Search results for: catalytic chemical vapor deposition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5839

Search results for: catalytic chemical vapor deposition

5359 Coastline Change at Koh Tao Island, Thailand

Authors: Cherdvong Saengsupavanich

Abstract:

Human utilizes coastal resources as well as deteriorates them. Coastal tourism may degrade the environment if poorly managed. This research investigated the shoreline change at Koa Toa Island, one of the most famous tourist destinations. Aerial photographs and satellite images from three different periods were collected and analyzed. The results showed that the noticeable shoreline change before and after the tourism on the island had expanded. Between 1995 and 2002 when the tourism on Koh Toa Island was not intensive, sediment deposition occurred along most of the coastline. However, after the tourism had grown during 2002 to 2015, the coast evidently experienced less deposition and more erosion. The erosion resulted from less land-based sediment being provided to the littoral system. If the coastline of Koh Toa Island is not carefully sustained, the tourism will disappear along with the beautiful beach.  

Keywords: coastal engineering and management, coastal erosion, coastal tourism, Koh Toa Island, Thailand

Procedia PDF Downloads 306
5358 Performance of Different Spray Nozzles in the Application of Defoliant on Cotton Plants (Gossypium hirsutum L.)

Authors: Mohamud Ali Ibrahim, Ali Bayat, Ali Bolat

Abstract:

Defoliant spraying is an important link in the mechanized cotton harvest because adequate and uniform spraying can improve defoliation quality and reduce cotton trash content. In defoliant application, application volume and spraying technology are extremely important. In this study, the effectiveness of defoliant application to cotton plant that has come to harvest with two different application volumes and three different types of nozzles with a standard field crop sprayer was determined. Experiments were carried in two phases as field area trials and laboratory analysis. Application rates were 250 l/ha and 400 L/ha, and spraying nozzles were (1) Standard flat fan nozzle (TP8006), (2) Air induction nozzle (AI 11002-VS), and (3) Dual Pattern nozzle (AI307003VP). A tracer (BSF) and defoliant were applied to mature cotton with approximately 60% open bolls and samplings for BSF deposition and spray coverage on the cotton plant were done at two plant height (upper layer, lower layer) of plant. Before and after spraying, bolls open and leaves rate on cotton plants were calculated, and filter papers were used to detect BSF deposition, and water sensitive papers (WSP) were used to measure the coverage rate of spraying methods used. Spectrofluorophotometer was used to detect the amount of tracer deposition on targets, and an image process computer programme was used to measure coverage rate on WSP. In analysis, conclusions showed that air induction nozzle (AI 11002-VS) achieved better results than the dual pattern and standard flat fan nozzles in terms of higher depositions, coverages, and leaf defoliations, and boll opening rates. AI nozzles operating at 250 L/ha application rate provide the highest deposition and coverage rate on applications of the defoliant; in addition, BSF as an indicator of the defoliant used reached on leaf beneath in merely this spray nozzle. After defoliation boll opening rate was 85% on the 7th and 12th days after spraying and falling rate of leaves was 76% at application rate of 250 L/ha with air induction (AI1102) nozzle.

Keywords: cotton defoliant, air induction nozzle, dual pattern nozzle, standard flat fan nozzle, coverage rate, spray deposition, boll opening rate, leaves falling rate

Procedia PDF Downloads 198
5357 Flow Boiling Heat Transfer at Low Mass and Heat Fluxes: Heat Transfer Coefficient, Flow Pattern Analysis and Correlation Assessment

Authors: Ernest Gyan Bediako, Petra Dancova, Tomas Vit

Abstract:

Flow boiling heat transfer remains an important area of research due to its relevance in thermal management systems and other applications. Despite the enormous work done in the field of flow boiling heat transfer over the years to understand how flow parameters such as mass flux, heat flux, saturation conditions and tube geometries influence the characteristics of flow boiling heat transfer, there are still many contradictions and lack of agreement on the actual mechanisms controlling heat transfer and how flow parameters impact the heat transfer. This work thus seeks to experimentally investigate the heat transfer characteristics and flow patterns at low mass fluxes, low heat fluxes and low saturation pressure conditions which are of less attention in literature but prevalent in refrigeration, air-conditioning and heat pump applications. In this study, flow boiling experiment was conducted for R134a working fluid in a 5 mm internal diameter stainless steel horizontal smooth tube with mass flux ranging from 80- 100 kg/m2 s, heat fluxes ranging from 3.55kW/m2 - 25.23 kW/m2 and saturation pressure of 460 kPa. Vapor quality ranged from 0 to 1. A well-known flow pattern map created by Wojtan et al. was used to predict the flow patterns noticed during the study. The experimental results were correlated with well-known flow boiling heat transfer correlations in literature. The findings show that, heat transfer coefficient was influenced by both mass flux and heat fluxes. However, for an increasing heat flux, nucleate boiling was observed to be the dominant mechanism controlling the heat transfer especially at low vapor quality region. For an increasing mass flux, convective boiling was the dominant mechanism controlling the heat transfer especially in the high vapor quality region. Also, the study observed an unusual high heat transfer coefficient at low vapor qualities which could be due to periodic wetting of the walls of the tube due to slug flow pattern and stratified wavy flow patterns. The flow patterns predicted by Wojtan et al. flow pattern map were mixture of slug and stratified wavy, purely stratified wavy and dry out. Statistical assessment of the experimental data with various well-known correlations from literature showed that, none of the correlations reported in literature could predicted the experimental data with enough accuracy.

Keywords: flow boiling, heat transfer coefficient, mass flux, heat flux.

Procedia PDF Downloads 116
5356 Tensile Properties of 3D Printed PLA under Unidirectional and Bidirectional Raster Angle: A Comparative Study

Authors: Shilpesh R. Rajpurohit, Harshit K. Dave

Abstract:

Fused deposition modeling (FDM) gains popularity in recent times, due to its capability to create prototype as well as functional end use product directly from CAD file. Parts fabricated using FDM process have mechanical properties comparable with those of injection-molded parts. However, performance of the FDM part is severally affected by the poor mechanical properties of the part due to nature of layered structure of printed part. Mechanical properties of the part can be improved by proper selection of process variables. In the present study, a comparative study between unidirectional and bidirectional raster angle has been carried out at a combination of different layer height and raster width. Unidirectional raster angle varied at five different levels, and bidirectional raster angle has been varied at three different levels. Fabrication of tensile specimen and tensile testing of specimen has been conducted according to ASTM D638 standard. From the results, it can be observed that higher tensile strength has been obtained at 0° raster angle followed by 45°/45° raster angle, while lower tensile strength has been obtained at 90° raster angle. Analysis of fractured surface revealed that failure takes place along with raster deposition direction for unidirectional and zigzag failure can be observed for bidirectional raster angle.

Keywords: additive manufacturing, fused deposition modeling, unidirectional, bidirectional, raster angle, tensile strength

Procedia PDF Downloads 185
5355 Structural Fluxionality of Luminescent Coordination Compounds with Lanthanide Ions

Authors: Juliana A. B. Silva, Caio H. T. L. Albuquerque, Leonardo L. dos Santos, Cristiane K. Oliveira, Ivani Malvestiti, Fernando Hallwass, Ricardo L. Longo

Abstract:

Complexes with lanthanide ions have been extensively studied due to their applications as luminescent, magnetic and catalytic materials as molecular or extended crystals, thin films, glasses, polymeric matrices, ionic liquids, and in solution. NMR chemical shift data in solution have been reported and suggest fluxional structures in a wide range of coordination compounds with rare earth ions. However, the fluxional mechanisms for these compounds are still not established. This structural fluxionality may affect the photophysical, catalytic and magnetic properties in solution. Thus, understanding the structural interconversion mechanisms may aid the design of coordination compounds with, for instance, improved (electro)luminescence, catalytic and magnetic behaviors. The [Eu(btfa)₃bipy] complex, where btfa= 4,4,4-trifluoro-1-phenyl-1,3-butanedionate and bipy= 2,2’-bipiridyl, has a well-defined X-ray crystallographic structure and preliminary 1H NMR data suggested a structural fluxionality. Thus, we have investigated a series of coordination compounds with lanthanide ions [Ln(btfa)₃L], where Ln = La, Eu, Gd or Yb and L= bipy or phen (phen=1,10-phenanthroline) using a combined theoretical-experimental approach. These complexes were synthesized and fully characterized, and detailed NMR measurements were obtained. They were also studied by quantum chemical computational methods (DFT-PBE0). The aim was to determine the relevant factors in the structure of these compounds that favor or not the fluxional behavior. Measurements of the 1H NMR signals at variable temperature in CD₂Cl₂ of the [Eu(btfa)₃L] complexes suggest that these compounds have a fluxional structure, because the crystal structure has non-equivalent btfa ligands that should lead to non-equivalent hydrogen atoms and thus to more signals in the NMR spectra than those obtained at room temperature, where all hydrogen atoms of the btfa ligands are equivalent, and phen ligand has an effective vertical symmetry plane. For the [Eu(btfa)₃bipy] complex, the broadening of the signals at –70°C provides a lower bound for the coalescence temperature, which indicates the energy barriers involved in the structural interconversion mechanisms are quite small. These barriers and, consequently, the coalescence temperature are dependent upon the radii of the lanthanide ion as well as to their paramagnetic effects. The PBE0 calculated structures are in very good agreement with the crystallographic data and, for the [Eu(btfa)₃bipy] complex, this method provided several distinct structures with almost the same energy. However, the energy barrier for structural interconversion via dissociative pathways were found to be quite high and could not explain the experimental observations. Whereas the pseudo-rotation pathways, involving the btfa and bipy ligands, have very small activation barriers, in excellent agreement with the NMR data. The results also showed an increase in the activation barrier along the lanthanide series due to the decrease of the ionic radii and consequent increase of the steric effects. TD-DFT calculations showed a dependence of the ligand donor state energy with different structures of the complex [Eu(btfa)₃phen], which can affect the energy transfer rates and the luminescence. The energy required to promote the structural fluxionality may also enhance the luminescence quenching in solution. These results can aid in the design of more luminescent compounds and more efficient devices.

Keywords: computational chemistry, lanthanide-based compounds, NMR, structural fluxionality

Procedia PDF Downloads 199
5354 Erosion and Deposition of Terrestrial Soil Supplies Nutrients to Estuaries and Coastal Bays: A Flood Simulation Study of Sediment-Nutrient Flux

Authors: Kaitlyn O'Mara, Michele Burford

Abstract:

Estuaries and coastal bays can receive large quantities of sediment from surrounding catchments during flooding or high flow periods. Large river systems that feed freshwater into estuaries can flow through several catchments of varying geology. Human modification of catchments for agriculture, industry and urban use can contaminate soils with excess nutrients, trace metals and other pollutants. Land clearing, especially clearing of riparian vegetation, can accelerate erosion, mobilising, transporting and depositing soil particles into rivers, estuaries and coastal bays. In this study, a flood simulation experiment was used to study the flux of nutrients between soil particles and water during this erosion, transport and deposition process. Granite, sedimentary and basalt surface soils (as well as sub-soils of granite and sedimentary) were collected from eroding areas surrounding the Brisbane River, Australia. The <63 µm size fraction of each soil type was tumbled in freshwater for 3 days, to simulation flood erosion and transport, followed by stationary exposure to seawater for 4 weeks, to simulate deposition into estuaries. Filtered water samples were taken at multiple time points throughout the experiment and analysed for water nutrient concentrations. The highest rates of nutrient release occurred during the first hour of exposure to freshwater and seawater, indicating a chemical reaction with seawater that may act to release some nutrient particles that remain bound to the soil during turbulent freshwater transport. Although released at a slower rate than the first hour, all of the surface soil types showed continual ammonia, nitrite and nitrate release over the 4-week seawater exposure, suggesting that these soils may provide ongoing supply of these nutrients to estuarine waters after deposition. Basalt surface soil released the highest concentrations of phosphates and dissolved organic phosphorus. Basalt soils are found in much of the agricultural land surrounding the Brisbane River and contributed largely to the 2011 Brisbane River flood plume deposit in Moreton Bay, suggesting these soils may be a source of phosphate enrichment in the bay. The results of this study suggest that erosion of catchment soils during storm and flood events may be a source of nutrient supply in receiving waterways, both freshwater and marine, and that the amount of nutrient release following these events may be affected by the type of soil deposited. For example, flooding in different catchments of a river system over time may result in different algal and food web responses in receiving estuaries.

Keywords: flood, nitrogen, nutrient, phosphorus, sediment, soil

Procedia PDF Downloads 186
5353 Computational Chemical-Composition of Carbohydrates in the Context of Healthcare Informatics

Authors: S. Chandrasekaran, S. Nandita, M. Shivathmika, Srikrishnan Shivakumar

Abstract:

The objective of the research work is to analyze the computational chemical-composition of carbohydrates in the context of healthcare informatics. The computation involves the representation of complex chemical molecular structure of carbohydrate using graph theory and in a deployable Chemical Markup Language (CML). The parallel molecular structure of the chemical molecules with or without other adulterants for the sake of business profit can be analyzed in terms of robustness and derivatization measures. The rural healthcare program should create awareness in malnutrition to reduce ill-effect of decomposition and help the consumers to know the level of such energy storage mixtures in a quantitative way. The earlier works were based on the empirical and wet data which can vary from time to time but cannot be made to reuse the results of mining. The work is carried out on the quantitative computational chemistry on carbohydrates to provide a safe and secure right to food act and its regulations.

Keywords: carbohydrates, chemical-composition, chemical markup, robustness, food safety

Procedia PDF Downloads 374
5352 Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition

Authors: Matthew Ferguson, Tatyana Konkova, Ioannis Violatos

Abstract:

Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat-affected zone (HAZ), experiencing rapid thermal gyrations resulting in thermal-induced transformations. Inconel 718 was utilized as work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. The thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. The interface region of the blocks was analyzed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), including the electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.

Keywords: additive manufacturing, direct energy deposition, electron back-scattered diffraction, finite element analysis, inconel 718, microstructure, optical microscopy, scanning electron microscopy, substrate-deposit interface region

Procedia PDF Downloads 203
5351 Synthesis and Functionalization of MnFe₂O₄ Nano−Hollow Spheres for Optical and Catalytic Properties

Authors: Indranil Chakraborty, Kalyan Mandal

Abstract:

Herein, we synthesize MnFe₂O₄ nano−hollow spheres (NHSs) of average diameter 100 nm through a facile template free solvothermal process and carry out a time dependent morphological study to investigate their process of core excavation. Further, a surface engineering of as−synthesized MnFe₂O₄ NHSs has been executed with organic disodium tartrate dihydrate ligand and interestingly, the surface modified MnFe₂O₄ NHSs are found to capable of emerging multicolor fluorescence starting from blue, green to red. The magnetic measurements through vibrating sample magnetometer demonstrate that room temperature superparamagnetic nature of MnFe₂O₄ NHSs remains unaltered after surface modification. Moreover, functionalized MnFe₂O₄ NHSs are found to exhibit excellent reusable photocatalytic efficiency in the degradation of cationic dye, methylene blue with rate constant of 2.64×10−2 min.

Keywords: nano hollow sphere, tartrate modification, multiple fluorescence, catalytic property

Procedia PDF Downloads 186
5350 Farmers’ Awareness and Behavior of Chemical Pesticide Uses in Suan Luang Sub-District Municipality, Ampawa, Samut Songkram, Thailand

Authors: Paiboon Jeamponk, Tikamporn Thipsaeng

Abstract:

This paper is aimed to investigate farmers’ level of awareness and behavior of chemical pesticide uses, by using a case study of Suan Luang Sub- District Municipality, Ampawa, Samut Songkram Province. Questionnaire was employed in this study with the farmers from 46 households to explore their level of awareness in chemical pesticide uses, while interview and observation were adopted in exploring their behavior of chemical pesticide uses. The findings reflected the farmers’ high level of awareness in chemical pesticide uses in the hazardous effects of the chemical to human and environmental health, while their behavior of chemical pesticide uses explained their awareness paid to the right way of using pesticides, for instance reading the direction on the label, keeping children and animals away from the area of pesticide mixing, covering body with clothes and wearing hat and mask, no smoking, eating or drinking during pesticide spray or standing in windward direction.

Keywords: awareness, behavior, pesticide, farmers

Procedia PDF Downloads 429
5349 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis

Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński

Abstract:

The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g. phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g. from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.

Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell

Procedia PDF Downloads 174
5348 Study of Electro-Chemical Properties of ZnO Nanowires for Various Application

Authors: Meera A. Albloushi, Adel B. Gougam

Abstract:

The development in the field of piezoelectrics has led to a renewed interest in ZnO nanowires (NWs) as a promising material in the nanogenerator devices category. It can be used as a power source for self-powered electronic systems with higher density, higher efficiency, longer lifetime, as well as lower cost of fabrication. Highly aligned ZnO nanowires seem to exhibit a higher performance compared with nonaligned ones. The purpose of this study was to develop ZnO nanowires and to investigate their electrical and chemical properties for various applications. They were grown on silicon (100) and glass substrates. We have used a low temperature and non-hazardous method: aqueous chemical growth (ACG). ZnO (non-doped) and AZO (Aluminum doped) seed layers were deposited using RF magnetron sputteringunder Argon pressure of 3 mTorr and deposition power of 180 W, the times of growth were selected to obtain thicknesses in the range of 30 to 125 nm. Some of the films were subsequently annealed. The substrates were immersed tilted in an equimolar solution composed of zinc nitrate and hexamine (HMTA) of 0.02 M and 0.05 M in the temperature range of 80 to 90 ᵒC for 1.5 to 2 hours. The X-ray diffractometer shows strong peaks at 2Ө = 34.2ᵒ of ZnO films which indicates that the films have a preferred c-axis wurtzite hexagonal (002) orientation. The surface morphology of the films is investigated by atomic force microscope (AFM) which proved the uniformity of the film since the roughness is within 5 nm range. The scanning electron microscopes(SEM) (Quanta FEG 250, Quanta 3D FEG, Nova NanoSEM 650) are used to characterize both ZnO film and NWs. SEM images show forest of ZnO NWs grown vertically and have a range of length up to 2000 nm and diameter of 20-300 nm. The SEM images prove that the role of the seed layer is to enhance the vertical alignment of ZnO NWs at the pH solution of 5-6. Also electrical and optical properties of the NWs are carried out using Electrical Force Microscopy (EFM). After growing the ZnO NWs, developing the nano-generator is the second step of this study in order to determine the energy conversion efficiency and the power output.

Keywords: ZnO nanowires(NWs), aqueous chemical growth (ACG), piezoelectric NWs, harvesting enery

Procedia PDF Downloads 322
5347 Catalytic Pyrolysis of Sewage Sludge for Upgrading Bio-Oil Quality Using Sludge-Based Activated Char as an Alternative to HZSM5

Authors: Ali Zaker, Zhi Chen

Abstract:

Due to the concerns about the depletion of fossil fuel sources and the deteriorating environment, the attempt to investigate the production of renewable energy will play a crucial role as a potential to alleviate the dependency on mineral fuels. In this respect, biofuels are measured as a vital nominee for national energy security and energy sustainability. Sewage sludge (SS), as an alternative source of renewable energy with a complex composition, is a major waste generated during wastewater treatment. Stricter legislation is continuously refining the requirements for the level of removal of various pollutants in treated water, causing continuous growth of sludge production, which has become a global challenge. In general, there are two main procedures for dealing with SS: incineration and landfill. However, there are a variety of limitations in these options (e.g., production of greenhouse gases and restrictive environmental regulations) in regard to negative social and economic impacts. Pyrolysis is a feasible and cost-effective technology that can simultaneously tackle boundaries concerning the current disposal routes while retrieving bioenergy. Pyrolysis of SS has drawn vigorous interest in research due to the ability of high mass yield of pyrolytic liquid production. Nonetheless, the presence of high molecular weight hydrocarbons and oxygenated- and nitrogenated compounds poses a considerable challenge. In this context, catalytic pyrolysis is another attainable route in order to upgrade the bio-oil quality. Among different catalysts (i.e., zeolites) studied for sewage sludge pyrolysis, activated chars are eco-friendly and low-cost alternatives. The beneficial features comprise comparatively large surface area, long-term stability, and enriched surface functional groups. In light of these premises, this research attempts to investigate the catalytic pyrolysis of sewage sludge with a high-performance sludge-based activated char in contrast to HZSM5 from a theoretical and experimental point of view.

Keywords: catalytic pyrolysis, sewage sludge, char, HZSM5, bio-oil.

Procedia PDF Downloads 47
5346 Absorption and Carrier Transport Properties of Doped Hematite

Authors: Adebisi Moruf Ademola

Abstract:

Hematite (Fe2O3),commonly known as ‘rust’ which usually surfaced on metal when exposed to some climatic materials. This emerges as a promising candidate for photoelectrochemical (PEC) water splitting due to its favorable physiochemical properties of the narrow band gap (2.1–2.2 eV), chemical stability, nontoxicity, abundance, and low cost. However, inherent limitations such as short hole diffusion length (2–4 nm), high charge recombination rate, and slow oxygen evolution reaction kinetics inhibit the PEC performances of a-Fe2O3 photoanodes. As such, given the narrow bandgap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for a-Fe2O3 photoanodes and metal ion doping as an effective way to promote charge transfer by increasing donor density and improving the electronic conductivity of a-Fe2O3. Hematite attracts enormous efforts with a number of metal ions (Ti, Zr, Sn, Pt ,etc.) as dopants. A facile deposition-annealing process showed greatly enhanced PEC performance due to the increased donor density and reduced electron-hole recombination at the time scale beyond a few picoseconds. Zr doping was also found to enhance the PEC performance of a-Fe2O3 nanorod arrays by reducing the rate of electron-hole recombination. Slow water oxidation reaction kinetics, another main factor limiting the PEC water splitting efficiency of aFe2O3 as photoanodes, was previously found to be effectively improved by surface treatment.

Keywords: deposition-annealing, hematite, metal ion doping, nanorod

Procedia PDF Downloads 221
5345 Optimizing Oil Production through 30-Inch Pipeline in Abu-Attifel Field

Authors: Ahmed Belgasem, Walid Ben Hussin, Emad Krekshi, Jamal Hashad

Abstract:

Waxy crude oil, characterized by its high paraffin wax content, poses significant challenges in the oil & gas industry due to its increased viscosity and semi-solid state at reduced temperatures. The wax formation process, which includes precipitation, crystallization, and deposition, becomes problematic when crude oil temperatures fall below the wax appearance temperature (WAT) or cloud point. Addressing these issues, this paper introduces a technical solution designed to mitigate the wax appearance and enhance the oil production process in Abu-Attifil Field via a 30-inch crude oil pipeline. A comprehensive flow assurance study validates the feasibility and performance of this solution across various production rates, temperatures, and operational scenarios. The study's findings indicate that maintaining the crude oil's temperature above a minimum threshold of 63°C is achievable through the strategic placement of two heating stations along the pipeline route. This approach effectively prevents wax deposition, gelling, and subsequent mobility complications, thereby bolstering the overall efficiency, reliability, safety, and economic viability of the production process. Moreover, this solution significantly curtails the environmental repercussions traditionally associated with wax deposition, which can accumulate up to 7,500kg. The research methodology involves a comprehensive flow assurance study to validate the feasibility and performance of the proposed solution. The study considers various production rates, temperatures, and operational scenarios. It includes crude oil analysis to determine the wax appearance temperature (WAT), as well as the evaluation and comparison of operating options for the heating stations. The study's findings indicate that the proposed solution effectively prevents wax deposition, gelling, and subsequent mobility complications. By maintaining the crude oil's temperature above the specified threshold, the solution improves the overall efficiency, reliability, safety, and economic viability of the oil production process. Additionally, the solution contributes to reducing environmental repercussions associated with wax deposition. The research conclusion presents a technical solution that optimizes oil production in the Abu-Attifil Field by addressing wax formation problems through the strategic placement of two heating stations. The solution effectively prevents wax deposition, improves overall operational efficiency, and contributes to environmental sustainability. Further research is suggested for field data validation and cost-benefit analysis exploration.

Keywords: oil production, wax depositions, solar cells, heating stations

Procedia PDF Downloads 73
5344 Fabric Softener Deposition on Cellulose Nanocrystals and Cotton Fibers

Authors: Evdokia K. Oikonomou, Nikolay Christov, Galder Cristobal, Graziana Messina, Giovani Marletta, Laurent Heux, Jean-Francois Berret

Abstract:

Fabric softeners are aqueous formulations that contain ~10 wt. % double tailed cationic surfactants. Here, a formulation in which 50% surfactant was replaced with low quantities of natural guar polymers was developed. Thanks to the reduced surfactant quantity this product has less environmental impact while the guars presence was found to maintain the product’s performance. The objective of this work is to elucidate the effect of the guar polymers on the softener deposition and the adsorption mechanism on the cotton surface. The surfactants in these formulations are assembled into large distributed (0.1 – 1 µm) vesicles that are stable in the presence of guars and upon dilution. The effect of guars on the vesicles adsorption on cotton was first estimated by using cellulose nanocrystals (CNC) as a stand-in for cotton. The dispersion of CNC in water permits to follow the interaction between the vesicles, guars, and CNC in the bulk. It was found that guars enhance the deposition on CNC and that the vesicles are deposited intactly on the fibers driven by electrostatics. The mechanism of the vesicles/guars adsorption on cellulose fibers was identified by quartz crystal microbalance with dissipation monitoring. It was found that the guars increase the surfactant deposited quantity, in agreement with the results in the bulk. Also, the structure of the adsorbed surfactant on the fibers' surfaces (vesicle or bilayer) was influenced by the guars presence. Deposition studies on cotton fabrics were also conducted. Attenuated total reflection and scanning electron microscopy were used to study the effect of the polymers on this deposition. Finally, fluorescent microscopy was used to follow the adsorption of surfactant vesicles, labeled with a fluorescent dye, on cotton fabrics in water. It was found that, in the presence or not of polymers, the surfactant vesicles are adsorbed on fiber maintaining their vesicular structure in water (supported vesicular bilayer structure). The guars influence this process. However, upon drying the vesicles are transformed into bilayers and eventually wrap the fibers (supported lipid bilayer structure). This mechanism is proposed for the adsorption of vesicular conditioner on cotton fiber and can be affected by the presence of polymers.

Keywords: cellulose nanocrystals, cotton fibers, fabric softeners, guar polymers, surfactant vesicles

Procedia PDF Downloads 180
5343 Mechanistic Analysis of an L-2-Haloacid Dehalogenase (DehL) from Rhizobium Sp. RC1: Computational Approach

Authors: Aliyu Adamu, Fahrul Huyop, Roswanira Abdul Wahab, Mohd Shahir Shamsir

Abstract:

Halogenated organic compounds occur in huge amount in biosphere. This is attributable to the diverse use of halogen-based compounds in the synthesis of various industrially important products. Halogenated compound is toxic and may persist in the environment, thereby causing serious health and environmental pollution problems. L-2-haloacid dehalogenases (EC 3.8.1.2) catalyse the specific cleavage of carbon-halogen bond in L-isomers of halogenated compounds, which consequently reverse the effects of environmental halogen-associated pollution. To enhance the efficiency and utility of these enzymes, this study investigates the catalytic amino acid residues and the molecular functional mechanism of DehL, by classical molecular dynamic simulations, MM-PBSA and ab initio fragments molecular orbital (FMO) calculations. The results of the study will serve as the basis for the molecular engineering of the enzyme.

Keywords: DehL, Functional mechanism, Catalytic residues, L-2-haloacid dehalogenase

Procedia PDF Downloads 364
5342 Influence of Hydrolytic Degradation on Properties of Moisture Membranes Used in Fire-Protective Clothing

Authors: Rachid El Aidani, Phuong Nguyen-Tri, Toan Vu-Khanh

Abstract:

This study intends to show the influence of the hydrolytic degradation on the properties of the e-PTFE/NOMEX® membranes used in fire-protective clothing. The modification of water vapour permeability, morphology and chemical structure was examined by MOCON Permatran, electron microscopy scanning (SEM), and ATR-FTIR, respectively. A decrease in permeability to water vapour of the aged samples was observed following closure of transpiration pores. Analysis of fiber morphology indicates the appearance of defects at the fibers surface with the presence of micro cavities as well as the of fibrils. ATR-FTIR analysis reveals the presence of a new absorption band attributed to carboxylic acid terminal groups generated during the amide bond hydrolysis.

Keywords: hydrolytic ageing, moisture membrane, water vapor permeability, morphology

Procedia PDF Downloads 315
5341 Customized Cow’s Urine Battery Using MnO2 Depolarizer

Authors: Raj Kumar Rajak, Bharat Mishra

Abstract:

Bio-battery represents an entirely new long term, reasonable, reachable and ecofriendly approach to production of sustainable energy. Types of batteries have been developed using MnO2 in various ways. MnO2 is suitable with physical, chemical, electrochemical, and catalytic properties, serving as an effective cathodic depolarizer and may be considered as being the life blood of the battery systems. In the present experimental work, we have studied the effect of generation of power by bio-battery using different concentrations of MnO2. The tests show that it is possible to generate electricity using cow’s urine as an electrolyte. After ascertaining the optimum concentration of MnO2, various battery parameters and performance indicates that cow urine solely produces power of 695 mW, while a combination with MnO2 (40%) enhances power of bio-battery, i.e. 1377 mW. On adding more and more MnO2 to the electrolyte, the power suppressed because inflation of internal resistance. The analysis of the data produced from experiment shows that MnO2 is quite suitable to energize the bio-battery.

Keywords: bio-batteries, cow’s urine, manganese dioxide, non-conventional

Procedia PDF Downloads 261
5340 Research on High Dielectric HfO₂ Stack Structure Applied to Field Effect Transistors

Authors: Kuan Yu Lin, Shih Chih Chen

Abstract:

This study focuses on the Al/HfO₂/Si/Al structure to explore the electrical properties of the structure. This experiment uses a radio frequency magnetron sputtering system to deposit high dielectric materials on p-type silicon substrates of 1~10 Ω-cm (100). Consider the hafnium dioxide film as a dielectric layer. Post-deposition annealing at 750°C in nitrogen atmosphere. Electron beam evaporation of metallic aluminum is then used to complete the top/bottom electrodes. The metal is post-annealed at 450°C for 20 minutes in a nitrogen environment to complete the MOS component. Its dielectric constant, equivalent oxide layer thickness, oxide layer defects, and leakage current mechanism are discussed. At PDA 750°C-5s, the maximum k value was found to be 21.2, and the EOT was 3.68nm.

Keywords: high-k gate dielectrics, HfO₂, post deposition annealing, RF magnetic

Procedia PDF Downloads 58
5339 Interfacial Adhesion and Properties Improvement of Polyethylene/Thermoplastic Starch Blend Compatibilized by Stearic Acid-Grafted-Starch

Authors: Nattaporn Khanoonkon, Rangrong Yoksan, Amod A. Ogale

Abstract:

Polyethylene (PE) is one of the most petroleum-based thermoplastic materials used in many applications including packaging due to its cheap, light-weight, chemically inert and capable to be converted into various shapes and sizes of products. Although PE is a commercially potential material, its non-biodegradability caused environmental problems. At present, bio-based polymers become more interesting owing to its bio-degradability, non-toxicity, and renewability as well as being eco-friendly. Thermoplastic starch (TPS) is a bio-based and biodegradable plastic produced from the plasticization of starch under applying heat and shear force. In many researches, TPS was blended with petroleum-based polymers including PE in order to reduce the cost and the use of those polymers. However, the phase separation between hydrophobic PE and hydrophilic TPS limited the amount of TPS incorporated. The immiscibility of two different polarity polymers can be diminished by adding compatibilizer. PE-based compatibilizers, e.g. polyethylene-grafted-maleic anhydride, polyethylene-co-vinyl alcohol, etc. have been applied for the PE/TPS blend system in order to improve their miscibility. Until now, there is no report about the utilization of starch-based compatibilizer for PE/TPS blend system. The aims of the present research were therefore to synthesize a new starch-based compatibilizer, i.e. stearic acid-grafted starch (SA-g-starch) and to study the effect of SA-g-starch on chemical interaction, morphological properties, tensile properties and water vapor as well as oxygen barrier properties of the PE/TPS blend films. PE/TPS blends without and with incorporating SA-g-starch with a content of 1, 3 and 5 part(s) per hundred parts of starch (phr) were prepared using a twin screw extruder and then blown into films using a film blowing machine. Incorporating 1 phr and 3 phr of SA-g-starch could improve miscibility of the two polymers as confirmed from the reduction of TPS phase size and the good dispersion of TPS phase in PE matrix. In addition, the blend containing SA-g-starch with contents of 1 phr and 3 phr exhibited higher tensile strength and extensibility, as well as lower water vapor and oxygen permeabilities than the naked blend. The above results suggested that SA-g-starch could be potentially applied as a compatibilizer for the PE/TPS blend system.

Keywords: blend, compatibilizer, polyethylene, thermoplastic starch

Procedia PDF Downloads 440
5338 PLA Plastic as Biodegradable Material for 3D Printers

Authors: Juraj Beniak, Ľubomír Šooš, Peter Križan, Miloš Matúš

Abstract:

Within Rapid Prototyping technologies are used many types of materials. Many of them are recyclable but there are still as plastic like, so practically they do not degrade in the landfill. Polylactic acid (PLA) is one of the special plastic materials which are biodegradable and also available for 3D printing within Fused Deposition Modelling (FDM) technology. The question is, if the mechanical properties of produced models are comparable to similar technical plastic materials which are usual for prototype production. Presented paper shows the experiments results for tensile strength measurements for specimens prepared with different 3D printer settings and model orientation. Paper contains also the comparison of tensile strength values with values measured on specimens produced by conventional technologies as injection moulding.

Keywords: 3D printing, biodegradable plastic, fused deposition modeling, PLA plastic, rapid prototyping

Procedia PDF Downloads 416
5337 Computation of Natural Logarithm Using Abstract Chemical Reaction Networks

Authors: Iuliia Zarubiieva, Joyun Tseng, Vishwesh Kulkarni

Abstract:

Recent researches has focused on nucleic acids as a substrate for designing biomolecular circuits for in situ monitoring and control. A common approach is to express them by a set of idealised abstract chemical reaction networks (ACRNs). Here, we present new results on how abstract chemical reactions, viz., catalysis, annihilation and degradation, can be used to implement circuit that accurately computes logarithm function using the method of Arithmetic-Geometric Mean (AGM), which has not been previously used in conjunction with ACRNs.

Keywords: chemical reaction networks, ratio computation, stability, robustness

Procedia PDF Downloads 171
5336 Amorphous Aluminophosphates: An Insight to the Changes in Structural Properties and Catalytic Activity by the Incorporation of Transition Metals

Authors: A. Hamza, H. Kathyayini, N. Nagaraju

Abstract:

Aluminophosphates, both amorphous and crystalline materials find applications as adsorbents, ceramics, and pigments and as catalysts/catalyst supports in organic fine chemical synthesis. Most of the applications are varied depending on the type of metal incorporated, particle size, surface area, porosity and morphology of aluminophosphate. The porous and surface properties of these materials are normally fine-tuned by adopting various preparation methodologies. Numerous crystalline microporous and mesoporous aluminophosphates and metal-aluminophosphates have been reported in literature, in which the synthesis has been carried out by using structure directing organic molecules/surfactants. In present work, amorphous aluminophosphate (AlP) and metal-aluminophosphates MAlP (M = Cu, Zn, Cr, Fe, Ce and Zr) and their mixed forms M-1M2AlP are prepared under a typical precipitation condition, i.e. at low temperature in order to keep the Von-Weirmann relative super saturation of the precipitating medium and obtain small size precipitate particles. These materials are prepared without using any surfactants. All materials are thoroughly characterised for surface and bulk properties by N2 adsorption-desorption technique, XRD, FT-IR, TG and SEM. The materials are also analysed for the amount and the strength of their surface acid sites, by NH3-TPD and CO2-TPD techniques respectively. All the materials prepared in the work are investigated for their catalytic activity in following applications in the synthesis of industrially important Jasminaldehyde via, aldol condensation of n-heptanal and benzaldehyde, in the synthesis of biologically important chalcones by Claisen-shmidth condensation of benzaldehyde and substituted chalcones. The effect of the amount of the catalysts, duration of the reaction, temperature of the reaction, molar ratio of the reactants has been studied. The porosity of pure aluminophosphate is found to be changed significantly by the incorporation of transition metals during preparation of aluminophosphate. The pore size increased from microporous to mesoporous and finally to macroporous by following order of metals Cu = Zn < Cr < Ce < Fe = Zr. The change in surface area and porosity of double metal-aluminophosphates depended on the concentration of both the metals. The acidity of aluminophosphate is either increased or decreased which depended on the type and valence of metals loaded. A good number of basic sites are created in metal-aluminophosphates irrespective of the metals used. A maximum catalytic activity for synthesis of both jasminaldehyde and chalcone is obtained by FeAlP as catalysts; these materials are characterized by decreased strength and concentration of acidic sites with optimum level basic sites.

Keywords: amorphous metal-aluminophosphates, surface properties, acidic-basic properties, Aldol, Claisen-Shmidth condensation, jasminaldehyde, chalcone

Procedia PDF Downloads 304
5335 Investigation of Residual Stress Relief by in-situ Rolling Deposited Bead in Directed Laser Deposition

Authors: Ravi Raj, Louis Chiu, Deepak Marla, Aijun Huang

Abstract:

Hybridization of the directed laser deposition (DLD) process using an in-situ micro-roller to impart a vertical compressive load on the deposited bead at elevated temperatures can relieve tensile residual stresses incurred in the process. To investigate this stress relief mechanism and its relationship with the in-situ rolling parameters, a fully coupled dynamic thermo-mechanical model is presented in this study. A single bead deposition of Ti-6Al-4V alloy with an in-situ roller made of mild steel moving at a constant speed with a fixed nominal bead reduction is simulated using the explicit solver of the finite element software, Abaqus. The thermal model includes laser heating during the deposition process and the heat transfer between the roller and the deposited bead. The laser heating is modeled using a moving heat source with a Gaussian distribution, applied along the pre-formed bead’s surface using the VDFLUX Fortran subroutine. The bead’s cross-section is assumed to be semi-elliptical. The interfacial heat transfer between the roller and the bead is considered in the model. Besides, the roller is cooled internally using axial water flow, considered in the model using convective heat transfer. The mechanical model for the bead and substrate includes the effects of rolling along with the deposition process, and their elastoplastic material behavior is captured using the J2 plasticity theory. The model accounts for strain, strain rate, and temperature effects on the yield stress based on Johnson-Cook’s theory. Various aspects of this material behavior are captured in the FE software using the subroutines -VUMAT for elastoplastic behavior, VUHARD for yield stress, and VUEXPAN for thermal strain. The roller is assumed to be elastic and does not undergo any plastic deformation. Also, contact friction at the roller-bead interface is considered in the model. Based on the thermal results of the bead, the distance between the roller and the deposition nozzle (roller o set) can be determined to ensure rolling occurs around the beta-transus temperature for the Ti-6Al-4V alloy. It is identified that roller offset and the nominal bead height reduction are crucial parameters that influence the residual stresses in the hybrid process. The results obtained from a simulation at roller offset of 20 mm and nominal bead height reduction of 7% reveal that the tensile residual stresses decrease to about 52% due to in-situ rolling throughout the deposited bead. This model can be used to optimize the rolling parameters to minimize the residual stresses in the hybrid DLD process with in-situ micro-rolling.

Keywords: directed laser deposition, finite element analysis, hybrid in-situ rolling, thermo-mechanical model

Procedia PDF Downloads 109
5334 Molecular Simulation of NO, NH3 Adsorption in MFI and H-ZSM5

Authors: Z. Jamalzadeh, A. Niaei, H. Erfannia, S. G. Hosseini, A. S. Razmgir

Abstract:

Due to developing the industries, the emission of pollutants such as NOx, SOx, and CO2 are rapidly increased. Generally, NOx is attributed to the mono nitrogen oxides of NO and NO2 that is one of the most important atmospheric contaminants. Hence, controlling the emission of nitrogen oxides is urgent environmentally. Selective Catalytic Reduction of NOx is one of the most common techniques for NOx removal in which Zeolites have wide application due to their high performance. In zeolitic processes, the catalytic reaction occurs mostly in the pores. Therefore, investigation the adsorption phenomena of the molecules in order to gain an insight and understand the catalytic cycle is of important. Hence, in current study, molecular simulations is applied for studying the adsorption phenomena in nanocatalysts applied for SCR of NOx process. The effect of cation addition to the support in the catalysts’ behavior through adsorption step was explored by Mont Carlo (MC). Simulation time of 1 Ns accompanying 1 fs time step, COMPASS27 Force Field and the cut off radios of 12.5 Ȧ was applied for performed runs. It was observed that the adsorption capacity increases in the presence of cations. The sorption isotherms demonstrated the behavior of type I isotherm categories and sorption capacity diminished with increase in temperature whereas an increase was observed at high pressures. Besides, NO sorption showed higher sorption capacity than NH3 in H–ZSM5. In this respect, the Energy distributions signified that the molecules could adsorb in just one sorption site at the catalyst and the sorption energy of NO was stronger than the NH3 in H-ZSM5. Furthermore, the isosteric heat of sorption data showed nearly same values for the molecules; however, it indicated stronger interactions of NO molecules with H-ZSM5 Zeolite compared to the isosteric heat of NH3 which was low in value.

Keywords: Monte Carlo simulation, adsorption, NOx, ZSM5

Procedia PDF Downloads 378
5333 Chemical Analysis of Available Portland Cement in Libyan Market Using X-Ray Fluorescence

Authors: M. A. Elbagermia, A. I. Alajtala, M. Alkerzab

Abstract:

This study compares the quality of different brands of Portland Cement (PC) available in Libyan market. The amounts of chemical constituents like SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, and Lime Saturation Factor (LSF) were determined in accordance with Libyan (L.S.S) and Amrican (A.S.S) Standard Specifications. All the cement studies were found to be good for concrete work especially where no special property is required. The chemical and mineralogical analyses for studied clinker samples show that the dominant phases composition are C3S and C2S while the C3A and C4AF are less abundant.

Keywords: Portland cement, chemical composition, Libyan market, X-Ray fluorescence

Procedia PDF Downloads 360
5332 Sustainable Hydrogen Generation via Gasification of Pig Hair Biowaste with NiO/Al₂O₃ Catalysts

Authors: Jamshid Hussain, Kuen Song Lin

Abstract:

Over one thousand tons of pig hair biowaste (PHB) are produced yearly in Taiwan. The improper disposal of PHB can have a negative impact on the environment, consequently contributing to the spread of diseases. The treatment of PHB has become a major environmental and economic challenge. Innovative treatments must be developed because of the heavy metal and sulfur content of PHB. Like most organic materials, PHB is composed of many organic volatiles that contain large amounts of hydrogen. Hydrogen gas can be effectively produced by the catalytic gasification of PHB using a laboratory-scale fixed-bed gasifier, employing 15 wt% NiO/Al₂O₃ catalyst at 753–913 K. The derived kinetic parameters were obtained and refined using simulation calculations. FE–SEM microphotograph showed that NiO/Al₂O₃ catalyst particles are Spherical or irregularly shaped with diameters of 10–20 nm. HR–TEM represented that the fresh Ni particles were evenly dispersed and uniform in the microstructure of Al₂O₃ support. The sizes of the NiO nanoparticles were vital in determining catalyst activity. As displayed in the pre-edge XANES spectra of the NiO/Al₂O₃ catalysts, it exhibited a non-intensive absorbance nature for the 1s to 3d transition, which is prohibited by the selection rule for an ideal octahedral symmetry. Similarly, the populace of Ni(II) and Ni(0) onto Al₂O₃ supports are proportional to the strength of the 1s to 4pxy transition, respectively. The weak shoulder at 8329–8334 eV and a strong character at 8345–8353 eV were ascribed to the 1s to 4pxy shift, which suggested the presence of NiO types onto Al₂O₃ support in PHB catalytic gasification. As determined by the XANES analyses, Ni(II)→Ni(0) reduction was mostly observed. The oxidation of PHB onto the NiO/Al₂O₃ surface may have resulted in Ni(0) and the formation of tar during the gasification process. The EXAFS spectra revealed that the Ni atoms with Ni–Ni/Ni–O bonds were found. The Ni–O bonding proved that the produced syngas were unable to reduce NiO to Ni(0) completely. The weakness of the Ni–Ni bonds may have been caused by the highly dispersed Ni in the Al₂O₃ support. The central Ni atoms have Ni–O (2.01 Å) and Ni–Ni (2.34 Å) bond distances in the fresh NiO/Al₂O₃ catalyst. The PHB was converted into hydrogen-rich syngas (CO + H₂, >89.8% dry basis). When PHB (250 kg h−1) was catalytically gasified at 753–913 K, syngas was produced at approximately 5.45 × 105 kcal h−1 of heat recovery with 76.5%–83.5% cold gas efficiency. The simulation of the pilot-scale PHB catalytic gasification demonstrated that the system could provide hydrogen (purity > 99.99%) and generate electricity for an internal combustion engine of 100 kW and a proton exchange membrane fuel cell (PEMFC) of 175 kW. A projected payback for a PHB catalytic gasification plant with a capacity of 10- or 20-TPD (ton per day) was around 3.2 or 2.5 years, respectively.

Keywords: pig hair biowaste, catalytic gasification, hydrogen production, PEMFC, resource recovery

Procedia PDF Downloads 13
5331 Study on Pd Catalyst Supported on Carbon Materials for C₂ Hydrogenation

Authors: Huanru Wang, Jianzhun Jiang

Abstract:

At present, the preparation of the catalyst by carbon carrier is one of the improvement directions of the C₂ pre-hydrogenation catalyst. Carbon materials can be prepared from coal direct liquefaction residues, coconut shells, biomass, etc., and the pore structure of carbon carrier materials can be adjusted through the preparation process; at high temperatures, the carbon carrier itself also shows certain catalytic activity. Therefore, this paper mainly selected typical activated carbon and coconut shell carbon as carbon carrier materials, studied their microstructure and surface properties, prepared a series of carbon-based catalysts loaded with Pd, and investigated the effects of the content of promoter Ag and the concentration of reductant on the structure and performance of the catalyst and its catalytic performance for the pre hydrogenation of C₂. In this paper, the carbon supports from two sources and the catalysts prepared by them were characterized in detail. The results showed that the morphology and structure of different supports and the performance of the catalysts prepared were also obviously different. The catalyst supported on coconut shell carbon has a small specific surface area and large pore diameter. The catalyst supported on activated carbon has a large specific surface area and rich pore structure. The active carbon support is mainly a mixture of amorphous graphite and microcrystalline graphite. For the catalyst prepared with coconut shell carbon as the carrier, the sample is very uneven, and its specific surface area and pore volume are irregular. Compared with coconut shell carbon, activated carbon is more suitable as the carrier of the C₂ hydrogenation catalyst. The conversion of acetylene, methyl acetylene, and butadiene decreased, and the ethylene selectivity increased after Ag was added to the supported Pd catalyst. When the amount of promoter Ag is 0.01-0.015%, the catalyst has relatively good catalytic performance. Ag and Pd form an alloying effect, thus reducing the effective demand for Ag. The Pd Ag ratio is the key factor affecting the catalytic performance. When the addition amount of Ag is 0.01-0.015%, the dispersion of Pd on the carbon support surface can be significantly improved, and the size of active particles can be reduced. The Pd Ag ratio is the main factor in improving the selectivity of the catalyst. When the additional amount of sodium formate is 1%, the catalyst prepared has both high acetylene conversion and high ethylene selectivity.

Keywords: C₂ hydrogenation, activated carbon, Ag promoter, Pd catalysts

Procedia PDF Downloads 121
5330 The Effect of Metal-Organic Framework Pore Size to Hydrogen Generation of Ammonia Borane via Nanoconfinement

Authors: Jing-Yang Chung, Chi-Wei Liao, Jing Li, Bor Kae Chang, Cheng-Yu Wang

Abstract:

Chemical hydride ammonia borane (AB, NH3BH3) draws attentions to hydrogen energy researches for its high theoretical gravimetrical capacity (19.6 wt%). Nevertheless, the elevated AB decomposition temperatures (Td) and unwanted byproducts are main hurdles in practical application. It was reported that the byproducts and Td can be reduced with nanoconfinement technique, in which AB molecules are confined in porous materials, such as porous carbon, zeolite, metal-organic frameworks (MOFs), etc. Although nanoconfinement empirically shows effectiveness on hydrogen generation temperature reduction in AB, the theoretical mechanism is debatable. Low Td was reported in AB@IRMOF-1 (Zn4O(BDC)3, BDC = benzenedicarboxylate), where Zn atoms form closed metal clusters secondary building unit (SBU) with no exposed active sites. Other than nanosized hydride, it was also observed that catalyst addition facilitates AB decomposition in the composite of Li-catalyzed carbon CMK-3, MOF JUC-32-Y with exposed Y3+, etc. It is believed that nanosized AB is critical for lowering Td, while active sites eliminate byproducts. Nonetheless, some researchers claimed that it is the catalytic sites that are the critical factor to reduce Td, instead of the hydride size. The group physically ground AB with ZIF-8 (zeolitic imidazolate frameworks, (Zn(2-methylimidazolate)2)), and found similar reduced Td phenomenon, even though AB molecules were not ‘confined’ or forming nanoparticles by physical hand grinding. It shows the catalytic reaction, not nanoconfinement, leads to AB dehydrogenation promotion. In this research, we explored the possible criteria of hydrogen production temperature from nanoconfined AB in MOFs with different pore sizes and active sites. MOFs with metal SBU such as Zn (IRMOF), Zr (UiO), and Al (MIL-53), accompanying with various organic ligands (BDC and BPDC; BPDC = biphenyldicarboxylate) were modified with AB. Excess MOFs were used for AB size constrained in micropores estimated by revisiting Horvath-Kawazoe model. AB dissolved in methanol was added to MOFs crystalline with MOF pore volume to AB ratio 4:1, and the slurry was dried under vacuum to collect AB@MOF powders. With TPD-MS (temperature programmed desorption with mass spectroscopy), we observed Td was reduced with smaller MOF pores. For example, it was reduced from 100°C to 64°C when MOF micropore ~1 nm, while ~90°C with pore size up to 5 nm. The behavior of Td as a function of AB crystalline radius obeys thermodynamics when the Gibbs free energy of AB decomposition is zero, and no obvious correlation with metal type was observed. In conclusion, we discovered Td of AB is proportional to the reciprocal of MOF pore size, possibly stronger than the effect of active sites.

Keywords: ammonia borane, chemical hydride, metal-organic framework, nanoconfinement

Procedia PDF Downloads 187