Search results for: deep eutectic solvent
2403 Relationship of Arm Acupressure Points and Thai Traditional Massage
Authors: Boonyarat Chaleephay
Abstract:
The purpose of this research paper was to describe the relationship of acupressure points on the anterior surface of the upper limb in accordance with Applied Thai Traditional Massage (ATTM) and the deep structures located at those acupressure points. There were 2 population groups; normal subjects and cadaver specimens. Eighteen males with age ranging from 20-40 years old and seventeen females with ages ranging from 30-97 years old were studies. This study was able to obtain a fundamental knowledge concerning acupressure point and the deep structures that related to those acupressure points. It might be used as the basic knowledge for clinically applying and planning treatment as well as teaching in ATTM.Keywords: acupressure point (AP), applie Thai traditional medicine (ATTM), paresthesia, numbness
Procedia PDF Downloads 2392402 Fine-Grained Sentiment Analysis: Recent Progress
Authors: Jie Liu, Xudong Luo, Pingping Lin, Yifan Fan
Abstract:
Facebook, Twitter, Weibo, and other social media and significant e-commerce sites generate a massive amount of online texts, which can be used to analyse people’s opinions or sentiments for better decision-making. So, sentiment analysis, especially fine-grained sentiment analysis, is a very active research topic. In this paper, we survey various methods for fine-grained sentiment analysis, including traditional sentiment lexicon-based methods, machine learning-based methods, and deep learning-based methods in aspect/target/attribute-based sentiment analysis tasks. Besides, we discuss their advantages and problems worthy of careful studies in the future.Keywords: sentiment analysis, fine-grained, machine learning, deep learning
Procedia PDF Downloads 2602401 Using Deep Learning in Lyme Disease Diagnosis
Authors: Teja Koduru
Abstract:
Untreated Lyme disease can lead to neurological, cardiac, and dermatological complications. Rapid diagnosis of the erythema migrans (EM) rash, a characteristic symptom of Lyme disease is therefore crucial to early diagnosis and treatment. In this study, we aim to utilize deep learning frameworks including Tensorflow and Keras to create deep convolutional neural networks (DCNN) to detect images of acute Lyme Disease from images of erythema migrans. This study uses a custom database of erythema migrans images of varying quality to train a DCNN capable of classifying images of EM rashes vs. non-EM rashes. Images from publicly available sources were mined to create an initial database. Machine-based removal of duplicate images was then performed, followed by a thorough examination of all images by a clinician. The resulting database was combined with images of confounding rashes and regular skin, resulting in a total of 683 images. This database was then used to create a DCNN with an accuracy of 93% when classifying images of rashes as EM vs. non EM. Finally, this model was converted into a web and mobile application to allow for rapid diagnosis of EM rashes by both patients and clinicians. This tool could be used for patient prescreening prior to treatment and lead to a lower mortality rate from Lyme disease.Keywords: Lyme, untreated Lyme, erythema migrans rash, EM rash
Procedia PDF Downloads 2392400 Comparison of the Oxidative Stability of Chinese Vegetable Oils during Repeated Deep-Frying of French Fries
Authors: TranThi Ly, Ligang Yang, Hechun Liu, Dengfeng Xu, Haiteng Zhou, Shaokang Wang, Shiqing Chen, Guiju Sun
Abstract:
This study aims to evaluate the oxidative stability of Chinese vegetable oils during repeated deep-frying. For frying media, palm oil (PO), sunflower oil (SFO), soybean oil (SBO), and canola oil (CO) were used. French fries were fried in oils heated to 180 ± 50℃. The temperature was kept constant during the eight h of the frying process. The oil quality was measured according to the fatty acid (FA) content, trans fatty acid (TFA) compounds, and chemical properties such as peroxide value (PV), acid value (AV), anisidine value (AnV), and malondialdehyde (MDA). Additionally, the sensory characteristics such as color, flavor, greasiness, crispiness, and overall acceptability of the French fries were assessed. Results showed that the PV, AV, AnV, MDA, and TFA content of SFO, CO, and SBO significantly increased in conjunction with prolonged frying time. During the deep-frying process, the SBO showed the lowest oxidative stability at all indices, while PO retained oxidative stability and generated the lowest level of TFA. The French fries fried in PO also offered better sensory properties than the other oils. Therefore, results regarding oxidative stability and sensory attributes suggested that among the examined vegetable oils, PO appeared to be the best oil for frying food products.Keywords: vegetable oils, French fries, oxidative stability, sensory properties, frying oil
Procedia PDF Downloads 1152399 Deep Neural Networks for Restoration of Sky Images Affected by Static and Anisotropic Aberrations
Authors: Constanza A. Barriga, Rafael Bernardi, Amokrane Berdja, Christian D. Guzman
Abstract:
Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariable in the image plane. However, this latter condition is not always satisfied with real optical systems. PSF angular variations cannot be evaluated directly from the observations, neither be corrected at a pixel resolution. We have developed a method for the restoration of images affected by static and anisotropic aberrations using deep neural networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T-80 telescope optical system, an 80 cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image, which has a constant and known PSF across its field-of-view. The method was tested with the T-80 telescope, achieving better results than with PSF deconvolution techniques. We present the method and results on this telescope.Keywords: aberrations, deep neural networks, image restoration, variable point spread function, wide field images
Procedia PDF Downloads 1342398 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks
Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos
Abstract:
This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.Keywords: metaphor detection, deep learning, representation learning, embeddings
Procedia PDF Downloads 1522397 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market
Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua
Abstract:
Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.Keywords: candlestick chart, deep learning, neural network, stock market prediction
Procedia PDF Downloads 4442396 Trajectory Design and Power Allocation for Energy -Efficient UAV Communication Based on Deep Reinforcement Learning
Authors: Yuling Cui, Danhao Deng, Chaowei Wang, Weidong Wang
Abstract:
In recent years, unmanned aerial vehicles (UAVs) have been widely used in wireless communication, attracting more and more attention from researchers. UAVs can not only serve as a relay for auxiliary communication but also serve as an aerial base station for ground users (GUs). However, limited energy means that they cannot work all the time and cover a limited range of services. In this paper, we investigate 2D UAV trajectory design and power allocation in order to maximize the UAV's service time and downlink throughput. Based on deep reinforcement learning, we propose a depth deterministic strategy gradient algorithm for trajectory design and power distribution (TDPA-DDPG) to solve the energy-efficient and communication service quality problem. The simulation results show that TDPA-DDPG can extend the service time of UAV as much as possible, improve the communication service quality, and realize the maximization of downlink throughput, which is significantly improved compared with existing methods.Keywords: UAV trajectory design, power allocation, energy efficient, downlink throughput, deep reinforcement learning, DDPG
Procedia PDF Downloads 1482395 Mobile Crowdsensing Scheme by Predicting Vehicle Mobility Using Deep Learning Algorithm
Authors: Monojit Manna, Arpan Adhikary
Abstract:
In Mobile cloud sensing across the globe, an emerging paradigm is selected by the user to compute sensing tasks. In urban cities current days, Mobile vehicles are adapted to perform the task of data sensing and data collection for universality and mobility. In this work, we focused on the optimality and mobile nodes that can be selected in order to collect the maximum amount of data from urban areas and fulfill the required data in the future period within a couple of minutes. We map out the requirement of the vehicle to configure the maximum data optimization problem and budget. The Application implementation is basically set up to generalize a realistic online platform in which real-time vehicles are moving apparently in a continuous manner. The data center has the authority to select a set of vehicles immediately. A deep learning-based scheme with the help of mobile vehicles (DLMV) will be proposed to collect sensing data from the urban environment. From the future time perspective, this work proposed a deep learning-based offline algorithm to predict mobility. Therefore, we proposed a greedy approach applying an online algorithm step into a subset of vehicles for an NP-complete problem with a limited budget. Real dataset experimental extensive evaluations are conducted for the real mobility dataset in Rome. The result of the experiment not only fulfills the efficiency of our proposed solution but also proves the validity of DLMV and improves the quantity of collecting the sensing data compared with other algorithms.Keywords: mobile crowdsensing, deep learning, vehicle recruitment, sensing coverage, data collection
Procedia PDF Downloads 762394 UAV Based Visual Object Tracking
Authors: Vaibhav Dalmia, Manoj Phirke, Renith G
Abstract:
With the wide adoption of UAVs (unmanned aerial vehicles) in various industries by the government as well as private corporations for solving computer vision tasks it’s necessary that their potential is analyzed completely. Recent advances in Deep Learning have also left us with a plethora of algorithms to solve different computer vision tasks. This study provides a comprehensive survey on solving the Visual Object Tracking problem and explains the tradeoffs involved in building a real-time yet reasonably accurate object tracking system for UAVs by looking at existing methods and evaluating them on the aerial datasets. Finally, the best trackers suitable for UAV-based applications are provided.Keywords: deep learning, drones, single object tracking, visual object tracking, UAVs
Procedia PDF Downloads 1562393 A Numerical Study for Mixing Depth and Applicability of Partial Cement Mixing Method Utilizing Geogrid and Fixing Unit
Authors: Woo-seok Choi, Eun-sup Kim, Nam-Seo Park
Abstract:
The demand for new technique in soft ground improvement continuously increases as general soft ground methods like PBD and DCM have a application problem in soft grounds with deep depth and wide distribution in Southern coast of Korea and Southeast. In this study, partial cement mixing method utilizing geogrid and fixing unit(CMG) is suggested and Finite element analysis is performed for analyzing the depth of surface soil and deep soil stabilization and comparing with DCM method. In the result of the experiment, the displacement in DCM method were lower than the displacement in CMG, it's because the upper load is transferred to deep part soil not treated by cement in CMG method case. The differential settlement in DCM method was higher than the differential settlement in CMG, because of the effect load transfer effect by surface part soil treated by cement and geogrid. In conclusion, CMG method has the advantage of economics and constructability in embankment road, railway, etc in which differential settlement is the important consideration.Keywords: soft ground, geogrid, fixing unit, partial cement mixing, finite element analysis
Procedia PDF Downloads 3772392 Productivity Effect of Urea Deep Placement Technology: An Empirical Analysis from Irrigation Rice Farmers in the Northern Region of Ghana
Authors: Shaibu Baanni Azumah, Ignatius Tindjina, Stella Obanyi, Tara N. Wood
Abstract:
This study examined the effect of Urea Deep Placement (UDP) technology on the output of irrigated rice farmers in the northern region of Ghana. Multi-stage sampling technique was used to select 142 rice farmers from the Golinga and Bontanga irrigation schemes, around Tamale. A treatment effect model was estimated at two stages; firstly, to determine the factors that influenced farmers’ decision to adopt the UDP technology and secondly, to determine the effect of the adoption of the UDP technology on the output of rice farmers. The significant variables that influenced rice farmers’ adoption of the UPD technology were sex of the farmer, land ownership, off-farm activity, extension service, farmer group participation and training. The results also revealed that farm size and the adoption of UDP technology significantly influenced the output of rice farmers in the northern region of Ghana. In addition to the potential of the technology to improve yields, it also presents an employment opportunity for women and youth, who are engaged in the deep placement of Urea Super Granules (USG), as well as in the transplantation of rice. It is recommended that the government of Ghana work closely with the IFDC to embed the UDP technology in the national agricultural programmes and policies. The study also recommends an effective collaboration between the government, through the Ministry of Food and Agriculture (MoFA) and the International Fertilizer Development Center (IFDC) to train agricultural extension agents on UDP technology in the rice producing areas of the country.Keywords: Northern Ghana, output , irrigation rice farmers, treatment effect model, urea deep placement
Procedia PDF Downloads 4352391 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks
Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha
Abstract:
Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs –Sigmoid, ReLU, and Tanh–have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment with multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLUReLU) combination. Our results show that using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).Keywords: activation function, universal approximation function, neural networks, convergence
Procedia PDF Downloads 1572390 Influence of the Growth Rate on Eutectic Microstructures and Physical Properties of Aluminum–Silicon-Cobalt Alloy
Authors: Aynur Aker, Hasan Kaya
Abstract:
Al-12.6wt.%Si-%2wt.Co alloy was prepared in a graphite crucible under vacuum atmosphere. The samples were directionally solidified upwards with different growth rate at constant temperature gradient using by Bridgman–type growth apparatus. The values of microstructures (λ) was measured from transverse sections of the samples. The microhardness (HV), ultimate tensile strength (σ) and electrical resistivity (ρ) of the directional solidification samples were also measured. Influence of the growth rate and spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and the relationships between them were experimentally obtained by using regression analysis. The results obtained in present work were compared with the previous similar experimental results obtained for binary and ternary alloys.Keywords: directional solidification, Al-Si-Co alloy, mechanical properties, electrical properties
Procedia PDF Downloads 2872389 Performance Study of Neodymium Extraction by Carbon Nanotubes Assisted Emulsion Liquid Membrane Using Response Surface Methodology
Authors: Payman Davoodi-Nasab, Ahmad Rahbar-Kelishami, Jaber Safdari, Hossein Abolghasemi
Abstract:
The high purity rare earth elements (REEs) have been vastly used in the field of chemical engineering, metallurgy, nuclear energy, optical, magnetic, luminescence and laser materials, superconductors, ceramics, alloys, catalysts, and etc. Neodymium is one of the most abundant rare earths. By development of a neodymium–iron–boron (Nd–Fe–B) permanent magnet, the importance of neodymium has dramatically increased. Solvent extraction processes have many operational limitations such as large inventory of extractants, loss of solvent due to the organic solubility in aqueous solutions, volatilization of diluents, etc. One of the promising methods of liquid membrane processes is emulsion liquid membrane (ELM) which offers an alternative method to the solvent extraction processes. In this work, a study on Nd extraction through multi-walled carbon nanotubes (MWCNTs) assisted ELM using response surface methodology (RSM) has been performed. The ELM composed of diisooctylphosphinic acid (CYANEX 272) as carrier, MWCNTs as nanoparticles, Span-85 (sorbitan triooleate) as surfactant, kerosene as organic diluent and nitric acid as internal phase. The effects of important operating variables namely, surfactant concentration, MWCNTs concentration, and treatment ratio were investigated. Results were optimized using a central composite design (CCD) and a regression model for extraction percentage was developed. The 3D response surfaces of Nd(III) extraction efficiency were achieved and significance of three important variables and their interactions on the Nd extraction efficiency were found out. Results indicated that introducing the MWCNTs to the ELM process led to increasing the Nd extraction due to higher stability of membrane and mass transfer enhancement. MWCNTs concentration of 407 ppm, Span-85 concentration of 2.1 (%v/v) and treatment ratio of 10 were achieved as the optimum conditions. At the optimum condition, the extraction of Nd(III) reached the maximum of 99.03%.Keywords: emulsion liquid membrane, extraction of neodymium, multi-walled carbon nanotubes, response surface method
Procedia PDF Downloads 2532388 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network
Authors: Ziying Wu, Danfeng Yan
Abstract:
Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network
Procedia PDF Downloads 1162387 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition
Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang
Abstract:
Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor
Procedia PDF Downloads 1482386 Meniscus Guided Film Coating for Large-Area Perovskite Solar Cells
Authors: Gizachew Belay Adugna, Yu-Tai Tao
Abstract:
Perovskite solar cells (PSCs) have been gaining impressive progress with excellent power conversion efficiency (PCE) of 25.5% in small-area devices. However, the conventional film coating approach is not applicable to large-area module fabrication. Meniscus-guided coating, including blade coating, slot-die coating, and bar coating, is solution processing and promising for large-area and cost-effective film coating to industrial-scale PSCs. Here, we develop simple and scalable solution shearing (SS) and bar coating (BC) methods to coat all layers on large-area (10x10 cm²) substrate in FTO/c-TiO₂/mp-TiO₂/ CH₃NH₃PbI₃/Spiro-OMeTAD/Ag device structure, except the Ag electrode. All solution-sheared PSC exhibited a champion power conversion efficiency of 15.89% in the conational DMF/DMSO solvent. Whereas a very high PCE of 20.30% compared to the controlled spin-coated device (SC, 17.60%) was achieved from the large area sheared perovskite film in a green ACN/MA solvent. Similarly, a remarkable PCE of 18.50% was achieved for a device fabricated from a large-area perovskite film in a simpler and more compatible Bar-coating system. This strategy demonstrates the huge potential for module fabrication and future PSC commercialization.Keywords: Perovskite solar cells, larger area film coating, meniscus-guided film coating, solution-shearing, bar-coating, power conversion efficiency
Procedia PDF Downloads 722385 Enhanced Kinetic Solubility Profile of Epiisopiloturine Solid Solution in Hipromellose Phthalate
Authors: Amanda C. Q. M. Vieira, Cybelly M. Melo, Camila B. M. Figueirêdo, Giovanna C. R. M. Schver, Salvana P. M. Costa, Magaly A. M. de Lyra, Ping I. Lee, José L. Soares-Sobrinho, Pedro J. Rolim-Neto, Mônica F. R. Soares
Abstract:
Epiisopiloturine (EPI) is a drug candidate that is extracted from Pilocarpus microphyllus and isolated from the waste of Pilocarpine. EPI has demonstrated promising schistosomicidal, leishmanicide, anti-inflammatory and antinociceptive activities, according to in vitro studies that have been carried out since 2009. However, this molecule shows poor aqueous solubility, which represents a problem for the release of the drug candidate and its absorption by the organism. The purpose of the present study is to investigate the extent of enhancement of kinetic solubility of a solid solution (SS) of EPI in hipromellose phthalate HP-55 (HPMCP), an enteric polymer carrier. SS was obtained by the solvent evaporation methodology, using acetone/methanol (60:40) as solvent system. Both EPI and polymer (drug loading 10%) were dissolved in this solvent until a clear solution was obtained, and then dried in oven at 60ºC during 12 hours, followed by drying in a vacuum oven for 4 h. The results show a considerable modification in the crystalline structure of the drug candidate. For instance, X-ray diffraction (XRD) shows a crystalline behavior for the EPI, which becomes amorphous for the SS. Polarized light microscopy, a more sensitive technique than XRD, also shows completely absence of crystals in SS sample. Differential Scanning Calorimetric (DSC) curves show no signal of EPI melting point in SS curve, indicating, once more, no presence of crystal in this system. Interaction between the drug candidate and the polymer were found in Infrared microscopy, which shows a carbonyl 43.3 cm-1 band shift, indicating a moderate-strong interaction between them, probably one of the reasons to the SS formation. Under sink conditions (pH 6.8), EPI SS had its dissolution performance increased in 2.8 times when compared with the isolated drug candidate. EPI SS sample provided a release of more than 95% of the drug candidate in 15 min, whereas only 45% of EPI (alone) could be dissolved in 15 min and 70% in 90 min. Thus, HPMCP demonstrates to have a good potential to enhance the kinetic solubility profile of EPI. Future studies to evaluate the stability of SS are required to conclude the benefits of this system.Keywords: epiisopiloturine, hipromellose phthalate HP-55, pharmaceuticaltechnology, solubility
Procedia PDF Downloads 6052384 Stock Movement Prediction Using Price Factor and Deep Learning
Abstract:
The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.Keywords: classification, machine learning, time representation, stock prediction
Procedia PDF Downloads 1462383 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning
Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie
Abstract:
This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network
Procedia PDF Downloads 1412382 Low Resistivity Pay Identification in Carbonate Reservoirs of Yadavaran Oilfield
Authors: Mohammad Mardi
Abstract:
Generally, the resistivity is high in oil layer and low in water layer. Yet there are intervals of oil-bearing zones showing low resistivity, high porosity, and low resistance. In the typical example, well A (depth: 4341.5-4372.0m), both Spectral Gamma Ray (SGR) and Corrected Gamma Ray (CGR) are relatively low; porosity varies from 12-22%. Above 4360 meters, the reservoir shows the conventional positive difference between deep and shallow resistivity with high resistance; below 4360m, the reservoir shows a negative difference with low resistance, especially at depths of 4362.4 meters and 4371 meters, deep resistivity is only 2Ω.m, and the CAST-V imaging map shows that there are low resistance substances contained in the pores or matrix in the reservoirs of this interval. The rock slice analysis data shows that the pyrite volume is 2-3% in the interval 4369.08m-4371.55m. A comprehensive analysis on the volume of shale (Vsh), porosity, invasion features of resistivity, mud logging, and mineral volume indicates that the possible causes for the negative difference between deep and shallow resistivities with relatively low resistance are erosional pores, caves, micritic texture and the presence of pyrite. Full-bore Drill Stem Test (DST) verified 4991.09 bbl/d in this interval. To identify and thoroughly characterize low resistivity intervals coring, Nuclear Magnetic Resonance (NMR) logging and further geological evaluation are needed.Keywords: low resistivity pay, carbonates petrophysics, microporosity, porosity
Procedia PDF Downloads 1642381 The Effect of Different Concentrations of Extracting Solvent on the Polyphenolic Content and Antioxidant Activity of Gynura procumbens Leaves
Authors: Kam Wen Hang, Tan Kee Teng, Huang Poh Ching, Chia Kai Xiang, H. V. Annegowda, H. S. Naveen Kumar
Abstract:
Gynura procumbens (G. procumbens) leaves, commonly known as ‘sambung nyawa’ in Malaysia is a well-known medicinal plant commonly used as folk medicines in controlling blood glucose, cholesterol level as well as treating cancer. These medicinal properties were believed to be related to the polyphenolic content present in G. procumbens extract, therefore optimization of its extraction process is vital to obtain highest possible antioxidant activities. The current study was conducted to investigate the effect of different concentrations of extracting solvent (ethanol) on the amount of polyphenolic content and antioxidant activities of G. procumbens leaf extract. The concentrations of ethanol used were 30-70%, with the temperature and time kept constant at 50°C and 30 minutes, respectively using ultrasound-assisted extraction. The polyphenolic content of these extracts were quantified by Folin-Ciocalteu colorimetric method and results were expressed as milligram gallic acid equivalent (mg GAE)/g. Phosphomolybdenum method and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assays were used to investigate the antioxidant properties of the extract and the results were expressed as milligram ascorbic acid equivalent (mg AAE)/g and effective concentration (EC50) respectively. Among the three different (30%, 50% and 70%) concentrations of ethanol studied, the 50% ethanolic extract showed total phenolic content of 31.565 ± 0.344 mg GAE/g and total antioxidant activity of 78.839 ± 0.199 mg AAE/g while 30% ethanolic extract showed 29.214 ± 0.645 mg GAE/g and 70.701 ± 1.394 mg AAE/g, respectively. With respect to DPPH radical scavenging assay, 50% ethanolic extract had exhibited slightly lower EC50 (314.3 ± 4.0 μg/ml) values compared to 30% ethanol extract (340.4 ± 5.3 μg/ml). Out of all the tested extracts, 70% ethanolic extract exhibited significantly (p< 0.05) highest total phenolic content (38.000 ± 1.009 mg GAE/g), total antioxidant capacity (95.874 ± 2.422 mg AAE/g) and demonstrated the lowest EC50 in DPPH assay (244.2 ± 5.9 μg/ml). An excellent correlations were drawn between total phenolic content, total antioxidant capacity and DPPH radical scavenging activity (R2 = 0.949 and R2 = 0.978, respectively). It was concluded from this study that, 70% ethanol should be used as the optimal polarity solvent to obtain G. procumbens leaf extract with maximum polyphenolic content with antioxidant properties.Keywords: antioxidant activity, DPPH assay, Gynura procumbens, phenolic compounds
Procedia PDF Downloads 4112380 Application of Alumina-Aerogel in Post-Combustion CO₂ Capture: Optimization by Response Surface Methodology
Authors: S. Toufigh Bararpour, Davood Karami, Nader Mahinpey
Abstract:
Dependence of global economics on fossil fuels has led to a large growth in the emission of greenhouse gases (GHGs). Among the various GHGs, carbon dioxide is the main contributor to the greenhouse effect due to its huge emission amount. To mitigate the threatening effect of CO₂, carbon capture and sequestration (CCS) technologies have been studied widely in recent years. For the combustion processes, three main CO₂ capture techniques have been proposed such as post-combustion, pre-combustion and oxyfuel combustion. Post-combustion is the most commonly used CO₂ capture process as it can be readily retrofit into the existing power plants. Multiple advantages have been reported for the post-combustion by solid sorbents such as high CO₂ selectivity, high adsorption capacity, and low required regeneration energy. Chemical adsorption of CO₂ over alkali-metal-based solid sorbents such as K₂CO₃ is a promising method for the selective capture of diluted CO₂ from the huge amount of nitrogen existing in the flue gas. To improve the CO₂ capture performance, K₂CO₃ is supported by a stable and porous material. Al₂O₃ has been employed commonly as the support and enhanced the cyclic CO₂ capture efficiency of K₂CO₃. Different phases of alumina can be obtained by setting the calcination temperature of boehmite at 300, 600 (γ-alumina), 950 (δ-alumina) and 1200 °C (α-alumina). By increasing the calcination temperature, the regeneration capacity of alumina increases, while the surface area reduces. However, sorbents with lower surface areas have lower CO₂ capture capacity as well (except for the sorbents prepared by hydrophilic support materials). To resolve this issue, a highly efficient alumina-aerogel support was synthesized with a BET surface area of over 2000 m²/g and then calcined at a high temperature. The synthesized alumina-aerogel was impregnated on K₂CO₃ based on 50 wt% support/K₂CO₃, which resulted in the preparation of a sorbent with remarkable CO₂ capture performance. The effect of synthesis conditions such as types of alcohols, solvent-to-co-solvent ratios, and aging times was investigated on the performance of the support. The best support was synthesized using methanol as the solvent, after five days of aging time, and at a solvent-to-co-solvent (methanol-to-toluene) ratio (v/v) of 1/5. Response surface methodology was used to investigate the effect of operating parameters such as carbonation temperature and H₂O-to-CO₂ flowrate ratio on the CO₂ capture capacity. The maximum CO₂ capture capacity, at the optimum amounts of operating parameters, was 7.2 mmol CO₂ per gram K₂CO₃. Cyclic behavior of the sorbent was examined over 20 carbonation and regenerations cycles. The alumina-aerogel-supported K₂CO₃ showed a great performance compared to unsupported K₂CO₃ and γ-alumina-supported K₂CO₃. Fundamental performance analyses and long-term thermal and chemical stability test will be performed on the sorbent in the future. The applicability of the sorbent for a bench-scale process will be evaluated, and a corresponding process model will be established. The fundamental material knowledge and respective process development will be delivered to industrial partners for the design of a pilot-scale testing unit, thereby facilitating the industrial application of alumina-aerogel.Keywords: alumina-aerogel, CO₂ capture, K₂CO₃, optimization
Procedia PDF Downloads 1152379 Cellular Traffic Prediction through Multi-Layer Hybrid Network
Authors: Supriya H. S., Chandrakala B. M.
Abstract:
Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.Keywords: MLHN, network traffic prediction
Procedia PDF Downloads 872378 Measurements of Physical Properties of Directionally Solidified Al-Si-Cu Ternary Alloy
Authors: Aynur Aker, Hasan Kaya
Abstract:
Al-12.6wt.%Si-2wt.%Cu ternary alloy of near eutectic composition was directionally solidified upward at a constant temperature gradient in a wide range of growth rates (V=8.25-165.41 µm/s). The microstructures (λ), microhardness (HV), tensile stress (σ) and electrical resistivity (ρ) were measured from directionally solidified samples. The dependence of microstructures, microhardness and electrical resistivity on growth rate (V) was also determined by statistical analysis. According to these results, it has been found that for increasing values of V, the values of HV, σ and ρ increase. Variations of electrical resistivity for casting Al-Si-Cu alloy were also measured at the temperature in range 300-500 K. The enthalpy (ΔH) and the specific heat (Cp) for the Al-Si-Cu alloy were determined by differential scanning calorimeter (DSC) from heating trace during the transformation from solid to liquid. The results obtained in this work were compared with the similar experimental results in the literature.Keywords: Al-Si-Cu alloy, microstructures, micro-hardness, tensile stress electrical resistivity, enthalpy
Procedia PDF Downloads 2772377 Nonconventional Method for Separation of Rosmarinic Acid: Synergic Extraction
Authors: Lenuta Kloetzer, Alexandra C. Blaga, Dan Cascaval, Alexandra Tucaliuc, Anca I. Galaction
Abstract:
Rosmarinic acid, an ester of caffeic acid and 3-(3,4-dihydroxyphenyl) lactic acid, is considered a valuable compound for the pharmaceutical and cosmetic industries due to its antimicrobial, antioxidant, antiviral, anti-allergic, and anti-inflammatory effects. It can be obtained by extraction from vegetable or animal materials, by chemical synthesis and biosynthesis. Indifferent of the method used for rosmarinic acid production, the separation and purification process implies high amount of raw materials and laborious stages leading to high cost for and limitations of the separation technology. This study focused on separation of rosmarinic acid by synergic reactive extraction with a mixture of two extractants, one acidic (acid di-(2ethylhexyl) phosphoric acid, D2EHPA) and one with basic character (Amberlite LA-2). The studies were performed in experimental equipment consisting of an extraction column where the phases’ mixing was made by mean of a perforated disk with 45 mm diameter and 20% free section, maintained at the initial contact interface between the aqueous and organic phases. The vibrations had a frequency of 50 s⁻¹ and 5 mm amplitude. The extraction was carried out in two solvents with different dielectric constants (n-heptane and dichloromethane) in which the extractants mixture of varying concentration was dissolved. The pH-value of initial aqueous solution was varied between 1 and 7. The efficiency of the studied extraction systems was quantified by distribution and synergic coefficients. For calculating these parameters, the rosmarinic acid concentration in the initial aqueous solution and in the raffinate have been measured by HPLC. The influences of extractants concentrations and solvent polarity on the efficiency of rosmarinic acid separation by synergic extraction with a mixture of Amberlite LA-2 and D2EHPA have been analyzed. In the reactive extraction system with a constant concentration of Amberlite LA-2 in the organic phase, the increase of D2EHPA concentration leads to decrease of the synergic coefficient. This is because the increase of D2EHPA concentration prevents the formation of amine adducts and, consequently, affects the hydrophobicity of the interfacial complex with rosmarinic acid. For these reasons, the diminution of synergic coefficient is more important for dichloromethane. By maintaining a constant value of D2EHPA concentration and increasing the concentration of Amberlite LA-2, the synergic coefficient could become higher than 1, its highest values being reached for n-heptane. Depending on the solvent polarity and D2EHPA amount in the solvent phase, the synergic effect is observed for Amberlite LA-2 concentrations over 20 g/l dissolved in n-heptane. Thus, by increasing the concentration of D2EHPA from 5 to 40 g/l, the minimum concentration value of Amberlite LA-2 corresponding to synergism increases from 20 to 40 g/l for the solvent with lower polarity, namely, n-heptane, while there is no synergic effect recorded for dichloromethane. By analysing the influences of the main factors (organic phase polarity, extractant concentration in the mixture) on the efficiency of synergic extraction of rosmarinic acid, the most important synergic effect was found to correspond to the extractants mixture containing 5 g/l D2EHPA and 40 g/l Amberlite LA-2 dissolved in n-heptane.Keywords: Amberlite LA-2, di(2-ethylhexyl) phosphoric acid, rosmarinic acid, synergic effect
Procedia PDF Downloads 2882376 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks
Authors: Bahareh Golchin, Nooshin Riahi
Abstract:
One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.Keywords: emotion classification, sentiment analysis, social networks, deep neural networks
Procedia PDF Downloads 1362375 Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process
Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.
Abstract:
In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.Keywords: hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness
Procedia PDF Downloads 4182374 Formulation and Evaluation of Lisinopril Microspheres for Nasal Delivery
Authors: S. S. Patil, R. M. Mhetre, S. V. Patil
Abstract:
Lisinopril is an angiotensin converting enzyme inhibitor used in the treatment of hypertension and heart failure in prophylactic treatment after myocardial infarction and in diabetic nephropathy. However, it is very poorly absorbed from gastro-intestinal tract. Intranasal administration is an ideal alternative to the parenteral route for systemic drug delivery. Formulating multiparticulate system with mucoadhesive polymers provide a significant increase in the nasal residence time. The aim of the present approach was to overcome the drawbacks of the conventional dosage forms of lisinopril by formulating intranasal microspheres with Carbopol 974P NF and HPMC K4 M along with film forming polymer ethyl cellulose.The microspheres were prepared by emulsion solvent evaporation method. The prepared microspheres were characterized for encapsulation efficiency, drug loading, particle size, and surface morphology, degree of swelling, ex vivo mucoadhesion, drug release, ex vivo diffusion studies. All formulations has shown entrapment efficiency between 80 to more than 95%, mucoadhesion was more than 80 % and drug release up to 90 %. Ex vivo studies revealed tht the improved bioavailability of drug compared to oral drug administration. Both in vitro and in vivo studies conclude that combination of Carbopol and HPMC based microspheres shown better results than single carbopol based microspheres for the delivery of lisinopril.Keywords: microspheres, lisinopril, nasal delivery, solvent evaporation method
Procedia PDF Downloads 526