhood members. The resilience of segregational structures in Plataforma contributes to the naturalization of social distance patters. It’s embeddedness in a socially homogeneous residential area (Subúrbio Ferroviário), growing informally and beyond official urban politics, encourages the construction of isotopic patterns of sociability, sharing the same values, social preferences, perspectives and behaviour models. Whereas it’s spatial isolation correlates with the scarcity of economic opportunities, the social heterogeneity of Fazenda Grande II interviewees and the socialising effects of public institutions mitigate the negative repercussions of segregation. The networks’ composition admits a higher degree of heterophilia and a greater proportion of bridging ties accounting for the access to broader information actives and facilitating economic mobility. The variability observed within the three different scenarios urges to reflect about the responsability of urban politics when it comes to the prevention or consolidation of the social segregation process in Salvador. Instead of promoting the local development of the favela Plataforma, public housing programs priorize technocratic habitational solutions without providing the residents’ socio-economic integration. The impact of negative externalities related to the homogeneously poor neighbourhood is potencialized in peripheral areas, turning its’ inhabitants socially invisible, thus being isolated from other social groups. The example of Nordeste de Amaralina portrays the failing interest of urban politics to bridge the social distances structuring the brazilian society’s rigid stratification model, founded on mecanisms of segmentation (unequal access to labour market and education system, public transport, social security and law protection) and generating permanent conflicts between the two socioeconomically distant groups living in geographic contiguity. Finally, in the case of Fazenda Grande II, the public investments in both housing projects and complementary infrastructure (e.g. schools, hospitals, community center, police stations, recreation areas) contributes to the residents’ socio-economic inclusion.

Keywords: economic mobility, neighborhood effects, Salvador, segregation

Procedia PDF Downloads 280
11 Longitudinal Psychological Impact of Psoriasis: A Comparative Study Between Adults and Children in Canada and the United States

Authors: Jenny Carpenter, Josh Chan, Persephone MacKinlay, Madeline Chiang, Devlyn Sun, Hiba Syed, Jana Lau, Mariam Arshad, Joy Xu

Abstract:

Introduction: Psoriasis is a chronic inflammatory skin condition that affects 1 million Canadians and over 8 million Americans. It is associated with psychosocial challenges exacerbated by the presence of visible lesions, which can lead to feelings of embarrassment and social discomfort. Children often experience bullying and lower self-esteem, while adults face workplace discrimination, impaired productivity, and higher rates of comorbid mental health conditions. Understanding these impacts across age groups is vital for tailored interventions. Objective: The main objective is to compare the longitudinal psychological impact of psoriasis between adults and children in Canada and the United States. Methods: This systematic review was conducted following PRISMA guidelines and a PROSPERO-registered protocol. Studies were identified from PubMed, Scopus, ProQuest, PsycINFO, Dermatology Online Journal, JMIR Dermatology, and Embase. The included studies were published between 2014 and 2024, measured standardized psychological outcomes, and had a longitudinal design with at least a one-year follow-up period. Methodological quality was assessed using the GRADE tool. Results: Fifteen studies encompassing 67,964 participants (mean age 49.1 years, 53.3% female) were included. Adults with moderate-to-severe psoriasis demonstrated significant impairments in Dermatology Life Quality Index (DLQI) scores, with a mean baseline score of 9.0 to 10.2 for severe cases, reflecting moderate-to-severe quality of life (QoL) impairments. Treatment with biologic therapies significantly improved outcomes, with DLQI scores decreasing by an average of 7 points (from 9.6 to 2.6; p < 0.001). Key areas of improvement included social functioning, reduced physical symptoms, and increased work productivity. In severe cases, DLQI scores were 7.95 points higher compared to mild cases (p < 0.05), indicating a disproportionate burden of disease severity. Anxiety and depression were common in adults, affecting 16-23% and 18-22%, respectively. These conditions were linked to visible lesions, social stigma, and comorbidities such as hypertension and metabolic syndrome. Children with psoriasis also exhibited similar impairments in QoL, as assessed by the Children’s Life Quality Index (CLDQI). Visible lesions negatively affected school participation and peer interactions, with bullying and stigma consistently reported as major contributors to social isolation and emotional distress. Although biological therapies improved CDLQI scores, children faced persistent challenges in psychological well-being, including lower self-esteem and stigma, which often persisted in adolescence. Disease severity was quantified using the Psoriasis Area and Severity Index (PASI). Among adults, severe cases had a mean baseline PASI score of 13.9, improving by 87.1% (to 1.8, p < 0001) following biologic therapy. Canadian cohorts showed greater PASI improvements, with biologic-naive adults achieving a 95.1% reduction (from 16.3 to 0.7, p < 0.0001). Canadian patients also had higher biologic continuation rates (89.9%). Conclusion: Psoriasis significantly impacts quality of life and psychological well-being across age groups, with notable differences in outcomes between adults and children. Regional differences further highlighted greater work-related impairments in U.S. adults and more pronounced psychological challenges in Canadian children, where bullying and stigma delayed recovery. These findings emphasize the need for age- and region-specific strategies to address both the physical and psychosocial dimensions of psoriasis and support long-term well-being.

Keywords: psoriasis, psychological impact, mental health, quality of life, self-esteem, autoimmune, chronic skin condition

Procedia PDF Downloads 18
10 Mapping the Neurotoxic Effects of Sub-Toxic Manganese Exposure: Behavioral Outcomes, Imaging Biomarkers, and Dopaminergic System Alterations

Authors: Katie M. Clark, Adriana A. Tienda, Krista C. Paffenroth, Lindsey N. Brigante, Daniel C. Colvin, Jose Maldonado, Erin S. Calipari, Fiona E. Harrison

Abstract:

Manganese (Mn) is an essential trace element required for human health and is important in antioxidant defenses, as well as in the development and function of dopaminergic neurons. However, chronic low-level Mn exposure, such as through contaminated drinking water, poses risks that may contribute to neurodevelopmental and neurodegenerative conditions, including attention deficit hyperactivity disorder (ADHD). Pharmacological inhibition of the dopamine transporter (DAT) blocks reuptake, elevates synaptic dopamine, and alleviates ADHD symptoms. This study aimed to determine whether Mn exposure in juvenile mice modifies their response to DAT blockers, amphetamine, and methylphenidate and utilize neuroimaging methods to visualize and quantify Mn distribution across dopaminergic brain regions. Male and female heterozygous DATᵀ³⁵⁶ᴹ and wild-type littermates were randomly assigned to receive control (2.5% Stevia) or high Manganese (2.5 mg/ml Mn + 2.5% Stevia) via water ad libitum from weaning (21-28 days) for 4-5 weeks. Mice underwent repeated testing in locomotor activity chambers for three consecutive days (60 mins.) to ensure that they were fully habituated to the environments. On the fourth day, a 3-hour activity session was conducted following treatment with amphetamine (3 mg/kg) or methylphenidate (5 mg/kg). The second drug was administered in a second 3-hour activity session following a 1-week washout period. Following the washout, the mice were given one last injection of amphetamine and euthanized one hour later. Using the ex-vivo brains, magnetic resonance relaxometry (MRR) was performed on a 7Telsa imaging system to map T1- and T2-weighted (T1W, T2W) relaxation times. Mn inherent paramagnetic properties shorten both T1W and T2W times, which enhances the signal intensity and contrast, enabling effective visualization of Mn accumulation in the entire brain. A subset of mice was treated with amphetamine 1 hour before euthanasia. SmartSPIM light sheet microscopy with cleared whole brains and cFos and tyrosine hydroxylase (TH) labeling enabled an unbiased automated counting and densitometric analysis of TH and cFos positive cells. Immunohistochemistry was conducted to measure synaptic protein markers and quantify changes in neurotransmitter regulation. Mn exposure elevated Mn brain levels and potentiated stimulant effects in males. The globus pallidus, substantia nigra, thalamus, and striatum exhibited more pronounced T1W shortening, indicating regional susceptibility to Mn accumulation (p<0.0001, 2-Way ANOVA). In the cleared whole brains, initial analyses suggest that TH and c-Fos co-staining mirrors behavioral data with decreased co-staining in DATT356M+/- mice. Ongoing studies will identify the molecular basis of the effect of Mn, including changes to DAergic metabolism and transport and post-translational modification to the DAT. These findings demonstrate that alterations in T1W relaxation times, as measured by MRR, may serve as an early biomarker for Mn neurotoxicity. This neuroimaging approach exhibits remarkable accuracy in identifying Mn-susceptible brain regions, with a spatial resolution and sensitivity that surpasses current conventional dissection and mass spectrometry approaches. The capability to label and map TH and cFos expression across the entire brain provides insights into whole-brain neuronal activation and its connections to functional neural circuits and behavior following amphetamine and methylphenidate administration.

Keywords: manganese, environmental toxicology, dopamine dysfunction, biomarkers, drinking water, light sheet microscopy, magnetic resonance relaxometry (MRR)

Procedia PDF Downloads 16
9 Surface Acoustic Wave (SAW)-Induced Mixing Enhances Biomolecules Kinetics in a Novel Phase-Interrogation Surface Plasmon Resonance (SPR) Microfluidic Biosensor

Authors: M. Agostini, A. Sonato, G. Greco, M. Travagliati, G. Ruffato, E. Gazzola, D. Liuni, F. Romanato, M. Cecchini

Abstract:

Since their first demonstration in the early 1980s, surface plasmon resonance (SPR) sensors have been widely recognized as useful tools for detecting chemical and biological species, and the interest of the scientific community toward this technology has known a rapid growth in the past two decades owing to their high sensitivity, label-free operation and possibility of real-time detection. Recent works have suggested that a turning point in SPR sensor research would be the combination of SPR strategies with other technologies in order to reduce human handling of samples, improve integration and plasmonic sensitivity. In this light, microfluidics has been attracting growing interest. By properly designing microfluidic biochips it is possible to miniaturize the analyte-sensitive areas with an overall reduction of the chip dimension, reduce the liquid reagents and sample volume, improve automation, and increase the number of experiments in a single biochip by multiplexing approaches. However, as the fluidic channel dimensions approach the micron scale, laminar flows become dominant owing to the low Reynolds numbers that typically characterize microfluidics. In these environments mixing times are usually dominated by diffusion, which can be prohibitively long and lead to long-lasting biochemistry experiments. An elegant method to overcome these issues is to actively perturb the liquid laminar flow by exploiting surface acoustic waves (SAWs). With this work, we demonstrate a new approach for SPR biosensing based on the combination of microfluidics, SAW-induced mixing and the real-time phase-interrogation grating-coupling SPR technology. On a single lithium niobate (LN) substrate the nanostructured SPR sensing areas, interdigital transducer (IDT) for SAW generation and polydimethylsiloxane (PDMS) microfluidic chambers were fabricated. SAWs, impinging on the microfluidic chamber, generate acoustic streaming inside the fluid, leading to chaotic advection and thus improved fluid mixing, whilst analytes binding detection is made via SPR method based on SPP excitation via gold metallic grating upon azimuthal orientation and phase interrogation. Our device has been fully characterized in order to separate for the very first time the unwanted SAW heating effect with respect to the fluid stirring inside the microchamber that affect the molecules binding dynamics. Avidin/biotin assay and thiol-polyethylene glycol (bPEG-SH) were exploited as model biological interaction and non-fouling layer respectively. Biosensing kinetics time reduction with SAW-enhanced mixing resulted in a ≈ 82% improvement for bPEG-SH adsorption onto gold and ≈ 24% for avidin/biotin binding—≈ 50% and 18% respectively compared to the heating only condition. These results demonstrate that our biochip can significantly reduce the duration of bioreactions that usually require long times (e.g., PEG-based sensing layer, low concentration analyte detection). The sensing architecture here proposed represents a new promising technology satisfying the major biosensing requirements: scalability and high throughput capabilities. The detection system size and biochip dimension could be further reduced and integrated; in addition, the possibility of reducing biological experiment duration via SAW-driven active mixing and developing multiplexing platforms for parallel real-time sensing could be easily combined. In general, the technology reported in this study can be straightforwardly adapted to a great number of biological system and sensing geometry.

Keywords: biosensor, microfluidics, surface acoustic wave, surface plasmon resonance

Procedia PDF Downloads 282
8 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion

Authors: Ali Kazemi

Abstract:

Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.

Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting

Procedia PDF Downloads 68
7 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 44
6 A Comprehensive Study of Spread Models of Wildland Fires

Authors: Manavjit Singh Dhindsa, Ursula Das, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

These days, wildland fires, also known as forest fires, are more prevalent than ever. Wildfires have major repercussions that affect ecosystems, communities, and the environment in several ways. Wildfires lead to habitat destruction and biodiversity loss, affecting ecosystems and causing soil erosion. They also contribute to poor air quality by releasing smoke and pollutants that pose health risks, especially for individuals with respiratory conditions. Wildfires can damage infrastructure, disrupt communities, and cause economic losses. The economic impact of firefighting efforts, combined with their direct effects on forestry and agriculture, causes significant financial difficulties for the areas impacted. This research explores different forest fire spread models and presents a comprehensive review of various techniques and methodologies used in the field. A forest fire spread model is a computational or mathematical representation that is used to simulate and predict the behavior of a forest fire. By applying scientific concepts and data from empirical studies, these models attempt to capture the intricate dynamics of how a fire spreads, taking into consideration a variety of factors like weather patterns, topography, fuel types, and environmental conditions. These models assist authorities in understanding and forecasting the potential trajectory and intensity of a wildfire. Emphasizing the need for a comprehensive understanding of wildfire dynamics, this research explores the approaches, assumptions, and findings derived from various models. By using a comparison approach, a critical analysis is provided by identifying patterns, strengths, and weaknesses among these models. The purpose of the survey is to further wildfire research and management techniques. Decision-makers, researchers, and practitioners can benefit from the useful insights that are provided by synthesizing established information. Fire spread models provide insights into potential fire behavior, facilitating authorities to make informed decisions about evacuation activities, allocating resources for fire-fighting efforts, and planning for preventive actions. Wildfire spread models are also useful in post-wildfire mitigation strategies as they help in assessing the fire's severity, determining high-risk regions for post-fire dangers, and forecasting soil erosion trends. The analysis highlights the importance of customized modeling approaches for various circumstances and promotes our understanding of the way forest fires spread. Some of the known models in this field are Rothermel’s wildland fuel model, FARSITE, WRF-SFIRE, FIRETEC, FlamMap, FSPro, cellular automata model, and others. The key characteristics that these models consider include weather (includes factors such as wind speed and direction), topography (includes factors like landscape elevation), and fuel availability (includes factors like types of vegetation) among other factors. The models discussed are physics-based, data-driven, or hybrid models, also utilizing ML techniques like attention-based neural networks to enhance the performance of the model. In order to lessen the destructive effects of forest fires, this initiative aims to promote the development of more precise prediction tools and effective management techniques. The survey expands its scope to address the practical needs of numerous stakeholders. Access to enhanced early warning systems enables decision-makers to take prompt action. Emergency responders benefit from improved resource allocation strategies, strengthening the efficacy of firefighting efforts.

Keywords: artificial intelligence, deep learning, forest fire management, fire risk assessment, fire simulation, machine learning, remote sensing, wildfire modeling

Procedia PDF Downloads 82
5 Identification of the Antimicrobial Property of Double Metal Oxide/Bioactive Glass Nanocomposite Against Multi Drug Resistant Staphylococcus aureus Causing Implant Infections

Authors: M. H. Pazandeh, M. Doudi, S. Barahimi, L. Rahimzadeh Torabi

Abstract:

The use of antibiotics is essential in reducing the occurrence of adverse effects and inhibiting the emergence of antibiotic resistance in microbial populations. The necessity for a novel methodology concerning local administration of antibiotics has arisen, with particular focus on dealing with localized infections prompted by bacterial colonization of medical devices or implant materials. Bioactive glasses (BG) are extensively employed in the field of regenerative medicine, encompassing a diverse range of materials utilized for drug delivery systems. In the present investigation, various drug carriers for imipenem and tetracycline, namely single systems BG/SnO2, BG/NiO with varying proportions of metal oxide, and nanocomposite BG/SnO2/NiO, were synthesized through the sol-gel technique. The antibacterial efficacy of the synthesized samples was assessed through the utilization of the disk diffusion method with the aim of neutralizing Staphylococcus aureus as the bacterial model. The current study involved the examination of the bioactivity of two samples, namely BG10SnO2/10NiO and BG20SnO2, which were chosen based on their heightened bacterial inactivation properties. This evaluation entailed the employment of two techniques: the measurement of the pH of simulated body fluid (SBF) solution and the analysis of the sample tablets through X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The sample tablets were submerged in SBF for varying durations of 7, 14, and 28 days. The bioactivity of the composite bioactive glass sample was assessed through characterization of alterations in its surface morphology, structure, and chemical composition. This evaluation was performed using scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction spectroscopy. Subsequently, the sample was immersed in simulated liquids to simulate its behavior in biological environments. The specific body fat percentage (SBF) was assessed over a 28-day period. The confirmation of the formation of a hydroxyapatite surface layer serves as a distinct indicator of bioactivity. The infusion of antibiotics into the composite bioactive glass specimen was done separately, and then the release kinetics of tetracycline and imipenem were tested in simulated body fluid (SBF). Antimicrobial effectiveness against various bacterial strains have been proven in numerous instances using both melt and sol-gel techniques to create multiple bioactive glass compositions. An elevated concentration of calcium ions within a solution has been observed to cause an increase in the pH level. In aqueous suspensions, bioactive glass particles manifest a significant antimicrobial impact. The composite bioactive glass specimen exhibits a gradual and uninterrupted release, which is highly desirable for a drug delivery system over a span of 72 hours. The reduction in absorption, which signals the loss of a portion of the antibiotic during the loading process from the initial phosphate-buffered saline solution, indicates the successful bonding of the two antibiotics to the surfaces of the bioactive glass samples. The sample denoted as BG/10SnO2/10NiO exhibits a higher loading of particles compared to the sample designated as BG/20SnO2 in the context of bioactive glass. The enriched sample demonstrates a heightened bactericidal impact on the bacteria under investigation while concurrently preserving its antibacterial characteristics. Tailored bioactive glass that incorporates hydroxyapatite, with a regulated and efficient release of drugs targeting bacterial infections, holds promise as a potential framework for bone implant scaffolds following rigorous clinical evaluation, thereby establishing potential future biomedical uses. During the modification process, the introduction of metal oxides into bioactive glass resulted in improved antibacterial characteristics, particularly in the composite bioactive glass sample that displayed the highest level of efficiency.

Keywords: antibacterial, bioactive glasses, implant infections, multi drug resistant

Procedia PDF Downloads 100
4 Municipal Solid Waste Management in Ethiopia: Systematic Review of Physical and Chemical Compositions and Generation Rate

Authors: Tsegay Kahsay Gebrekidan, Gebremariam Gebrezgabher Gebremedhin, Abraha Kahsay Weldemariam, Meaza Kidane Teferi

Abstract:

Municipal solid waste management (MSWM) in Ethiopia is a complex issue with institutional, social, political, environmental, and economic dimensions, impacting sustainable development. Effective MSWM planning necessitates understanding the generation rate and composition of waste. This systematic review synthesizes qualitative and quantitative data from various sources to aggregate current knowledge, identify gaps, and provide a comprehensive understanding of municipal solid waste management in Ethiopia. The findings reveal that the generation rate of municipal solid waste in Ethiopia is 0.38 kg/ca/day, with the waste composition being predominantly food waste, followed by ash, dust, and sand, and yard waste. Over 85% of this MSW is either reusable or recyclable, with a significant portion being organic matter (73.13% biodegradable) and 11.78% recyclable materials. Physicochemical analyses reveal that Ethiopian MSW is suitable for composting and biogas production, offering opportunities to reduce environmental pollution, and GHGs, support urban agriculture, and create job opportunities. However; challenges persist, including a lack of political will, weak municipal planning, limited community awareness, and inadequate waste management infrastructure, and only 31.8% of MSW is collected legally, leading to inefficient and harmful disposal practices. To improve MSWM, Ethiopia should focus on public awareness; increased funding, infrastructure investment, private sector partnerships, and implementing the 4 R principles (reduce, reuse, and recycle). An integrated approach involving government, industry, and civil society is essential. Further research on the physicochemical properties and strategic uses of MSW is needed to enhance management practices. Implications: The comprehensive study of municipal solid waste management (MSWM) in Ethiopia reveals the intricate interplay of institutional, social, political, environmental, and economic factors that influence the nation’s sustainable development. The findings underscore the urgent need for tailored, integrated waste management strategies that are informed by a thorough understanding of MSW generation rates, composition, and current management practices. Ethiopia’s lower per capita MSW generation compared to developed countries and the predominantly organic composition of its waste present significant opportunities for sustainable waste management practices such as composting and recycling. These practices can not only minimize the environmental impact but also support urban greening, agriculture, and renewable energy production. The high organic content, suitable physicochemical properties of MSW for composting, and potential for biogas and briquette production highlight pathways for creating employment, reducing waste, and enhancing soil fertility. Despite these opportunities, Ethiopia faces substantial challenges due to inadequate political will, weak municipal planning, limited community awareness, insufficient waste management infrastructure, and poor policy implementation. The high rate of illegal waste disposal further exacerbates environmental and health issues, emphasizing the need for a more effective and integrated MSWM approach. To address these challenges and harness the potential of MSW, Ethiopia must prioritize increasing public awareness; investing in infrastructure, fostering private sector partnerships, and implementing the principles of reduce, reuse, and recycle (3 R). Developing strategies that involve all stakeholders and turning waste into valuable resources is crucial. Government, industry, and civil society must collaborate to implement integrated MSWM systems that focus on waste reduction at the source, alternative material use, and advanced recycling technologies. Further research at both federal and regional levels is essential to optimize the physicochemical analysis and strategic use of MSW. Prompt action is required to transform waste management into a pillar of sustainable urban development, ultimately improving environmental quality and human health in Ethiopia.

Keywords: biodegradable, healthy environment, integrated solid waste management, municipal

Procedia PDF Downloads 21
3 Women in Malaysia: Exploring the Democratic Space in Politics

Authors: Garima Sarkar

Abstract:

The main purpose of the present paper is to investigate the development and progress achieved by women in the decision-making sphere and to access the level of their political-participation in Parliamentary Elections of Malaysia and their status in overall Malaysian political domain. The paper also focuses on the role and status of women in the major political parties of the state both the parties in power as well as the parties in opposition. The primary objective of the study is to focus on the major hindrances and social malpractices faced by women and also Muslim women’s access to justice in Malaysia. It also demonstrates the linkages between national policy initiatives and the advancement of women in various areas, such as economics, health, employment, politics, power-sharing, social development and law and most importantly evaluating their status in the dominant religion of the nation. In Malaysia, women’s political participation is being challenged from every nook and corner of the society. A high percentage of women are getting educated, forming a significant labor force in present day Malaysia, who can be employed in the manufacturing sector, retail trade, hotels and restaurant, agriculture etc. Women today consist of almost half of the population and exceed boys in the tertiary sector by a ratio of 80:20. Despite these achievements, however, women’s labor force engagement remains confined to ‘ traditional women’s occupations’, such as those of primary school teachers, data entry clerks and organizing polls during elections and motivating other less enlightened women to cast their votes. In the political arena, the past few General Elections of Malaysia clearly exhibited a slight change in the number of women Members of Parliament from 10.6% (20 out of 193 Parliamentary seats in 1999) to 10.5% (23 out of 219 Parliamentary seats in 2004). Amidst the political posturing for the recent General Election in 2013 of Malaysia, women’s political participation remains a prime concern in Malaysia. It is evident that while much of the attention of women revolves around charitable assistance, they are much less likely to be portrayed as active participants in electoral politics and governance. According to the electoral roll for the third quarter of 2012, 6,578,916 women are registered as voters. They represent 50.2% of the total number of the registered voters. However, this parity in terms of voter registration is not reflected in the number of elected representatives at the Parliamentary level. Only 10.4% of sitting Members of Parliament are women. The women’s participation in the legislature and executive branches are important since their presence brings the spotlight squarely on issues that have been historically neglected and overlooked. In the recent 2013 General Elections in Malaysia out of 35 full ministerial position only two, or 5.7% have been filled by women. In each of the 2009, 2010, and in the present 2013 Cabinet members, there have only been two women ministers, with this number reduced to one briefly when the Prime Minister appointed himself placeholder in the Ministry of Women, Family and Community Development. In the recent past, in its Election Manifesto, Barisan Nasional made a pledge of ‘increasing the number of women participating in national decision-making processes’. Even after such pledges, the Malaysian leadership has failed to mirror the strong presence of women in leadership positions of public life which primarily includes politics, the judiciary and in business. There has been a strong urge to political parties by various gender-sensitive groups to nominate more women as candidates for contesting elections at the Parliamentary as well as at the State level. The democratization process will never be truly democratic without a proper gender agenda and representation. Although Malaysia signed the Beijing Platform for Action document in 1995, the state has a long way to go in enhancing the participation of women in every segment of Malaysian political, economic and cultural. There has been a small percentage of women representation in decision-making bodies compared to the 30% targeted by the Beijing Platform for Action. Thus, democratization in terms of representation of women in leadership positions and decision-making positions or bodies is essential since it’s a move towards a qualitative transformation of women in shaping national decision-making processes. The democratization process has to ensure women’s full participation and their goals of development and their full participation has to be included in the process of formulating and shaping the developmental goals.

Keywords: women, gender equality, Islam, democratization, political representation, Parliament

Procedia PDF Downloads 262
2 Numerical Simulation of Von Karman Swirling Bioconvection Nanofluid Flow from a Deformable Rotating Disk

Authors: Ali Kadir, S. R. Mishra, M. Shamshuddin, O. Anwar Beg

Abstract:

Motivation- Rotating disk bio-reactors are fundamental to numerous medical/biochemical engineering processes including oxygen transfer, chromatography, purification and swirl-assisted pumping. The modern upsurge in biologically-enhanced engineering devices has embraced new phenomena including bioconvection of micro-organisms (photo-tactic, oxy-tactic, gyrotactic etc). The proven thermal performance superiority of nanofluids i.e. base fluids doped with engineered nanoparticles has also stimulated immense implementation in biomedical designs. Motivated by these emerging applications, we present a numerical thermofluid dynamic simulation of the transport phenomena in bioconvection nanofluid rotating disk bioreactor flow. Methodology- We study analytically and computationally the time-dependent three-dimensional viscous gyrotactic bioconvection in swirling nanofluid flow from a rotating disk configuration. The disk is also deformable i.e. able to extend (stretch) in the radial direction. Stefan blowing is included. The Buongiorno dilute nanofluid model is adopted wherein Brownian motion and thermophoresis are the dominant nanoscale effects. The primitive conservation equations for mass, radial, tangential and axial momentum, heat (energy), nanoparticle concentration and micro-organism density function are formulated in a cylindrical polar coordinate system with appropriate wall and free stream boundary conditions. A mass convective condition is also incorporated at the disk surface. Forced convection is considered i.e. buoyancy forces are neglected. This highly nonlinear, strongly coupled system of unsteady partial differential equations is normalized with the classical Von Karman and other transformations to render the boundary value problem (BVP) into an ordinary differential system which is solved with the efficient Adomian decomposition method (ADM). Validation with earlier Runge-Kutta shooting computations in the literature is also conducted. Extensive computations are presented (with the aid of MATLAB symbolic software) for radial and circumferential velocity components, temperature, nanoparticle concentration, micro-organism density number and gradients of these functions at the disk surface (radial local skin friction, local circumferential skin friction, Local Nusselt number, Local Sherwood number, motile microorganism mass transfer rate). Main Findings- Increasing radial stretching parameter decreases radial velocity and radial skin friction, reduces azimuthal velocity and skin friction, decreases local Nusselt number and motile micro-organism mass wall flux whereas it increases nano-particle local Sherwood number. Disk deceleration accelerates the radial flow, damps the azimuthal flow, decreases temperatures and thermal boundary layer thickness, depletes the nano-particle concentration magnitudes (and associated nano-particle species boundary layer thickness) and furthermore decreases the micro-organism density number and gyrotactic micro-organism species boundary layer thickness. Increasing Stefan blowing accelerates the radial flow and azimuthal (circumferential flow), elevates temperatures of the nanofluid, boosts nano-particle concentration (volume fraction) and gyrotactic micro-organism density number magnitudes whereas suction generates the reverse effects. Increasing suction effect reduces radial skin friction and azimuthal skin friction, local Nusselt number, and motile micro-organism wall mass flux whereas it enhances the nano-particle species local Sherwood number. Conclusions - Important transport characteristics are identified of relevance to real bioreactor nanotechnological systems not discussed in previous works. ADM is shown to achieve very rapid convergence and highly accurate solutions and shows excellent promise in simulating swirling multi-physical nano-bioconvection fluid dynamics problems. Furthermore, it provides an excellent complement to more general commercial computational fluid dynamics simulations.

Keywords: bio-nanofluids, rotating disk bioreactors, Von Karman swirling flow, numerical solutions

Procedia PDF Downloads 157
1 Impacts of Transformational Leadership: Petronas Stations in Sabah, Malaysia

Authors: Lizinis Cassendra Frederick Dony, Jirom Jeremy Frederick Dony, Cyril Supain Christopher

Abstract:

The purpose of this paper is to improve the devotion to leadership through HR practices implementation at the PETRONAS stations. This emphasize the importance of personal grooming and Customer Care hospitality training for their front line working individuals and teams’ at PETRONAS stations in Sabah. Based on Thomas Edison, International Leadership Journal, theory, research, education and development practice and application to all organizational phenomena may affect or be affected by leadership. FINDINGS – PETRONAS in short called Petroliam Nasional Berhad is a Malaysian oil and gas company that was founded on August 17, 1974. Wholly owned by the Government of Malaysia, the corporation is vested with the entire oil and gas resources in Malaysia and is entrusted with the responsibility of developing and adding value to these resources. Fortune ranks PETRONAS as the 68th largest company in the world in 2012. It also ranks PETRONAS as the 12th most profitable company in the world and the most profitable in Asia. As of the end of March 2005, the PETRONAS Group comprised 103 wholly owned subsidiaries, 19 partly owned outfits and 57 associated companies. The group is engaged in a wide spectrum of petroleum activities, including upstream exploration and production of oil and gas to downstream oil refining, marketing and distribution of petroleum products, trading, gas processing and liquefaction, gas transmission pipeline network operations, marketing of liquefied natural gas; petrochemical manufacturing and marketing; shipping; automotive engineering and property investment. PETRONAS has growing their marketing channel in a competitive market. They have combined their resources to pursue common goals. PETRONAS provides opportunity to carry out Industrial Training Job Placement to the University students in Malaysia for 6-8 months. The effects of the Industrial Training have exposed them to the real working environment experience acting representing on behalf of General Manager for almost one year. Thus, the management education and reward incentives schemes have aspire the working teams transformed to gain their good leadership. Furthermore, knowledge and experiences are very important in the human capital development transformation. SPSS extends the accurate analysis PETRONAS achievement through 280 questionnaires and 81 questionnaires through excel calculation distributed to interview face to face with the customers, PETRONAS dealers and front desk staffs stations in the 17 stations in Kota Kinabalu, Sabah. Hence, this research study will improve its service quality innovation and business sustainability performance optimization. ORIGINALITY / VALUE – The impact of Transformational Leadership practices have influenced the working team’s behaviour as a Brand Ambassadors of PETRONAS. Finally, the findings correlation indicated that PETRONAS stations needs more HR resources practices to deploy more customer care retention resources in mitigating the business challenges in oil and gas industry. Therefore, as the business established at stiff competition globally (Cooper, 2006; Marques and Simon, 2006), it is crucial for the team management should be capable to minimize noises risk, financial risk and mitigating any other risks as a whole at the optimum level. CONCLUSION- As to conclude this research found that both transformational and transactional contingent reward leadership4 were positively correlated with ratings of platoon potency and ratings of leadership for the platoon leader and sergeant were moderately inter correlated. Due to this identification, we recommended that PETRONAS management should offers quality team management in PETRONAS stations in a broader variety of leadership training specialization in the operation efficiency at the front desk Customer Care hospitality. By having the reliability and validity of job experiences, it leverages diversity teamwork and cross collaboration. Other than leveraging factor, PETRONAS also will strengthen the interpersonal front liners effectiveness and enhance quality of interaction through effective communication. Finally, through numerous CSR correlation studies regression PETRONAS performance on Corporate Social Performance and several control variables.1 CSR model activities can be mis-specified if it is not controllable under R & D which evident in various feedbacks collected from the local communities and younger generation is inclined to higher financial expectation from PETRONAS. But, however, it created a huge impact on the nation building as part of its social adaptability overreaching their business stakeholders’ satisfaction in Sabah.

Keywords: human resources practices implementation (hrpi), source of competitive advantage in people’s development (socaipd), corporate social responsibility (csr), service quality at front desk stations (sqafd), impacts of petronas leadership (iopl)

Procedia PDF Downloads 352