Search results for: urban heat
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6558

Search results for: urban heat

6078 The Masterplan for the Urban Regeneration of the Heritage District of Msheireb Downtown Doha, State of Qatar

Authors: Raffaello Furlan

Abstract:

In the 21st century, the sustainable urban development of GCC-cities is challenged by inhabitants’ over-dependency on private-use vehicles. In turn, this habit has generated problems of urban inefficiency, contributing to traffic congestion, pollution, urban sprawling, fragmentation of the urban fabric, and various environmental and social challenges. In the context of Doha, the capital city of the State of Qatar, the over-dependency on private-use vehicles is justified by the lack of alternative public modes of transportation that support the need to connect fragmented urban districts and provide an effective solution to urban sprawl. Therefore, the current construction of the Qatar Metro Rail is offering the potential for investigating and defining a strategy for the sustainable urban development and/or urban regeneration of transit villages (TODs) in Qatar. Namely, the aim of this research study is (i) to investigate the development of transit villages (TODs) in the cultural-heritage district of Msheireb, Downtown Doha, (ii) to explore how the introduction of the new public transport system of Doha Metro can be effectively utilized as means of urban regeneration of the cultural core of the city, (iii) to propose a masterplan for TOD suitable for the district, suiting and responding to regional cultural and societal values. The findings reveal that the strategies for the sustainable urban regeneration of Msheireb are based on (i) the integration of land-use and multimodal transportation systems, (ii) the implementation of the public realm, and (iii) conservation of culture and urban identity.

Keywords: sustainable urbanism, smart growth, TODs, cultural district, Msheireb Downtown Doha

Procedia PDF Downloads 238
6077 Quantitative Changes in Biofilms of a Seawater Tubular Heat Exchanger Subjected to Electromagnetic Fields Treatment

Authors: Sergio Garcia, Alfredo Trueba, Luis M. Vega, Ernesto Madariaga

Abstract:

Biofilms adhesion is one of the more important cost of industries plants on wide world, which use to water for cooling heat exchangers or are in contact with water. This study evaluated the effect of Electromagnetic Fields on biofilms in tubular heat exchangers using seawater cooling. The results showed an up to 40% reduction of the biofilm thickness compared to the untreated control tubes. The presence of organic matter was reduced by 75%, the inorganic mater was reduced by 87%, and 53% of the dissolved solids were eliminated. The biofilm thermal conductivity in the treated tube was reduced by 53% as compared to the control tube. The hardness in the effluent during the experimental period was decreased by 18% in the treated tubes compared with control tubes. Our results show that the electromagnetic fields treatment has a great potential in the process of removing biofilms in heat exchanger.

Keywords: biofilm, heat exchanger, electromagnetic fields, seawater

Procedia PDF Downloads 188
6076 Experimental Investigation of Gas Bubble Behaviours in a Domestic Heat Pump Water Heating System

Authors: J. B. Qin, X. H. Jiang, Y. T. Ge

Abstract:

The growing awareness of global warming potential has internationally aroused interest and demand in reducing greenhouse gas emissions produced by human activity. Much national energy in the UK had been consumed in the residential sector mainly for space heating and domestic hot water production. Currently, gas boilers are mostly applied in the domestic water heating which contribute significantly to excessive CO2 emissions and consumption of primary energy resources. The issues can be solved by popularizing heat pump systems that are attributable to higher performance efficiency than those of traditional gas boilers. Even so, the heat pump system performance can be further enhanced if the dissolved gases in its hot water circuit can be efficiently discharged.  To achieve this target, the bubble behaviors in the heat pump water heating system need to be extensively investigated. In this paper, by varying different experimental conditions, the effects of various heat pump hot water side parameters on gas microbubble diameters were measured and analyzed. Correspondingly, the effect of each parameter has been investigated. These include varied system pressures, water flow rates, saturation ratios and heat outputs. The results measurement showed that the water flow rate is the most significant parameter to influence on gas microbubble productions. The research outcomes can significantly contribute to the understanding of gas bubble behaviors at domestic heat pump water heating systems and thus the efficient way for the discharging of the associated dissolved gases.  

Keywords: heat pump water heating system, microbubble formation, dissolved gases in water, effectiveness

Procedia PDF Downloads 261
6075 A Framework for Vacant City-Owned Land to Be Utilised for Urban Agriculture: The Case of Cape Town, South Africa

Authors: P. S. Van Staden, M. M. Campbell

Abstract:

Vacant City of Cape Town-owned land lying un-utilized and -productive could be developed for land uses such as urban agriculture that may improve the livelihoods of low income families. The new City of Cape Town zoning scheme includes an Urban Agriculture zoning for the first time. Unstructured qualitative interviews among town planners revealed their optimism about this inclusion as it will provide low-income residents with opportunities to generate an income. An existing farming community at Philippi, located within the municipal boundary of the city, was approached and empirical data obtained through questionnaires provided proof that urban agriculture could be viable in a coastal metropolitan city such as Cape Town even if farmers only produce for their own households. The lease method proposed for urban agriculture is a usufruct agreement conferring the right to another party, other than the legal owner, to enjoy the use and advantages of the property.

Keywords: land uses, urban agriculture, agriculture, food engineering

Procedia PDF Downloads 294
6074 Urban Art as an Identity Branding of Kampong Ketandan Surabaya

Authors: R. A. Retno Hastijanti, David Agus Sagita, Arum Lintang Cahyani, Tectona Radike, Andreas Suluh Putra

Abstract:

Surabaya, is one of the oldest cities in Indonesia. Most of the old quarter city of Surabaya is an ancient Kampong. Ketandan is one ancient Kampong in the center of Surabaya, surrounded by a thriving trade area. These conditions make Kampong vulnerably degraded of environmental quality and tended to lose their cultural identity. Norms and values eroded by the rapid development of its local surroundings. Through Kampong conservation programs, Surabaya city government established Ketandan as one of the urban heritage. To achieve the ideal condition of urban heritage, public participation is required. One thing that can generate a motivation for Kampong Ketandan community participation is to rediscover the identity of Kampong Ketandan. This research aims to explore the appropriate method to rediscover the identity of Kampong Ketandan. Through qualitative research methods, based on observations and focus group discussions, it was concluded that mural mentoring program was the best method that can be accepted by the Kampong community to rediscover their identity. Mural as one of the urban art form, able to motivate Kampong community to express their self and bring an icon to their Kampong. The benefits of this research are to provide input to the city government and the private sector to preserve urban heritage, moreover, to transform an urban heritage into a productive space in urban areas in order to enhance city revenues.

Keywords: Kampong, Kampong Ketandan, mural, Surabaya, urban, urban heritage, urban art

Procedia PDF Downloads 328
6073 Direct Current Grids in Urban Planning for More Sustainable Urban Energy and Mobility

Authors: B. Casper

Abstract:

The energy transition towards renewable energies and drastically reduced carbon dioxide emissions in Germany drives multiple sectors into a transformation process. Photovoltaic and on-shore wind power are predominantly feeding in the low and medium-voltage grids. The electricity grid is not laid out to allow an increasing feed-in of power in low and medium voltage grids. Electric mobility is currently in the run-up phase in Germany and still lacks a significant amount of charging stations. The additional power demand by e-mobility cannot be supplied by the existing electric grids in most cases. The future demands in heating and cooling of commercial and residential buildings are increasingly generated by heat-pumps. Yet the most important part in the energy transition is the storage of surplus energy generated by photovoltaic and wind power sources. Water electrolysis is one way to store surplus energy known as power-to-gas. With the vehicle-to-grid technology, the upcoming fleet of electric cars could be used as energy storage to stabilize the grid. All these processes use direct current (DC). The demand of bi-directional flow and higher efficiency in the future grids can be met by using DC. The Flexible Electrical Networks (FEN) research campus at RWTH Aachen investigates interdisciplinary about the advantages, opportunities, and limitations of DC grids. This paper investigates the impact of DC grids as a technological innovation on the urban form and urban life. Applying explorative scenario development, analyzation of mapped open data sources on grid networks and research-by-design as a conceptual design method, possible starting points for a transformation to DC medium voltage grids could be found. Several fields of action have emerged in which DC technology could become a catalyst for future urban development: energy transition in urban areas, e-mobility, and transformation of the network infrastructure. The investigation shows a significant potential to increase renewable energy production within cities with DC grids. The charging infrastructure for electric vehicles will predominantly be using DC in the future because fast and ultra fast charging can only be achieved with DC. Our research shows that e-mobility, combined with autonomous driving has the potential to change the urban space and urban logistics fundamentally. Furthermore, there are possible win-win-win solutions for the municipality, the grid operator and the inhabitants: replacing overhead transmission lines by underground DC cables to open up spaces in contested urban areas can lead to a positive example of how the energy transition can contribute to a more sustainable urban structure. The outlook makes clear that target grid planning and urban planning will increasingly need to be synchronized.

Keywords: direct current, e-mobility, energy transition, grid planning, renewable energy, urban planning

Procedia PDF Downloads 123
6072 Unsteady Temperature Distribution in a Finite Functionally Graded Cylinder

Authors: A. Amiri Delouei

Abstract:

In the current study, two-dimensional unsteady heat conduction in a functionally graded cylinder is studied analytically. The temperature distribution is in radial and longitudinal directions. Heat conduction coefficients are considered a power function of radius both in radial and longitudinal directions. The proposed solution can exactly satisfy the boundary conditions. Analytical unsteady temperature distribution for different parameters of functionally graded cylinder is investigated. The achieved exact solution is useful for thermal stress analysis of functionally graded cylinders. Regarding the analytical approach, this solution can be used to understand the concepts of heat conduction in functionally graded materials.

Keywords: functionally graded materials, unsteady heat conduction, cylinder, temperature distribution

Procedia PDF Downloads 297
6071 Effect of Two Radial Fins on Heat Transfer and Flow Structure in a Horizontal Annulus

Authors: Anas El Amraoui, Abdelkhalek Cheddadi, Mohammed Touhami Ouazzani

Abstract:

Laminar natural convection in a cylindrical annular cavity filled with air and provided with two fins is studied numerically using the discretization of the governing equations with the Centered Finite Difference method based on the Alternating Direction Implicit (ADI) scheme. The fins are attached to the inner cylinder of radius ri (hot wall of temperature Ti). The outer cylinder of radius ro is maintained at a temperature To (To < Ti). Two values of the dimensionless thickness of the fins are considered: 0.015 and 0.203. We consider a low fin height equal to 0.078 and medium fin heights equal to 0.093 and 0.203. The position of the fin is 0.82π and the radius ratio is equal to 2. The effect of Rayleigh number, Ra, on the flow structure and heat transfer is analyzed for a range of Ra from 103 to 104. The results for established flow structures and heat transfer at low height indicate that the flow regime that occurs is unicellular for all Ra and fin thickness; in addition, the heat transfer rate increases with increasing Rayleigh number and is the same for both thicknesses. At median fin heights 0.093 and 0.203, the increase of Rayleigh number leads to transitions of flow structure which correspond to significant variations of the heat transfer. The critical Rayleigh numbers, Rac.app and Rac.disp corresponding to the appearance of the bicellular flow regime and its disappearance, are determined and their influence on the change of heat transfer rate is analyzed.

Keywords: natural convection, fins, critical Rayleigh number, heat transfer, fluid flow regime, horizontal annulus

Procedia PDF Downloads 400
6070 Influence of Shield Positions on Thermo/Fluid Performance of Pin Fin Heat Sink

Authors: Ramy H. Mohammed

Abstract:

In heat sinks, the flow within the core exhibits separation and hence does not lend itself to simple analytical boundary layer or duct flow analysis of the wall friction. In this paper, I present some findings from an experimental and numerical study aimed to obtain physical insight into the influence of the presence of the shield and its position on the hydraulic and thermal performance of square pin fin heat sink without top by-pass. The variations of the Nusselt number and friction factor are obtained under varied parameters, such as the Reynolds number and the shield position. The numerical code is validated by comparing the numerical results with the available experimental data. It is shown that, there is a good agreement between the temperature predictions based on the model and the experimental data. Results show that, as the presence of the shield, the heat transfer of fin array is enhanced and the flow resistance increased. The surface temperature distribution of the heat sink base is more uniform when the dimensionless shield position equals to 1/3 or 2/3. The comprehensive performance evaluation approach based on identical pumping power criteria is adopted and shows that the optimum shield position is at x/l=0.43 where energy is saved.

Keywords: shield, fin array, performance evaluation, heat transfer, energy

Procedia PDF Downloads 304
6069 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition

Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover

Abstract:

Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.

Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery

Procedia PDF Downloads 403
6068 Experimental Investigation of the Thermal Performance of Fe2O3 under Magnetic Field in an Oscillating Heat Pipe

Authors: H. R. Goshayeshi, M. Khalouei, S. Azarberamman

Abstract:

This paper presents an experimental investigation regarding the use of Fe2O3 nano particles added to kerosene as a working fluid, under magnetic field. The experiment was made on Oscillating Heat Pipe (OHP). The experiment was performed in order to measure the temperature distribution and compare the heat transfer rate of the oscillating heat pipe with and without magnetic Field. Results showed that the addition of Fe2o3 nano particles under magnetic field improved thermal performance of OHP, compare with non-magnetic field. Furthermore applying a magnetic field enhance the heat transfer characteristic of Fe2O3 in both start up and steady state conditions. This paper presents an experimental investigation regarding the use of Fe2O3 nano particles added to kerosene as a working fluid, under magnetic field. The experiment was made on Oscillating Heat Pipe (OHP). The experiment was performed in order to measure the temperature distribution and compare the heat transfer rate of the oscillating heat pipe with and without magnetic Field. Results showed that the addition of Fe2o3 nano particles under magnetic field improved thermal performance of OHP, compare with non-magnetic field. Furthermore applying a magnetic field enhance the heat transfer characteristic of Fe2O3 in both start up and steady state conditions.

Keywords: experimental, oscillating heat pipe, heat transfer, magnetic field

Procedia PDF Downloads 256
6067 The Influence of Chevron Angle on Plate Heat Exchanger Thermal Performance with Considering Maldistribution

Authors: Hossein Shokouhmand, Majid Hasanpour

Abstract:

A new modification to the Strelow method of chevron-type plate heat exchangers (PHX) modeling is proposed. The effects of maldistribution are accounted in the resulting equation. The results of calculations are validated by reported experiences. The good accuracy of heat transfer performance prediction is shown. The results indicate that considering flow maldistribution improve the accuracy of predicting the flow and thermal behavior of the plate exchanger. Additionally, a wide range of the parametric study has been presented which brings out the effects of chevron angle of PHE on its thermal efficiency with considering maldistribution effect. In addition, the thermally optimal corrugation discussed for the chevron-type PHEs.

Keywords: chevron angle, plate heat exchangers, maldistribution, strelow method

Procedia PDF Downloads 186
6066 Enhancement of Solar Energy Storage by Nanofluid-Glass Impurities Mixture

Authors: Farhan Lafta Rashid, Khudhair Abass Dawood, Ahmed Hashim

Abstract:

Recent advancements in nanotechnology have originated the new emerging heat transfer fluids called nanofluids. Nanofluids are prepared by dispersing and stably suspending nanometer sized solid particles in conventional heat transfer fluids. Past researches have shown that a very small amount of suspending nano-particles have the potential to enhance the thermo physical, transport, and radiative properties of the base fluid. At this research adding very small quantities of nano particle (TiO2) to pure water with different weights percent ranged 0.1, 0.2, 0.3, and 0.4 wt.%, we found that the best weight percent is 0.2 that gave more heat absorbed. Then adding glass impurities ranged 10, 20, and 30 wt. Percentage to the nano-fluid in order to enhance the absorbed heat so energy storage. The best glass weights percent is 0.3.

Keywords: energy storage, enhancement absorbed heat, glass impurities, solar energy

Procedia PDF Downloads 429
6065 The Role of the Urban Renewal Projects on the Reshaping of the Cities in Izmir, Turkey

Authors: Sibel Ecemis Kilic, Neslihan Karatas

Abstract:

The concept of urban renewal came up with interventions to the urban areas which have social and economic problems aimed at gaining the city. In Turkey after 2000, urban renewal has become a frequent topic on the agenda; regulations have been developed in this regard. Urban renewal project would be a focal point for the formation of the city in the near future. The future of the city is directly related to how to achieve these applications. Urban renewal policies will be decisive in the positive or negative development of the potential of the existing renewal process. Urban renewal is seen as a refreshing new planned action for reshaping unplanned and uncontrolled growth of big cities/metropolitan areas. In this context, Izmir is one of the largest metropolitan areas which came on the agenda of urban renewal application in the recent period. Izmir, which is the third largest city of Turkey, is an important trade and port city. The city, located west of Turkey, is a gate opening to Europe. In particular, continued its development rapidly after the Republican Period, it has become an important big city today. Assessment of the current situation shows that the majority of existing residential areas was formed with squatters and unplanned settlements in Izmir city center. Therefore, an important part of these areas have significant problems in terms of the quality of life, safety, and environmental quality. Legal residential areas which have had developed before 2000 is seen inadequate security in terms of an earthquake. In this study, the central policies in Turkey and local policies in İzmir about urban renewal will be considered. In addition, urban renewal projects that are being implemented or applied in Izmir were discussed and suggestions will be developed in accordance with this policy.

Keywords: urban transformation, Izmir, urban planning, urban renewal

Procedia PDF Downloads 479
6064 Developing Heat-Power Efficiency Criteria for Characterization of Technosphere Structural Elements

Authors: Victoria Y. Garnova, Vladimir G. Merzlikin, Sergey V. Khudyakov, Aleksandr A. Gajour, Andrei P. Garnov

Abstract:

This paper refers to the analysis of the characteristics of industrial and lifestyle facilities heat- energy objects as a part of the thermal envelope of Earth's surface for inclusion in any database of economic forecasting. The idealized model of the Earth's surface is discussed. This model gives the opportunity to obtain the energy equivalent for each element of terrain and world ocean. Energy efficiency criterion of comfortable human existence is introduced. Dynamics of changes of this criterion offers the possibility to simulate the possible technogenic catastrophes with a spontaneous industrial development of the certain Earth areas. Calculated model with the confirmed forecast of the Gulf Stream freezing in the Polar Regions in 2011 due to the heat-energy balance disturbance for the oceanic subsurface oil polluted layer is given. Two opposing trends of human development under the limited and unlimited amount of heat-energy resources are analyzed.

Keywords: Earth's surface, heat-energy consumption, energy criteria, technogenic catastrophes

Procedia PDF Downloads 316
6063 Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling

Authors: Ali Ben Abbes, ImedRiadh Farah, Vincent Barra

Abstract:

Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images I1, I2, … In at different periods (t = 1, 2, ..., n). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method.

Keywords: multi-temporal satellite image, urban growth, non-stationary, stochastic model

Procedia PDF Downloads 424
6062 Dynamic Modelling and Assessment for Urban Growth and Transport in Riyadh City, Saudi Arabia

Authors: Majid Aldalbahi

Abstract:

In 2009, over 3.4 billion people in the world resided in urban areas as a result of rapid urban growth. This figure is estimated to increase to 6.5 billion by 2050. This urban growth phenomenon has raised challenges for many countries in both the developing and developed worlds. Urban growth is a complicated process involving the spatiotemporal changes of all socio-economic and physical components at different scales. The socio-economic components of urban growth are related to urban population growth and economic growth, while physical components of urban growth and economic growth are related to spatial expansion, land cover change and land use change which are the focus of this research. The interactions between these components are complex and no-linear. Several factors and forces cause these complex interactions including transportation and communication, internal and international migrations, public policies, high natural growth rates of urban populations and public policies. Urban growth has positive and negative consequences. The positive effects relates to planned and orderly urban growth, while negative effects relate to unplanned and scattered growth, which is called sprawl. Although urban growth is considered as necessary for sustainable urbanization, uncontrolled and rapid growth cause various problems including consumption of precious rural land resources at urban fringe, landscape alteration, traffic congestion, infrastructure pressure, and neighborhood conflicts. Traditional urban planning approaches in fast growing cities cannot accommodate the negative consequences of rapid urban growth. Microsimulation programme, and modelling techniques are effective means to provide new urban development, management and planning methods and approaches. This paper aims to use these techniques to understand and analyse the complex interactions for the case study of Riyadh city, a fast growing city in Saudi Arabia.

Keywords: policy implications, urban planning, traffic congestion, urban growth, Suadi Arabia, Riyadh

Procedia PDF Downloads 480
6061 Heat Transfer Augmentation in a Channel with Delta Winglet Type Vortex Generators at Different Blade Angles

Authors: Nirmal Kant Singh, Anshuman Pratap Singh

Abstract:

In this study the augmentation of heat transfer in a channel with delta winglet type vortex generators is evaluated. Three-dimensional numerical simulations are performed in a rectangular channel with longitudinal triangular vortex generators (LVGs). The span wise averaged Nusselt number and mean temperature are compared with and without vortex generators in the channel. The effect of variation of blade angle (15°, 30°, 45°, and 60°) is studied at a Reynolds number of 10000. The numerical results indicate that the application of LVGs effectively enhances heat transfer in the channel. The Nusselt number and mean outlet temperature were found to be greater using LVGs than in the channel without LVGs. It is observed that heat transfer increases with increase in blade angle at the same Reynolds number.

Keywords: heat transfer, rectangular channel, longitudinal vortex generators, effect of blade angle

Procedia PDF Downloads 640
6060 Influence of Sodium Acetate on Electroless Ni-P Deposits and Effect of Heat Treatment on Corrosion Behavior

Authors: Y. El Kaissi, M. Allam, A. Koulou, M. Galai, M. Ebn Touhami

Abstract:

The aim of our work is to develop an industrial bath of nickel alloy deposit on mild steel. The optimization of the operating parameters made it possible to obtain a stable Ni-P alloy deposition formulation. To understand the reaction mechanism of the deposition process, a kinetic study was performed by cyclic voltammetry and by electrochemical impedance spectroscopy (EIS). The coatings obtained have a very high corrosion resistance in a very aggressive acid medium which increases with the heat treatment.

Keywords: cyclic voltammetry, EIS, electroless Ni–P coating, heat treatment, potentiodynamic polarization

Procedia PDF Downloads 297
6059 Key Affecting Factors for Social Sustainability through Urban Green Space Planning

Authors: Raziyeh Teimouri, Sadasivam Karuppannan, Alpana Sivam, Ning Gu

Abstract:

Urban Green Space (UGS) is one of the most critical components of urban systems to create sustainable cities. UGS has valuable social benefits that closely correlate with people's life quality. Studying social sustainability factors that can be achieved by green spaces is required for optimal UGS planning to increase urban social sustainability. This paper aims to identify key factors that enhance urban social sustainability through UGS planning. To reach the goal of the study international experts’ survey has been conducted. According to the results of the survey analysis, factors of proper distribution, links to public transportation, walkable access, sense of place, social interactions, public education, safety and security, walkability and cyclability, physical activity and recreational facilities, suitability for all ages, disabled people, women, and children are among the key factors that should consider in UGS planning programs to promote urban social sustainability.

Keywords: UGS, planning, social sustainability, key factors

Procedia PDF Downloads 71
6058 Spectacles of the City: An Analysis of the Effects of Festivals in the Formation of New Urban Identities

Authors: Anusmita Das

Abstract:

In the post-industrial scenario, cities in India have become critical sites of negotiation and are expected to become some of the largest urban agglomeration of the twenty-first century. This has created a pluralist identity resulting in a new multifarious urbanism pervading throughout the entire urban landscape. There is an ambiguity regarding the character of present day Indian cities with new meanings emerging and no methodical study to understand them. More than an abstract diagram, the present day cities can be looked at as an ensemble of meanings. One of the ways in which the meaning is reflected is through events. Festivals such as Diwali, Dussera, Durga Puja, Ganesh Chaturthi, etc have transpired as the phenomenon of the city, and their presence in the everyday landscape weaves itself through the urban fabric dominating the popular visual culture of Indian cities. Festivals influence people’s idea of a city. Ritual, festival, celebrations are important in shaping of the urban environment and in their influence on the intangible aspect of the urban setting. These festivals pertaining to the city in motion have emerged as the symbolic image of the emerging urban Indian condition giving birth to new urban identities. The study undertaken to understand the present context of temporality of Indian cities is important in analyzing the process of its formation and transformation. This study aims to review the evolution of new dimensions of urbanism in India as well as its implication on the identity of cities.

Keywords: urban identities, urban design, festivals, rituals, celebrations, inter-disciplinary study

Procedia PDF Downloads 251
6057 Semi-Natural Vertical Gardens and Urban Ecology, the Sample of Bartın City

Authors: Yeliz Sarı Nayim, B. N. Nayim

Abstract:

Vertical natural gardens encountered in urban ecosystems are important elements contributing to urban ecology by raising the quality of urban life. This research covers the investigation of the semi-natural plant walls of Bartın city which is located on the western Black Sea coast of Turkey. Landscape analysis and evaluation as a result of land and office work have resulted in vertical garden ecosystems that have been processed in the urban habitat map, mostly in natural stone walls, wooden garden fences, garden entrance doors, historical buildings and building walls. Structural surfaces on old building facades, especially with abandoned or still in use with natural stone walls, have been found to have many natural vertical gardens over time. Parietaria judaica, Cymbalaria longipes and Hedera helix species were dominant, and other types of content were recorded, providing information on the current biotope potential, human activities and effects on them. It has been emphasized that the described vertical gardens together with the species they contain should be protected in terms of Bartin urban ecology and biodiversity. It has been stated that sustainable urban planning, design and management should be considered as a compensation for open and green area losses.

Keywords: semi-natural vertical gardens, urban ecology, sustainable urban planning and design, Bartın

Procedia PDF Downloads 348
6056 Study of Natural Convection in Storage Tank of LNG

Authors: Hariti Rafika, Fekih Malika, Saighi Mohamed

Abstract:

Heat transfer by natural convection in storage tanks for LNG is extremely related to heat gains through the walls with thermal insulation is not perfectly efficient. In this paper, we present the study of natural convection in the unsteady regime for natural gas in aware phase using the fluent software. The gas is just on the surface of the liquid phase. The CFD numerical method used to solve the system of equations is based on the finite volume method. This numerical simulation allowed us to determine the temperature profiles, the stream function, the velocity vectors and the variation of the heat flux density in the vapor phase in the LNG storage tank volume. The results obtained for a general configuration, by numerical simulation were compared to those found in the literature.

Keywords: numerical simulation, natural convection, heat gains, storage tank, liquefied natural gas

Procedia PDF Downloads 433
6055 Methodology of Geometry Simplification for Conjugate Heat Transfer of Electrical Rotating Machines Using Computational Fluid Dynamics

Authors: Sachin Aggarwal, Sarah Kassinger, Nicholas Hoffman

Abstract:

Geometry simplification is a key step in performing conjugate heat transfer analysis using CFD. This paper proposes a standard methodology for the geometry simplification of rotating machines, such as electrical generators and electrical motors (both air and liquid-cooled). These machines are extensively deployed throughout the aerospace and automotive industries, where optimization of weight, volume, and performance is paramount -especially given the current global transition to renewable energy sources and vehicle hybridization and electrification. Conjugate heat transfer analysis is an essential step in optimizing their complex design. This methodology will help in reducing convergence issues due to poor mesh quality, thus decreasing computational cost and overall analysis time.

Keywords: CFD, electrical machines, Geometry simplification, heat transfer

Procedia PDF Downloads 122
6054 The Urban Project and the Urban Improvement to the Test of the Participation, Case: Project of Modernization of Constantine

Authors: Mouhoubi Nedjima, Sassi Boudemagh Souad

Abstract:

In the framework of the modernization of the city of Constantine, and in order to restore its status as a regional metropolis and introduce it into the network of cities international metropolises, a major urban project was launched: project of modernization and of metropolitanization of the city of Constantine (PMMC). Our research project focuses on the management of the project for the modernization of the city of Constantine (PMMC) focusing on the management of some aspects of the urban project whose participation, with the objective assessment of the managerial approach business. Among the cases revealing taken into account in our research work on the question of participation of actors and their organizations, the operation relating to "the urban improvement in the city of the Brothers FERRAD in the district of Zouaghi". This operation with the objective of improving the living conditions of citizens has faced several challenges and obstacles that have been in major part the factors of its failure. Through this study, we examine the management process and the mode of organization of the actors of the project as well as the level of participation of the citizen to finally propose managerial solutions to conflict situations observed.

Keywords: the urban project, the urban improvement, participation, Constantine

Procedia PDF Downloads 396
6053 Temperature Gradient In Weld Zones During Friction Stir Process Using Finite Element Method

Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah

Abstract:

Finite element approach have been used via three-dimensional models by using Altair Hyper Work, a commercially available software, to describe heat gradients along the welding zones (axially and coronaly) in Friction Stir Welding (FSW). Transient thermal finite element analyses are performed in AA 6061-T6 Aluminum Alloy to obtain temperature distribution in the welded aluminum plates during welding operation. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and work piece is used in the analysis. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the work piece.

Keywords: Frictions Stir Welding (FSW), temperature distribution, Finite Element Method (FEM), altair hyperwork

Procedia PDF Downloads 529
6052 Continuous Measurement of Spatial Exposure Based on Visual Perception in Three-Dimensional Space

Authors: Nanjiang Chen

Abstract:

In the backdrop of expanding urban landscapes, accurately assessing spatial openness is critical. Traditional visibility analysis methods grapple with discretization errors and inefficiencies, creating a gap in truly capturing the human experi-ence of space. Addressing these gaps, this paper introduces a distinct continuous visibility algorithm, a leap in measuring urban spaces from a human-centric per-spective. This study presents a methodological breakthrough by applying this algorithm to urban visibility analysis. Unlike conventional approaches, this tech-nique allows for a continuous range of visibility assessment, closely mirroring hu-man visual perception. By eliminating the need for predefined subdivisions in ray casting, it offers a more accurate and efficient tool for urban planners and architects. The proposed algorithm not only reduces computational errors but also demonstrates faster processing capabilities, validated through a case study in Bei-jing's urban setting. Its key distinction lies in its potential to benefit a broad spec-trum of stakeholders, ranging from urban developers to public policymakers, aid-ing in the creation of urban spaces that prioritize visual openness and quality of life. This advancement in urban analysis methods could lead to more inclusive, comfortable, and well-integrated urban environments, enhancing the spatial experience for communities worldwide.

Keywords: visual openness, spatial continuity, ray-tracing algorithms, urban computation

Procedia PDF Downloads 41
6051 Understanding the Processwise Entropy Framework in a Heat-powered Cooling Cycle

Authors: P. R. Chauhan, S. K. Tyagi

Abstract:

Adsorption refrigeration technology offers a sustainable and energy-efficient cooling alternative over traditional refrigeration technologies for meeting the fast-growing cooling demands. With its ability to utilize natural refrigerants, low-grade heat sources, and modular configurations, it has the potential to revolutionize the cooling industry. Despite these benefits, the commercial viability of this technology is hampered by several fundamental limiting constraints, including its large size, low uptake capacity, and poor performance as a result of deficient heat and mass transfer characteristics. The primary cause of adequate heat and mass transfer characteristics and magnitude of exergy loss in various real processes of adsorption cooling system can be assessed by the entropy generation rate analysis, i. e. Second law of Thermodynamics. Therefore, this article presents the second law of thermodynamic-based investigation in terms of entropy generation rate (EGR) to identify the energy losses in various processes of the HPCC-based adsorption system using MATLAB R2021b software. The adsorption technology-based cooling system consists of two beds made up of silica gel and arranged in a single stage, while the water is employed as a refrigerant, coolant, and hot fluid. The variation in process-wise EGR is examined corresponding to cycle time, and a comparative analysis is also presented. Moreover, the EGR is also evaluated in the external units, such as the heat source and heat sink unit used for regeneration and heat dump, respectively. The research findings revealed that the combination of adsorber and desorber, which operates across heat reservoirs with a higher temperature gradient, shares more than half of the total amount of EGR. Moreover, the EGR caused by the heat transfer process is determined to be the highest, followed by a heat sink, heat source, and mass transfer, respectively. in case of heat transfer process, the operation of the valve is determined to be responsible for more than half (54.9%) of the overall EGR during the heat transfer. However, the combined contribution of the external units, such as the source (18.03%) and sink (21.55%), to the total EGR, is 35.59%. The analysis and findings of the present research are expected to pinpoint the source of the energy waste in HPCC based adsorption cooling systems.

Keywords: adsorption cooling cycle, heat transfer, mass transfer, entropy generation, silica gel-water

Procedia PDF Downloads 106
6050 Numerical Study of the Influence of the Primary Stream Pressure on the Performance of the Ejector Refrigeration System Based on Heat Exchanger Modeling

Authors: Elhameh Narimani, Mikhail Sorin, Philippe Micheau, Hakim Nesreddine

Abstract:

Numerical models of the heat exchangers in ejector refrigeration system (ERS) were developed and validated with the experimental data. The models were based on the switched heat exchangers model using the moving boundary method, which were capable of estimating the zones’ lengths, the outlet temperatures of both sides and the heat loads at various experimental points. The developed models were utilized to investigate the influence of the primary flow pressure on the performance of an R245fa ERS based on its coefficient of performance (COP) and exergy efficiency. It was illustrated numerically and proved experimentally that increasing the primary flow pressure slightly reduces the COP while the exergy efficiency goes through a maximum before decreasing.

Keywords: Coefficient of Performance, COP, Ejector Refrigeration System, ERS, exergy efficiency (ηII), heat exchangers modeling, moving boundary method

Procedia PDF Downloads 196
6049 Research on Steam Injection Technology of Extended Range Engine Cylinder for Waste Heat Recovery

Authors: Zhiyuan Jia, Xiuxiu Sun, Yong Chen, Liu Hai, Shuangqing Li

Abstract:

The engine cooling water and exhaust gas contain a large amount of available energy. In order to improve energy efficiency, a steam injection technology based on waste heat recovery is proposed. The models of cooling water waste heat utilization, exhaust gas waste heat utilization, and exhaust gas-cooling water waste heat utilization were constructed, and the effects of the three modes on the performance of steam injection were analyzed, and then the feasibility of in-cylinder water injection steam technology based on waste heat recovery was verified. The research results show that when the injection water flow rate is 0.10 kg/s and the temperature is 298 K, at a cooling water temperature of 363 K, the maximum temperature of the injection water heated by the cooling water can reach 314.5 K; at an exhaust gas temperature of 973 K and an exhaust gas flow rate of 0.12 kg/s, the maximum temperature of the injection water heated by the exhaust gas can reach 430 K; Under the condition of cooling water temperature of 363 K, exhaust gas temperature of 973 K and exhaust gas flow rate of 0.12 kg/s, after cooling water and exhaust gas heating, the maximum temperature of the injection water can reach 463 K. When the engine is 1200 rpm, the water injection volume is 30 mg, and the water injection time is 36°CA, the engine power increases by 2% and the fuel consumption is reduced by 2.6%.

Keywords: cooling water, exhaust gas, extended range engine, steam injection, waste heat recovery

Procedia PDF Downloads 180