Search results for: beatific vision
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1089

Search results for: beatific vision

609 Talent Sourcing Practices in Sri Lankan Software Industry

Authors: Malmi Amadoru, Chandana Gamage

Abstract:

Sri Lanka is emerging as a global IT-BPO hub topping up among the 20 global outsourcing destinations. When setting up a new venture in Sri Lanka, talent sourcing plays one of the key functions due to the rapid growth of workforce. Getting competent people with right skills for right positions leads organizations achieving its vision, mission and objectives. It also drives in earning competitive advantage over industry competitors. Thus it is crucial to scan and recruit the best employees to an organization. However there is no published information available on recruitment methods utilized in Sri Lankan software industry, as a study of this nature had not being conducted previously in Sri Lanka. The main objective of this study was to explore various talent sourcing practices exploited in Sri Lankan software industry. Also this study analyses the extent which Sri Lanka has adopted different recruitment strategies utilized in worldwide and its deviations. The research outcome is beneficial for HR professionals to identify the current trends in recruitment practices. Moreover investors who are interested in IT-BPO engagements can gain a thorough knowledge about talent sourcing techniques in Sri Lankan software industry. Finally, this research clues trending areas which can be further investigated in future.

Keywords: IT-BPO, recruitment, Sri Lanka, software industry, talent

Procedia PDF Downloads 489
608 Investigation into the Role of Leadership in the Management of Digital Transformation for Small and Medium Enterprises

Authors: Francesco Coraci, Abdul-Hadi G. Abulrub

Abstract:

Digital technology is transforming the landscape of the industrial sector at a precedential level by connecting people, processes, and machines in real-time. It represents the means for a new pathway to achieve innovative, dynamic competitive advantages, deliver unique customers’ values, and sustain critical relationships. Thus, success in a constantly changing environment is governed by the ability of an organization to revolutionize their business models, deliver innovative solutions, and capture values from big data analytics and insights. Businesses need to re-strategize operations and develop extra capabilities to cope with the necessity for additional flexibility and agility. The traditional “command and control” leadership style is structurally and operationally incompatible with the digital era. In this paper, the authors discuss how transformational leaders can act as a glue in the social, organizational context, which is crucial to enable the workforce and develop a psychological attachment to the digital vision.

Keywords: internet of things, strategy, change leadership, dynamic competitive advantage, digital transformation

Procedia PDF Downloads 129
607 Ocular Delivery of Charged Drugs Using Iontophoresis

Authors: Abraham J. Domb

Abstract:

Nearly every eye disorder and treatment of post operated eyes evolve around ocular drug delivery. Most ocular diseases are treated with repeated topical applications administered as eye drops. Various attempts have been made to improve drug bioavailability by increasing both the retention of the drug in the pre-corneal area and the penetration of the drug through the cornea. However, currently marketed products are associated with vision blurring, irritability, patient discomfort, toxicity, low drug bioavailability, manufacturing difficulties and inadequate aqueous stability. It has been suggested to use iontophoresis for the non-invasive delivery of drugs. The iontophoretic device is composed of a control panel, two electrodes, a cylindrical well for the insertion of a disposable hydrogel, and a disposable hydrogel pellet. The drug-loaded hydrogel is attached to a cylindrical well at the edge of the electrode of the device and placed onto the eye. The device applies a variable electrical current that can vary from 0.1 mA to 1.5 mA for pre-set periods from 10 seconds to 300 seconds. The iontophoretic device developed in the lab was found to be effective in the delivery of the drugs: gentamicin, water-soluble steroids, and various anticancer agents. When testing in rabbits for safety, the device was considered to be non-toxic and effective.

Keywords: iontophoresis, eye disorder, drug delivery, hydrogel

Procedia PDF Downloads 80
606 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents

Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Abstract:

With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.

Keywords: document processing, framework, formal definition, machine learning

Procedia PDF Downloads 219
605 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application

Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob

Abstract:

Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.

Keywords: robotic vision, image processing, applications of robotics, artificial intelligent

Procedia PDF Downloads 97
604 A Study on Real-Time Fluorescence-Photoacoustic Imaging System for Mouse Thrombosis Monitoring

Authors: Sang Hun Park, Moung Young Lee, Su Min Yu, Hyun Sang Jo, Ji Hyeon Kim, Chul Gyu Song

Abstract:

A near-infrared light source used as a light source in the fluorescence imaging system is suitable for use in real-time during the operation since it has no interference in surgical vision. However, fluorescence images do not have depth information. In this paper, we configured the device with the research on molecular imaging systems for monitoring thrombus imaging using fluorescence and photoacoustic. Fluorescence imaging was performed using a phantom experiment in order to search the exact location, and the Photoacoustic image was in order to detect the depth. Fluorescence image obtained when evaluated through current phantom experiments when the concentration of the contrast agent is 25μg / ml, it was confirmed that it looked sharper. The phantom experiment is has shown the possibility with the fluorescence image and photoacoustic image using an indocyanine green contrast agent. For early diagnosis of cardiovascular diseases, more active research with the fusion of different molecular imaging devices is required.

Keywords: fluorescence, photoacoustic, indocyanine green, carotid artery

Procedia PDF Downloads 601
603 Feasibility Study of Measurement of Turning Based-Surfaces Using Perthometer, Optical Profiler and Confocal Sensor

Authors: Khavieya Anandhan, Soundarapandian Santhanakrishnan, Vijayaraghavan Laxmanan

Abstract:

In general, measurement of surfaces is carried out by using traditional methods such as contact type stylus instruments. This prevalent approach is challenged by using non-contact instruments such as optical profiler, co-ordinate measuring machine, laser triangulation sensors, machine vision system, etc. Recently, confocal sensor is trying to be used in the surface metrology field. This sensor, such as a confocal sensor, is explored in this study to determine the surface roughness value for various turned surfaces. Turning is a crucial machining process to manufacture products such as grooves, tapered domes, threads, tapers, etc. The roughness value of turned surfaces are in the range of range 0.4-12.5 µm, were taken for analysis. Three instruments were used, namely, perthometer, optical profiler, and confocal sensor. Among these, in fact, a confocal sensor is least explored, despite its good resolution about 5 nm. Thus, such a high-precision sensor was used in this study to explore the possibility of measuring turned surfaces. Further, using this data, measurement uncertainty was also studied.

Keywords: confocal sensor, optical profiler, surface roughness, turned surfaces

Procedia PDF Downloads 134
602 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management

Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.

Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities

Procedia PDF Downloads 72
601 Images Selection and Best Descriptor Combination for Multi-Shot Person Re-Identification

Authors: Yousra Hadj Hassen, Walid Ayedi, Tarek Ouni, Mohamed Jallouli

Abstract:

To re-identify a person is to check if he/she has been already seen over a cameras network. Recently, re-identifying people over large public cameras networks has become a crucial task of great importance to ensure public security. The vision community has deeply investigated this area of research. Most existing researches rely only on the spatial appearance information from either one or multiple person images. Actually, the real person re-id framework is a multi-shot scenario. However, to efficiently model a person’s appearance and to choose the best samples to remain a challenging problem. In this work, an extensive comparison of descriptors of state of the art associated with the proposed frame selection method is studied. Specifically, we evaluate the samples selection approach using multiple proposed descriptors. We show the effectiveness and advantages of the proposed method by extensive comparisons with related state-of-the-art approaches using two standard datasets PRID2011 and iLIDS-VID.

Keywords: camera network, descriptor, model, multi-shot, person re-identification, selection

Procedia PDF Downloads 279
600 Contribution of a Higher Education Institute towards Built Environment Sustainability

Authors: Tayyab Ahmad, Gerard Healey

Abstract:

The potential role of higher education institutes in sustainable development cannot be undermined. In this regard, it is important to investigate the established concept of sustainability in such institutes to explore the room for further improvement. In this paper, a case study of the University of Melbourne is conducted, and the institute’s commitments towards sustainability are examined by a detailed qualitative review of its policy and design standard documents. These documents are reviewed as through these; the institute portrays its vision of building environment facilities, which it aspires to procure and use. From detailed review, it is realized that these documents are updated at different times, creating the potential for mismatch between them. The occurrence of different goals and objectives in different documents is highlighted, and the interrelationships between different goals and operational objectives are explored. The role of the university aspired goals/objectives in terms of built environment sustainability is discussed, and the gaps in the articulation of goals and operational objectives are highlighted. Recommendations are provided for enhancing the built environment sustainability at the University of Melbourne.

Keywords: university, design standards, policy, sustainability, built environment

Procedia PDF Downloads 170
599 Street Art Lenses: A Glimpse into the Street Artists’ Identity and Socio-Political Perspective in Brussels

Authors: José Francisco Urrutia Reyes, Judith Espinosa Real

Abstract:

This paper is meant to re-examine the role of street art in the contemporary world. By studying this form of art in Brussels, it can be explained how murals show the socio-political reality of a given community and influence on its interaction. Through the definitions of street art, murals and street artists, and analysing their role in Brussels, it is possible to understand how this counter culture movement serves as an engine of social development, as it interacts with its surroundings sending a clear message to a wider audience. Street art impacts on its environment because it interacts with the people who occupies the day-to-day public space. This has proven to be effective in the arouse of social consciousness, up to the point of being adopted by the government of Brussels to promote social movements such as the AIDS-HIV campaign along with the Plate-Forme Prévention Sida. It can be concluded that street art has evolved since its vandalic beginnings, to become a form of art that has not lost it counter official status, but now has a critical vision that can promote social awakening. Street art is now a global trend that uses visual inputs to create a positive impact.

Keywords: street art, Brussels, social impact, political perspective

Procedia PDF Downloads 363
598 Urban Regeneration of Historic Paths: A Case Study of Kom El Dekka Historic Path

Authors: Ahmed R. Ismail, Hatem A. El Tawil, Nevin G. Rezk

Abstract:

Historic paths in today's cities are facing the pressure of the urban development due to the rapid urban growth. Every new development is tearing the old urban fabric and the socio-economic character of the historic paths. Furthermore, in some cases historic paths suffer from negligence and decay. Kom El Dekka historic path was one of those deteriorated paths in the city of Alexandria, Egypt, in spite of its high heritage and socio-economic value. Therefore, there was a need to develop urban regeneration strategies as a part of a wider sustainable development vision, to handle the situation and revitalize the path as a livable space in the heart of the city. This study aims to develop a comprehensive assessment methodology to evaluate the different values of the path and to create community-oriented and economic-based analysis methodology for its socio-economic values. These analysis and assessments provide strategies for any regeneration action plan for Kom El Dekka historic path.

Keywords: community-oriented, economic-based, syntactical analysis, urban regeneration

Procedia PDF Downloads 419
597 A Proposal of Multi-modal Teaching Model for College English

Authors: Huang Yajing

Abstract:

Multimodal discourse refers to the phenomenon of using various senses such as hearing, vision, and touch to communicate through various means and symbolic resources such as language, images, sounds, and movements. With the development of modern technology and multimedia, language and technology have become inseparable, and foreign language teaching is becoming more and more modal. Teacher-student communication resorts to multiple senses and uses multiple symbol systems to construct and interpret meaning. The classroom is a semiotic space where multimodal discourses are intertwined. College English multi-modal teaching is to rationally utilize traditional teaching methods while mobilizing and coordinating various modern teaching methods to form a joint force to promote teaching and learning. Multimodal teaching makes full and reasonable use of various meaning resources and can maximize the advantages of multimedia and network environments. Based upon the above theories about multimodal discourse and multimedia technology, the present paper will propose a multi-modal teaching model for college English in China.

Keywords: multimodal discourse, multimedia technology, English education, applied linguistics

Procedia PDF Downloads 69
596 Real-Time Recognition of the Terrain Configuration to Improve Driving Stability for Unmanned Robots

Authors: Bongsoo Jeon, Jayoung Kim, Jihong Lee

Abstract:

Methods for measuring or estimating of ground shape by a laser range finder and a vision sensor (exteroceptive sensors) have critical weakness in terms that these methods need prior database built to distinguish acquired data as unique surface condition for driving. Also, ground information by exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Therefore, this paper proposes a method of recognizing exact and precise ground shape using Inertial Measurement Unit (IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.

Keywords: inertial measurement unit, laser range finder, real-time recognition of the ground shape, proprioceptive sensor

Procedia PDF Downloads 288
595 Generative Adversarial Network for Bidirectional Mappings between Retinal Fundus Images and Vessel Segmented Images

Authors: Haoqi Gao, Koichi Ogawara

Abstract:

Retinal vascular segmentation of color fundus is the basis of ophthalmic computer-aided diagnosis and large-scale disease screening systems. Early screening of fundus diseases has great value for clinical medical diagnosis. The traditional methods depend on the experience of the doctor, which is time-consuming, labor-intensive, and inefficient. Furthermore, medical images are scarce and fraught with legal concerns regarding patient privacy. In this paper, we propose a new Generative Adversarial Network based on CycleGAN for retinal fundus images. This method can generate not only synthetic fundus images but also generate corresponding segmentation masks, which has certain application value and challenge in computer vision and computer graphics. In the results, we evaluate our proposed method from both quantitative and qualitative. For generated segmented images, our method achieves dice coefficient of 0.81 and PR of 0.89 on DRIVE dataset. For generated synthetic fundus images, we use ”Toy Experiment” to verify the state-of-the-art performance of our method.

Keywords: retinal vascular segmentations, generative ad-versarial network, cyclegan, fundus images

Procedia PDF Downloads 144
594 Educational Audit and Curricular Reforms in the Arabian Context

Authors: Irum Naz

Abstract:

In the Arabian higher education context, linguistic proficiency in the English language is considered crucial for the developmental sustainability, economic growth, and stability of communities and societies. Qatar’s educational reforms package, through the 2030 vision, identifies the acquisition of English at K-12 as an essential survival communication tool for globalization, believing that Qatari students need better preparation to take on the responsibilities of leadership and to participate effectively in the country’s surging economy. The idea of introducing Qatari students to modern curricula benchmarked to high-student-performance curricula in developed countries is one of the components of reformatory design principles of Education for New Era reform project that is mutually consented to and supported by the Office of Shared Services, Communications Office, and Supreme Education Council. In appreciation of the government’s vision, the English Language Centre (ELC) at the Community College of Qatar ran an internal educational audit and conducted evaluative research to understand and appraise the value, impact, and practicality of the existing ELC language development program. This study sought to identify the type of change that could identify and improve the quality of Foundation Program courses and the manners in which second language learners could be assisted to transit smoothly between (ELC) levels. Following the interpretivist paradigm and mixed research method, the data was gathered through a bicyclic research model and a triangular design. The analyses of the data suggested that there was a need for improvement in the ELC program as a whole, and particularly in terms of curriculum, student learning outcomes, and the general learning environment in the department. Key findings suggest that the target program would benefit from significant revisions, which would include narrowing the focus of the courses, providing sets of specific learning objectives, and preventing repetition between levels. Another promising finding was about the assessment tools and process. The data suggested that a set of standardized assessments that more closely suited the programs of study should be devised. It was also recommended that students undergo a more comprehensive placement process to ensure that they begin the program at an appropriate level and get the maximum benefit from their learning experience. Although this ties into the idea of curriculum revamp, it was expected that students could leave the ELC having had exposure to courses in English for specific purposes. The idea of a more reliable exit assessment for students was raised frequently so ELC could regulate itself and ensure optimum learning outcomes. Another important recommendation was the provision of a Student Learning Center for students that would help them to receive personalized tuition, differentiated instruction, and self-driven and self-evaluated learning experience. In addition, an extra study level was recommended to be added to the program to accommodate the different levels of English language proficiency represented among ELC students. The evidence collected in the course of conducting the study suggests that significant change is needed in the structure of the ELC program, specifically about curriculum, the program learning outcomes, and the learning environment in general.

Keywords: educational audit, ESL, optimum learning outcomes, Qatar’s educational reforms, self-driven and self-evaluated learning experience, Student Learning Center

Procedia PDF Downloads 186
593 A Proposal on the Educational Transactional Analysis as a Dialogical Vision of Culture: Conceptual Signposts and Practical Tools for Educators

Authors: Marina Sartor Hoffer

Abstract:

The multicultural composition of today's societies poses new challenges to educational contexts. Schools are therefore called first to develop dialogic aptitudes and communicative skills adapted to the complex reality of post-modern societies. It is indispensable for educators and for young people to learn theoretical and practical tools during their scholastic path, in order to allow the knowledge of themselves and of the others with the aim of recognizing the value of the others regardless of their culture. Dialogic Skills help to understand and manage individual differences by allowing the solution of problems and preventing conflicts. The Educational Sector of Eric Berne’s Transactional Analysis offers a range of methods and techniques for this purpose. Educational Transactional Analysis is firmly anchored in the Personalist Philosophy and deserves to be promoted as a theoretical frame suitable to face the challenges of contemporary education. The goal of this paper is therefore to outline some conceptual and methodological signposts for the education to dialogue by drawing concepts and methodologies from educational transactional analysis.

Keywords: dialogic process, education to dialogue, educational transactional analysis, personalism, the good of the relationship

Procedia PDF Downloads 267
592 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network

Authors: Marcio Leal, Marta Villamil

Abstract:

Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.

Keywords: artificial neural network, computer vision, dynamic time warping, infrared, sign language recognition

Procedia PDF Downloads 218
591 An Industrial Workplace Alerting and Monitoring Platform to Prevent Workplace Injury and Accidents

Authors: Sanjay Adhikesaven

Abstract:

Workplace accidents are a critical problem that causes many deaths, injuries, and financial losses. Climate change has a severe impact on industrial workers, partially caused by global warming. To reduce such casualties, it is important to proactively find unsafe environments where injuries could occur by detecting the use of personal protective equipment (PPE) and identifying unsafe activities. Thus, we propose an industrial workplace alerting and monitoring platform to detect PPE use and classify unsafe activity in group settings involving multiple humans and objects over a long period of time. Our proposed method is the first to analyze prolonged actions involving multiple people or objects. It benefits from combining pose estimation with PPE detection in one platform. Additionally, we propose the first open-source annotated data set with video data from industrial workplaces annotated with the action classifications and detected PPE. The proposed system can be implemented within the surveillance cameras already present in industrial settings, making it a practical and effective solution.

Keywords: computer vision, deep learning, workplace safety, automation

Procedia PDF Downloads 103
590 Rethinking the History of an Expanding City through Its Images: Birmingham, England, the Nineteenth Century

Authors: Lin Chang

Abstract:

Birmingham, England was a town in the late-eighteenth century and became the nation’s second largest city in the late nineteenth century. The city expanded rapidly in terms of its population and size. Three generations of artists from a local family, the Lines, made a large number of drawings and paintings depicting the growth and changes of their city. At first sight, the meaning of the pictures seems straight-forward: providing records of what were torn down and newly-built. However, except for being read as maps, the pictures reveal a struggle in vision as to whether unsightly manufactories and their smoking chimneys should be visualized and how far the borders of the town should have been positioned and understood as they continued to grow and encroached upon its immediate countryside. This art-historic paper examines some topographic views by the Lines family and explores how they, through unusual depiction of rural and urban scenery, manage to give form to the borderlands between the country and the city. This paper argues that while the idea of the country and the city seems to be common sense, the two realms actually pose difficulty for visual representation as to where exactly their borders are and the idea itself has dichotomized the way people consider landscape imageries to be.

Keywords: Birmingham, suburb, urban fringes, landscape

Procedia PDF Downloads 197
589 Disease Characteristics of Neurofibromatosis Type II and Cochlear Implantation

Authors: Boxiang Zhuang

Abstract:

This study analyzes the clinical manifestations, hearing rehabilitation methods and outcomes of a complex case of neurofibromatosis type II (NF2). Methods: The clinical manifestations, medical history, clinical data, surgical methods and postoperative hearing rehabilitation outcomes of an NF2 patient were analyzed to determine the hearing reconstruction method and postoperative effect for a special type of NF2 acoustic neuroma. Results: The patient had bilateral acoustic neuromas with profound sensorineural hearing loss in both ears. Peripheral blood genetic testing did not reveal pathogenic gene mutations, suggesting mosaicism. The patient had an intracochlear schwannoma in the right ear and severely impaired vision in both eyes. Cochlear implantation with tumor retention was performed in the right ear. After 2 months of family-based auditory and speech rehabilitation, the Categories of Auditory Performance (CAP) score improved from 0 to 5. Conclusion: NF2 has complex clinical manifestations and poor prognosis. For NF2 patients with intracochlear tumors, cochlear implantation with tumor retention can be used to reconstruct hearing.

Keywords: NF2, intracochlear schwannoma, hearing reconstruction, cochlear implantation

Procedia PDF Downloads 16
588 An Aesthetic Spatial Turn - AI and Aesthetics in the Physical, Psychological, and Symbolic Spaces of Brand Advertising

Authors: Yu Chen

Abstract:

In line with existing philosophical approaches, this research proposes a conceptual model with an innovative spatial vision and aesthetic principles for Artificial Intelligence (AI) application in brand advertising. The model first identifies the major constituencies in contemporary advertising on three spatial levels—physical, psychological, and symbolic. The model further incorporates the relationships among AI, aesthetics, branding, and advertising and their interactions with the major actors in all spaces. It illustrates that AI may follow the aesthetic principles-- beauty, elegance, and simplicity-- to reinforce brand identity and consistency in advertising, to collaborate with stakeholders, and to satisfy different advertising objectives on each level. It proposes that, with aesthetic guidelines, AI may assist consumers to emerge into the physical, psychological, and symbolic advertising spaces and helps transcend the tangible advertising messages to meaningful brand symbols. Conceptually, the research illustrates that even though consumers’ engagement with brand mostly begins with physical advertising and later moves to psychological-symbolic, AI-assisted advertising should start with the understanding of brand symbolic-psychological and consumer aesthetic preferences before the physical design to better resonate. Limits of AI and future AI functions in advertising are discussed.

Keywords: AI, spatial, aesthetic, brand advertising

Procedia PDF Downloads 80
587 A Case for Strategic Landscape Infrastructure: South Essex Estuary Park

Authors: Alexandra Steed

Abstract:

Alexandra Steed URBAN was commissioned to undertake the South Essex Green and Blue Infrastructure Study (SEGBI) on behalf of the Association of South Essex Local Authorities (ASELA): a partnership of seven neighboring councils within the Thames Estuary. Located on London’s doorstep, the 70,000-hectare region is under extraordinary pressure for regeneration, further development, and economic expansion, yet faces extreme challenges: sea-level rise and inadequate flood defenses, stormwater flooding and threatened infrastructure, loss of internationally important habitats, significant existing community deprivation, and lack of connectivity and access to green space. The brief was to embrace these challenges in the creation of a document that would form a key part of ASELA’s Joint Strategic Framework and feed into local plans and master plans. Thus, helping to tackle climate change, ecological collapse, and social inequity at a regional scale whilst creating a relationship and awareness between urban communities and the surrounding landscapes and nature. The SEGBI project applied a ‘land-based’ methodology, combined with a co-design approach involving numerous stakeholders, to explore how living infrastructure can address these significant issues, reshape future planning and development, and create thriving places for the whole community of life. It comprised three key stages, including Baseline Review; Green and Blue Infrastructure Assessment; and the final Green and Blue Infrastructure Report. The resulting proposals frame an ambitious vision for the delivery of a new regional South Essex Estuary (SEE) Park – 24,000 hectares of protected and connected landscapes. This unified parkland system will drive effective place-shaping and “leveling up” for the most deprived communities while providing large-scale nature recovery and biodiversity net gain. Comprehensive analysis and policy recommendations ensure best practices will be embedded within planning documents and decisions guiding future development. Furthermore, a Natural Capital Account was undertaken as part of the strategy showing the tremendous economic value of the natural assets. This strategy sets a pioneering precedent that demonstrates how the prioritisation of living infrastructure has the capacity to address climate change and ecological collapse, while also supporting sustainable housing, healthier communities, and resilient infrastructures. It was only achievable through a collaborative and cross-boundary approach to strategic planning and growth, with a shared vision of place, and a strong commitment to delivery. With joined-up thinking and a joined-up region, a more impactful plan for South Essex was developed that will lead to numerous environmental, social, and economic benefits across the region, and enhancing the landscape and natural environs on the periphery of one of the largest cities in the world.

Keywords: climate change, green and blue infrastructure, landscape architecture, master planning, regional planning, social equity

Procedia PDF Downloads 98
586 Understanding the Roots of Third World Problems: A Historical and Philosophical Sociology

Authors: Yaser Riki

Abstract:

There are plenty of considerations about the Third World and developing countries, but one of the main issues regarding these areas is how we can study them. This article makes attention to a fundamental way of approaching this subject through the convergence of history, philosophy, and sociology in order to understand the complexity of the Third World countries. These three disciplines are naturally connected and integrated, but they have gradually separated. While sociology has originated from philosophy, this work is an attempt to generate a sociology that incorporates philosophy as well as history at its heart. This is descriptive-analytical research that searches the history of sociology to find works and theories that provide ideas for this purpose, including the sociology of knowledge and science, The German Ideology (Karl Marx and Friedrich Engels), The Protestant Ethic (Max Weber), Ideology and Utopia (Karl Mannheim) and Dialectic of Enlightenment (Horkheimer and Adorno) provide ideas needed for this purpose. The paper offers a methodological and theoretical vision (historical-philosophical sociology) to identify a few factors, such as the system of thought, that are usually invisible and cause problems in societies, especially third-world counties. This is similar to what some of the founders of sociology did in the first world.

Keywords: the third world, methodology, sociology, philosophy, history, social change, development, social movements

Procedia PDF Downloads 106
585 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image

Authors: Abe D. Desta

Abstract:

This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.

Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking

Procedia PDF Downloads 129
584 Spatiotemporal Neural Network for Video-Based Pose Estimation

Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan

Abstract:

Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.

Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series

Procedia PDF Downloads 150
583 Artificial Intelligence and Distributed System Computing: Application and Practice in Real Life

Authors: Lai Junzhe, Wang Lihao, Burra Venkata Durga Kumar

Abstract:

In recent years, due to today's global technological advances, big data and artificial intelligence technologies have been widely used in various industries and fields, playing an important role in reducing costs and increasing efficiency. Among them, artificial intelligence has derived another branch in its own continuous progress and the continuous development of computer personnel, namely distributed artificial intelligence computing systems. Distributed AI is a method for solving complex learning, decision-making, and planning problems, characterized by the ability to take advantage of large-scale computation and the spatial distribution of resources, and accordingly, it can handle problems with large data sets. Nowadays, distributed AI is widely used in military, medical, and human daily life and brings great convenience and efficient operation to life. In this paper, we will discuss three areas of distributed AI computing systems in vision processing, blockchain, and smart home to introduce the performance of distributed systems and the role of AI in distributed systems.

Keywords: distributed system, artificial intelligence, blockchain, IoT, visual information processing, smart home

Procedia PDF Downloads 113
582 Strabismus Detection Using Eye Alignment Stability

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. Currently, many children with strabismus remain undiagnosed until school entry because current automated screening methods have limited success in the preschool age range. A method for strabismus detection using eye alignment stability (EAS) is proposed. This method starts with face detection, followed by facial landmark detection, eye region segmentation, eye gaze extraction, and eye alignment stability estimation. Binarization and morphological operations are performed for segmenting the pupil region from the eye. After finding the EAS, its absolute value is used to differentiate the strabismic eye from the non-strabismic eye. If the value of the eye alignment stability is greater than a particular threshold, then the eyes are misaligned, and if its value is less than the threshold, the eyes are aligned. The method was tested on 175 strabismic and non-strabismic images obtained from Kaggle and Google Photos. The strabismic eye is taken as a positive class, and the non-strabismic eye is taken as a negative class. The test produced a true positive rate of 100% and a false positive rate of 7.69%.

Keywords: strabismus, face detection, facial landmarks, eye segmentation, eye gaze, binarization

Procedia PDF Downloads 78
581 Enhancing the Bionic Eye: A Real-time Image Optimization Framework to Encode Color and Spatial Information Into Retinal Prostheses

Authors: William Huang

Abstract:

Retinal prostheses are currently limited to low resolution grayscale images that lack color and spatial information. This study develops a novel real-time image optimization framework and tools to encode maximum information to the prostheses which are constrained by the number of electrodes. One key idea is to localize main objects in images while reducing unnecessary background noise through region-contrast saliency maps. A novel color depth mapping technique was developed through MiniBatchKmeans clustering and color space selection. The resulting image was downsampled using bicubic interpolation to reduce image size while preserving color quality. In comparison to current schemes, the proposed framework demonstrated better visual quality in tested images. The use of the region-contrast saliency map showed improvements in efficacy up to 30%. Finally, the computational speed of this algorithm is less than 380 ms on tested cases, making real-time retinal prostheses feasible.

Keywords: retinal implants, virtual processing unit, computer vision, saliency maps, color quantization

Procedia PDF Downloads 153
580 Benchmarking Electric Light versus Sunshine

Authors: Courret Gilles, Pidoux Damien

Abstract:

Considering that sunshine is the ultimate reference in lighting, we have examined the spectral correlation between a series of electric light sources and sunlight. As the latter is marked by fluctuations, we have taken two spectra of reference: on the one hand, the CIE daylight standard illuminant, and on the other hand, the global illumination by the clear sky with the sun at 30° above the horizon. We determined the coefficients of correlation between the spectra filtered by the sensitivity of the CIE standard observer for photopic vision. We also calculated the luminous efficiency of the radiation in order to compare the ideal energy performances as well as the CIE color indexes Ra, Ra14, and Rf, since the choice of a light source requires a trade-off between color rendering and luminous efficiency. The benchmarking includes the most commonly used bulbs, various white LED (Lighting Emitting Diode) of warm white or cold white types, incandescent halogen as well as two HID lamps (High-Intensity Discharge) and two plasma lamps of different types, a solar simulator and a new version of the sulfur lamp. The latter obtains the best correlation, whether in comparison with the solar spectrum or that of the standard illuminant.

Keywords: electric light sources, plasma lamp, daylighting, sunlight, spectral correlation

Procedia PDF Downloads 185