Search results for: batteries balancing
195 Traditionalism and Modernity in Seoul’s Urban Planning for the Disabled
Authors: Helena Park
Abstract:
For the last three decades, Seoul has experienced an exponential increase in population and concomitant rapid urbanization. With such development, Korea adopted a predominantly Western style of architecture but still based the structures on Korea’s traditionalism and Confucian precepts of pung su (feng shui). While Korean urban planning is focusing on balancing out the modernism and traditionalism in its city architecture, particularly in and landmark sites like The Seoul N Tower and Gyeongbok Palace, the accessibility and convenience concerns of minorities in social groups like the disabled are habitually disregarded. With the implementations of ramps and elevators, the welfare of all citizens seemed to improve. According to the dictates of traditional Korean culture, it was crucial for those construed as “disabled” or “underprivileged” to feel natural in the city of Seoul, which is planned and built with the background aesthetic theory of being harmonized with nature. It was interesting and also alarming to see the extent to which Korean landmarks were lacking facilities for the disabled throughout the city. Standards set by the Ministry of Health and Welfare and the Seoul Metropolitan City insist that buildings accommodate the needs of the disabled as well as the non-disabled equally, but it was hard to find buildings in Seoul - old or new - that fulfilled all the requirements. If fulfilled, some of the facilities were hard to find or not well maintained. There is thus a serious concern for planning reform in connection with Seoul’s 2030 Urban Plan. This paper argues that alternative planning could better integrate Korea’s traditionalist architecture and concepts of pung su rather than insist on the necessity of Western-style modernism as the sole modality for achieving accessibility for the disabled in Korea.Keywords: accessibility, architecture of Seoul , Pung Su (Feng Shui), traditionalism, modernism in Seoul
Procedia PDF Downloads 236194 Review of Existing Pumped Storage Technologies and their Application in the Case of Bistrica Pump Storage Plant
Authors: Dušan Bojović, Wei Huang, Zdravko Stojanović, Jovan Ilić
Abstract:
In an era of ever-growing electricity generation from renewable energy sources, namely wind and solar, a need for reliable energy storage and intensive balancing of the electric power system gains significance. For decades, pump storage hydroelectric power plants have proven to be an important asset regarding the storage of generated electricity. However, with the increasing overall share of wind and solar in electric systems at large, the importance of electric grid stability keeps growing. A large pump storage project, the Bistrica Pump Storage Plant (PSP), is currently under development in Serbia. The Bistrica PSP will be designed as a 600+ MW power plant, which is envisaged as a significant contributor to the Serbian power grid stability as more and more renewable energy sources are implemented over time. PSP Bistrica is seen as a strategically important project on the green agenda path of the Electric Power Industry of Serbia as a necessary pre-condition for the safe implementation of other renewable energy sources. The importance of such a plant would also play an important role in reducing the electricity production from coal, i.e., thermoelectric power plants. During the project’s development, various techniques and technologies are evaluated for the purpose of determining the optimum (the most profitable) solution. Over the course of this paper, these technologies – such as frequency-regulated pump turbines and ternary sets will be presented, with a detailed explanation of their possible application within the Bistrica PSP project and their relative advantages/disadvantages in this particular case.Keywords: hydraulic turbines, pumped storage, renewable energy, competing technologies
Procedia PDF Downloads 92193 Efficient DNN Training on Heterogeneous Clusters with Pipeline Parallelism
Abstract:
Pipeline parallelism has been widely used to accelerate distributed deep learning to alleviate GPU memory bottlenecks and to ensure that models can be trained and deployed smoothly under limited graphics memory conditions. However, in highly heterogeneous distributed clusters, traditional model partitioning methods are not able to achieve load balancing. The overlap of communication and computation is also a big challenge. In this paper, HePipe is proposed, an efficient pipeline parallel training method for highly heterogeneous clusters. According to the characteristics of the neural network model pipeline training task, oriented to the 2-level heterogeneous cluster computing topology, a training method based on the 2-level stage division of neural network modeling and partitioning is designed to improve the parallelism. Additionally, a multi-forward 1F1B scheduling strategy is designed to accelerate the training time of each stage by executing the computation units in advance to maximize the overlap between the forward propagation communication and backward propagation computation. Finally, a dynamic recomputation strategy based on task memory requirement prediction is proposed to improve the fitness ratio of task and memory, which improves the throughput of the cluster and solves the memory shortfall problem caused by memory differences in heterogeneous clusters. The empirical results show that HePipe improves the training speed by 1.6×−2.2× over the existing asynchronous pipeline baselines.Keywords: pipeline parallelism, heterogeneous cluster, model training, 2-level stage partitioning
Procedia PDF Downloads 19192 Titanium Nitride @ Nitrogen-doped Carbon Nanocage as High-performance Cathodes for Aqueous Zn-ion Hybrid Supercapacitors
Authors: Ye Ling, Ruan Haihui
Abstract:
Aqueous Zn-ion hybrid supercapacitors (AZHSCs) pertain to a new type of electrochemical energy storage device that has received considerable attention. They integrate the advantages of high-energy Zn-ion batteries and high-power supercapacitors to meet the demand for low-cost, long-term durability, and high safety. Nevertheless, the challenge caused by the finite ion adsorption/desorption capacity of carbon electrodes gravely limits their energy densities. This work describes titanium nitride@nitrogen-doped carbon nanocage (TiN@NCNC) composite cathodes for AZHSCs to achieve a greatly improved energy density, and the composites can be facile synthesized based on the calcination of a mixture of tetrabutyl titanate and zeolitic imidazolate framework-8 in argon atmosphere. The resulting composites are featured by the ultra-fine TiN particles dispersed uniformly on the NCNC surfaces, enhancing the Zn2+ storage capabilities. Using TiN@NCNC cathodes, the AZHSCs can operate stably with a high energy density of 154 Wh kg-¹ at a specific power of 270 W kg-¹ and achieve a remarkable capacity retention of 88.9% after 104 cycles at 5 A g-¹. At an extreme specific power of 8.7 kW kg-1, the AZHSCs can retain an energy density of 97.2 Wh kg-1. With these results, we stress that the TiN@NCNC cathodes render high-performance AZHSCs, and the facile one-pot method can easily be scaled up, which enables AZHSCs a new energy-storage component for managing intermitted renewable energy sources.Keywords: Zn-ion hybrid supercapacitors, ion absorption/desorption reactions, titanium nitride, zeolitic imidazolate framework-8
Procedia PDF Downloads 52191 Development of Method for Recovery of Nickel from Aqueous Solution Using 2-Hydroxy-5-Nonyl- Acetophenone Oxime Impregnated on Activated Charcoal
Authors: A. O. Adebayo, G. A. Idowu, F. Odegbemi
Abstract:
Investigations on the recovery of nickel from aqueous solution using 2-hydroxy-5-nonyl- acetophenone oxime (LIX-84I) impregnated on activated charcoal was carried out. The LIX-84I was impregnated onto the pores of dried activated charcoal by dry method and optimum conditions for different equilibrium parameters (pH, adsorbent dosage, extractant concentration, agitation time and temperature) were determined using a simulated solution of nickel. The kinetics and adsorption isotherm studies were also evaluated. It was observed that the efficiency of recovery with LIX-84I impregnated on charcoal was dependent on the pH of the aqueous solution as there was little or no recovery at pH below 4. However, as the pH was raised, percentage recovery increases and peaked at pH 5.0. The recovery was found to increase with temperature up to 60ºC. Also it was observed that nickel adsorbed onto the loaded charcoal best at a lower concentration (0.1M) of the extractant when compared with higher concentrations. Similarly, a moderately low dosage (1 g) of the adsorbent showed better recovery than larger dosages. These optimum conditions were used to recover nickel from the leachate of Ni-MH batteries dissolved with sulphuric acid, and a 99.6% recovery was attained. Adsorption isotherm studies showed that the equilibrium data fitted best to Temkin model, with a negative value of constant, b (-1.017 J/mol) and a high correlation coefficient, R² of 0.9913. Kinetic studies showed that the adsorption process followed a pseudo-second order model. Thermodynamic parameter values (∆G⁰, ∆H⁰, and ∆S⁰) showed that the adsorption was endothermic and spontaneous. The impregnated charcoal appreciably recovered nickel using a relatively smaller volume of extractant than what is required in solvent extraction. Desorption studies showed that the loaded charcoal is reusable for three times, and so might be economical for nickel recovery from waste battery.Keywords: charcoal, impregnated, LIX-84I, nickel, recovery
Procedia PDF Downloads 153190 Electrochemical Recovery of Lithium from Geothermal Brines
Authors: Sanaz Mosadeghsedghi, Mathew Hudder, Mohammad Ali Baghbanzadeh, Charbel Atallah, Seyedeh Laleh Dashtban Kenari, Konstantin Volchek
Abstract:
Lithium has recently been extensively used in lithium-ion batteries (LIBs) for electric vehicles and portable electronic devices. The conventional evaporative approach to recover and concentrate lithium is extremely slow and may take 10-24 months to concentrate lithium from dilute sources, such as geothermal brines. To response to the increasing industrial lithium demand, alternative extraction and concentration technologies should be developed to recover lithium from brines with low concentrations. In this study, a combination of electrocoagulation (EC) and electrodialysis (ED) was evaluated for the recovery of lithium from geothermal brines. The brine samples in this study, collected in Western Canada, had lithium concentrations of 50-75 mg/L on a background of much higher (over 10,000 times) concentrations of sodium. This very high sodium-to-lithium ratio poses challenges to the conventional direct-lithium extraction processes which employ lithium-selective adsorbents. EC was used to co-precipitate lithium using a sacrificial aluminium electrode. The precipitate was then dissolved, and the leachate was treated using ED to separate and concentrate lithium from other ions. The focus of this paper is on the study of ED, including a two-step ED process that included a mono-valent selective stage to separate lithium from multi-valent cations followed by a bipolar ED stage to convert lithium chloride (LiCl) to LiOH product. Eventually, the ED cell was reconfigured using mono-valent cation exchange with the bipolar membranes to combine the two ED steps in one. Using this process at optimum conditions, over 95% of the co-existing cations were removed and the purity of lithium increased to over 90% in the final product.Keywords: electrochemical separation, electrocoagulation, electrodialysis, lithium extraction
Procedia PDF Downloads 94189 Synthesis and Characterization of Pure and Doped Li7La3Zr2O12 Li-Ion Conducting Solid Electrolyte for Lithium Batteries
Authors: Shari Ann S. Botin, Ruziel Larmae T. Gimpaya, Rembrant Rockwell Gamboa, Rinlee Butch M. Cervera
Abstract:
In recent years, demand for the use of solid electrolytes as alternatives to liquid electrolytes has increased due to recurring battery safety and stability issues, in addition to an increase in energy density requirement which can be made possible by using solid electrolytes. Among the solid electrolyte systems, Li7La3Zr2O12 (LLZ) is one of the most promising as it exhibits good chemical stability against Li metal and has a relatively high ionic conductivity. In this study, pure and doped LLZ were synthesized via conventional solid state reaction. The precursor chemicals (such as LiOH, La2O3, Ga2O3 and ZrO2) were ground and then calcined at 900 °C, pressed into pellets and finally sintered at 1000 °C to 1200 °C. The microstructure and ionic conductivity of the obtained samples have been investigated. Results show that for pure LLZ, sintering at lower temperature (1000 °C) produced tetragonal LLZ while sintering at higher temperatures (≥ 1150 °C) produced cubic LLZ based from the XRD results. However, doping with Ga produces an easier formation of LLZ with cubic structure at lower sintering duration. On the other hand, the lithium conductivity of the samples was investigated using electrochemical impedance spectroscopy at room temperature. Among the obtained samples, Ga-doped LLZ sintered at 1150 °C obtained the highest ionic conductivity reaching to about 1x10⁻⁴ S/cm at room temperature. In addition, fabrication and initial investigation of an all-solid state Lithium Battery using the synthesized LLZ sample with the use of commercial cathode materials have been investigated.Keywords: doped LLZ, lithium-ion battery, pure LLZ, solid electrolytes
Procedia PDF Downloads 263188 Optimization and Energy Management of Hybrid Standalone Energy System
Authors: T. M. Tawfik, M. A. Badr, E. Y. El-Kady, O. E. Abdellatif
Abstract:
Electric power shortage is a serious problem in remote rural communities in Egypt. Over the past few years, electrification of remote communities including efficient on-site energy resources utilization has achieved high progress. Remote communities usually fed from diesel generator (DG) networks because they need reliable energy and cheap fresh water. The main objective of this paper is to design an optimal economic power supply from hybrid standalone energy system (HSES) as alternative energy source. It covers energy requirements for reverse osmosis desalination unit (DU) located in National Research Centre farm in Noubarya, Egypt. The proposed system consists of PV panels, Wind Turbines (WT), Batteries, and DG as a backup for supplying DU load of 105.6 KWh/day rated power with 6.6 kW peak load operating 16 hours a day. Optimization of HSES objective is selecting the suitable size of each of the system components and control strategy that provide reliable, efficient, and cost-effective system using net present cost (NPC) as a criterion. The harmonization of different energy sources, energy storage, and load requirements are a difficult and challenging task. Thus, the performance of various available configurations is investigated economically and technically using iHOGA software that is based on genetic algorithm (GA). The achieved optimum configuration is further modified through optimizing the energy extracted from renewable sources. Effective minimization of energy charging the battery ensures that most of the generated energy directly supplies the demand, increasing the utilization of the generated energy.Keywords: energy management, hybrid system, renewable energy, remote area, optimization
Procedia PDF Downloads 200187 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan
Authors: Asma Shaheen, Javed Iqbal
Abstract:
The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.Keywords: groundwater, geostatistical, heavy metals, industrial effluent
Procedia PDF Downloads 229186 Hydrothermal Synthesis of V₂O₅-Carbon Nanotube Composite for Supercapacitor Application
Authors: Mamta Bulla, Vinay Kumar
Abstract:
The transition to renewable energy sources is essential due to the finite limitations of conventional fossil fuels, which contribute significantly to environmental pollution and greenhouse gas emissions. Traditional energy storage solutions, such as batteries and capacitors, are also hindered by limitations, particularly in capacity, cycle life, and energy density. Conventional supercapacitors, while able to deliver high power, often suffer from low energy density, limiting their efficiency in storing and providing renewable energy consistently. Renewable energy sources, such as solar and wind, produce power intermittently, so efficient energy storage solutions are required to manage this variability. Advanced materials, particularly those with high capacity and long cycle life, are critical to developing supercapacitors capable of effectively storing renewable energy. Among various electrode materials, vanadium pentoxide (V₂O₅) offers high theoretical capacitance, but its poor conductivity and cycling stability limit practical applications. This study explores the hydrothermal synthesis of a V₂O₅-carbon nanotube (CNT) composite to overcome these drawbacks, combining the high capacitance of V₂O₅ with the exceptional conductivity and mechanical stability of CNTs. The resulting V₂O₅-CNT composite demonstrates enhanced electrochemical performance, showing high specific capacitance of 890 F g⁻¹ at 0.1 A g⁻¹ current density, excellent rate capability, and improved cycling stability, making it a promising candidate for next-generation supercapacitors, with significant improvements in energy storage efficiency and durability.Keywords: cyclability, energy density, nanocomposite, renewable energy, supercapacitor
Procedia PDF Downloads 14185 Impact of School-Based Gymnastic Program on Skill-Related Fitness in Early Adolescent Students
Authors: Dinko Vuleta, Dejan Madić, Goran Sporiš, Nebojša Trajković
Abstract:
The aim of this study was to determine the effects of gymnastics program in school on skill-related fitness in early adolescent students. The study involved 58 adolescent students (12.82±0.54 years; Height 156.81±8.16 cm; 53.46±12.31 kg) from primary school divided into two groups, following the randomization. The gymnastic group was involved in a 12 week of gymnastics classes, while the control group only participated in usual PE classes which consisted of multi-sport activities. The variables were selected within the several fitness batteries, measuring coordination (polygon backwards), upper and lower body strength standing long jump and medicine ball throw), speed (20 m sprint) and agility (4x10 test). Pre-test to post-test values showed significant improvements in all tested variables (p<0.05), except for the 4x10m test, where there were no significant improvements in neither of the groups (p>0.05). Significant interactions of time by group were observed for coordination, sprint speed, standing long jump and medicine ball throw (p<0.05). The results showed significant increase in skill-related fitness of the participants in the gymnastic group compared to the control group. Therefore, participation in gymnastics must be recommended as a positive foundational activity for school-aged children, from early childhood to adulthood. Additionally, the results can provide useful information in optimizing the training loads of pupils involved in gymnastic training throughout PE classes.Keywords: effects, PE classes, physical fitness, training
Procedia PDF Downloads 259184 A Review of Kinematics and Joint Load Forces in Total Knee Replacements Influencing Surgical Outcomes
Authors: Samira K. Al-Nasser, Siamak Noroozi, Roya Haratian, Adrian Harvey
Abstract:
A total knee replacement (TKR) is a surgical procedure necessary when there is severe pain and/or loss of function in the knee. Surgeons balance the load in the knee and the surrounding soft tissue by feeling the tension at different ranges of motion. This method can be unreliable and lead to early failure of the joint. The ideal kinematics and load distribution have been debated significantly based on previous biomechanical studies surrounding both TKRs and normal knees. Intraoperative sensors like VERASENSE and eLibra have provided a method for the quantification of the load indicating a balanced knee. A review of the literature written about intraoperative sensors and tension/stability of the knee was done. Studies currently debate the quantification of the load in medial and lateral compartments specifically. However, most research reported that following a TKR the medial compartment was loaded more heavily than the lateral compartment. In several cases, these results were shown to increase the success of the surgery because they mimic the normal kinematics of the knee. In conclusion, most research agrees that an intercompartmental load differential of between 10 and 20 pounds, where the medial load was higher than the lateral, and an absolute load of less than 70 pounds was ideal. However, further intraoperative sensor development could help improve the accuracy and understanding of the load distribution on the surgical outcomes in a TKR. A reduction in early revision surgeries for TKRs would provide an improved quality of life for patients and reduce the economic burden placed on both the National Health Service (NHS) and the patient.Keywords: intraoperative sensors, joint load forces, kinematics, load balancing, and total knee replacement
Procedia PDF Downloads 136183 Application of Electro-Optical Hybrid Cables in Horizontal Well Production Logging
Authors: Daofan Guo, Dong Yang
Abstract:
For decades, well logging with coiled tubing has relied solely on surface data such as pump pressure, wellhead pressure, depth counter, and weight indicator readings. While this data serves the oil industry well, modern smart logging utilizes real-time downhole information, which automatically increases operational efficiency and optimizes intervention qualities. For example, downhole pressure, temperature, and depth measurement data can be transmitted through the electro-optical hybrid cable in the coiled tubing to surface operators on a real-time base. This paper mainly introduces the unique structural features and various applications of the electro-optical hybrid cables which were deployed into downhole with the help of coiled tubing technology. Fiber optic elements in the cable enable optical communications and distributed measurements, such as distributed temperature and acoustic sensing. The electrical elements provide continuous surface power for downhole tools, eliminating the limitations of traditional batteries, such as temperature, operating time, and safety concerns. The electrical elements also enable cable telemetry operation of cable tools. Both power supply and signal transmission were integrated into an electro-optical hybrid cable, and the downhole information can be captured by downhole electrical sensors and distributed optical sensing technologies, then travels up through an optical fiber to the surface, which greatly improves the accuracy of measurement data transmission.Keywords: electro-optical hybrid cable, underground photoelectric composite cable, seismic cable, coiled tubing, real-time monitoring
Procedia PDF Downloads 146182 A Theoretical and Experimental Evaluation of a Solar-Powered Off-Grid Air Conditioning System for Residential Buildings
Authors: Adam Y. Sulaiman, Gerard I.Obasi, Roma Chang, Hussein Sayed Moghaieb, Ming J. Huang, Neil J. Hewitt
Abstract:
Residential air-conditioning units are essential for quality indoor comfort in hot climate countries. Nevertheless, because of their non-renewable energy sources and the contribution of ecologically unfriendly working fluids, these units are a major source of CO2 emissions in these countries. The utilisation of sustainable technologies nowadays is essential to reduce the adverse effects of CO2 emissions by replacing conventional technologies. This paper investigates the feasibility of running an off-grid solar-powered air-conditioning bed unit using three low GWP refrigerants (R32, R290, and R600a) to supersede conventional refrigerants.A prototype air conditioning unit was built to supply cold air to a canopy that was connected to it. The assembled unit was designed to distribute cold air to a canopy connected to it. This system is powered by two 400 W photovoltaic panels, with battery storage supplying power to the unit at night-time. Engineering Equation Solver (EES) software is used to mathematically model the vapor compression cycle (VCC) and predict the unit's energetic and exergetic performance. The TRNSYS software was used to simulate the electricity storage performance of the batteries, whereas the IES-VE was used to determine the amount of solar energy required to power the unit. The article provides an analytical design guideline, as well as a comprehensible process system. Combining a renewable energy source to power an AC based-VCC provides an excellent solution to the real problems of high-energy consumption in warm-climate countries.Keywords: air-conditioning, refrigerants, PV panel, energy storages, VCC, exergy
Procedia PDF Downloads 176181 Finding Optimal Operation Condition in a Biological Nutrient Removal Process with Balancing Effluent Quality, Economic Cost and GHG Emissions
Authors: Seungchul Lee, Minjeong Kim, Iman Janghorban Esfahani, Jeong Tai Kim, ChangKyoo Yoo
Abstract:
It is hard to maintain the effluent quality of the wastewater treatment plants (WWTPs) under with fixed types of operational control because of continuously changed influent flow rate and pollutant load. The aims of this study is development of multi-loop multi-objective control (ML-MOC) strategy in plant-wide scope targeting four objectives: 1) maximization of nutrient removal efficiency, 2) minimization of operational cost, 3) maximization of CH4 production in anaerobic digestion (AD) for CH4 reuse as a heat source and energy source, and 4) minimization of N2O gas emission to cope with global warming. First, benchmark simulation mode is modified to describe N2O dynamic in biological process, namely benchmark simulation model for greenhouse gases (BSM2G). Then, three types of single-loop proportional-integral (PI) controllers for DO controller, NO3 controller, and CH4 controller are implemented. Their optimal set-points of the controllers are found by using multi-objective genetic algorithm (MOGA). Finally, multi loop-MOC in BSM2G is implemented and evaluated in BSM2G. Compared with the reference case, the ML-MOC with the optimal set-points showed best control performances than references with improved performances of 34%, 5% and 79% of effluent quality, CH4 productivity, and N2O emission respectively, with the decrease of 65% in operational cost.Keywords: Benchmark simulation model for greenhouse gas, multi-loop multi-objective controller, multi-objective genetic algorithm, wastewater treatment plant
Procedia PDF Downloads 504180 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based on Li-Ion Battery and Solar Energy Supply
Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan
Abstract:
Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries. In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.Keywords: ZigBee, Li-ion battery, solar panel, CC2530
Procedia PDF Downloads 376179 Flooring Solution for Sports Courts Such as Ecological Mortar
Authors: Helida T. G. Soares, Antonio J. P. da Silva
Abstract:
As the society develops, the accumulation of solid waste in landfills, in the environment, and the depletion of the raw material increases. In this way, there is relevance in researching the interaction between the environmental management and civil construction; therefore, this project has for scope the analysis and the effects of the rubber microparticles use as a small aggregate added to the sand, producing an ecological mortar for the pavement constitution, from the mixture of a paste, composed of Portland cement and water, and its application in sports courts. It was used the detailed reutilization of micro rubber in its most primordial, micro form, highlighting the powder pattern as the additional balancing of the mortar, analyzing the evolution of the mechanical properties. Percentages of 5, 10 and 15% rubber were used based on the total mass of the trace, where there is no removal of aggregates or cement, only increment of the rubber. The results obtained through the mechanical test of simple compression showed that the rubber, added to the mortar, presents low mechanical resistance compared to the reference trait, the study of this subject is vast of possibilities to be explored. In this sense, we seek sustainability and innovation from the use of an ecological material, thus adding value and reducing the impact of this material on the environment. The manufacturing process takes place from the direct mixing of cement paste and rubber, whether manually, mechanically or industrially. It results in the production of a low-cost mortar, through the use of recycled rubber, with high efficiency in general properties, such as compressive strength and friction coefficient, allowing its use for the construction of floors for sports courts with high durability. Thus, it is possible to reuse this micro rubber residue in other applications in simple concrete artifacts.Keywords: civil construction, ecological mortar, high efficiency, rubber
Procedia PDF Downloads 141178 Balancing Justice: A Critical Analysis of Plea Bargaining's Impact on Uganda's Criminal Justice System
Authors: Mukisa Daphine Letisha
Abstract:
Plea bargaining, a practice often associated with more developed legal systems, has emerged as a significant tool within Uganda's criminal justice system despite its absence in formal legal structures inherited from its colonial past. Initiated in 2013 with the aim of reducing case backlogs, expediting trials, and addressing prison congestion, plea bargaining reflects a pragmatic response to systemic challenges. While rooted in international statutes and domestic constitutional provisions, its implementation relies heavily on the Judicature (Plea Bargain) Rules of 2016, which outline procedural requirements and safeguards. Advocates argue that plea bargaining has yielded tangible benefits, including a reduction in case backlog and efficient allocation of resources, with notable support from judicial and prosecutorial authorities. Case examples demonstrate successful outcomes, with accused individuals benefitting from reduced sentences in exchange for guilty pleas. However, challenges persist, including procedural irregularities, inadequate statutory provisions, and concerns about coercion and imbalance of power between prosecutors and accused individuals. To enhance efficacy, recommendations focus on establishing monitoring mechanisms, stakeholder training, and public sensitization campaigns. In conclusion, while plea bargaining offers potential advantages in streamlining Uganda's criminal justice system, addressing its challenges requires careful consideration of procedural safeguards and stakeholder engagement to ensure fairness and integrity in the administration of justice.Keywords: plea-bargaining, criminal-justice system, uganda, efficacy
Procedia PDF Downloads 59177 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics
Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network
Procedia PDF Downloads 25176 Design of a Small Mobile PV Driven RO Water Desalination Plant to be Deployed at the North West Coast of Egypt
Authors: Hosam A. Shawky, Amr A. Abdel Fatah, Moustafa M. S. Abo ElFad, Abdel Hameed M. El-Aassar
Abstract:
Water desalination projects based on reverse osmosis technology are being introduced in Egypt to combat drinking water shortage in remote areas. Reverse osmosis (RO) desalination is a pressure driven process. This paper focuses on the design of an integrated brackish water and seawater RO desalination and solar Photovoltaic (PV) technology. A small Mobile PV driven RO desalination plant prototype without batteries is designed and tested. Solar-driven reverse osmosis desalination can potentially break the dependence of conventional desalination on fossil fuels, reduce operational costs, and improve environmental sustainability. Moreover, the innovative features incorporated in the newly designed PV-RO plant prototype are focusing on improving the cost effectiveness of producing drinkable water in remote areas. This is achieved by maximizing energy yield through an integrated automatic single axis PV tracking system with programmed tilting angle adjustment. An autonomous cleaning system for PV modules is adopted for maximizing energy generation efficiency. RO plant components are selected so as to produce 4-5 m3/day of potable water. A basic criterion in the design of this PV-RO prototype is to produce a minimum amount of fresh water by running the plant during peak sun hours. Mobility of the system will provide potable water to isolated villages and population as well as ability to provide good drinking water to different number of people from any source that is not drinkable.Keywords: design, reverse osmosis, photovoltaic, energy, desalination, Egypt
Procedia PDF Downloads 573175 Electrocatalysts for Lithium-Sulfur Energy Storage Systems
Authors: Mirko Ante, Şeniz Sörgel, Andreas Bund
Abstract:
Li-S- (Lithium-Sulfur-) battery systems provide very high specific gravimetric energy (2600 Wh/kg) and volumetric energy density (2800Wh/l). Hence, Li-S batteries are one of the key technologies for both the upcoming electromobility and stationary applications. Furthermore, the Li-S battery system is potentially cheap and environmentally benign. However, the technical implementation suffers from cycling stability, low charge and discharge rates and incomplete understanding of the complex polysulfide reaction mechanism. The aim of this work is to develop an effective electrocatalyst for the polysulfide reactions so that the electrode kinetics of the sulfur half-cell will be improved. Accordingly, the overvoltage will be decreased, and the efficiency of the cell will be increased. An enhanced electroactive surface additionally improves the charge and discharge rates. To reach this goal, functionalized electrocatalytic coatings are investigated to accelerate the kinetics of the polysulfide reactions. In order to determine a suitable electrocatalyst, apparent exchange current densities of a variety of materials (Ni, Co, Pt, Cr, Al, Cu, ITO, stainless steel) have been evaluated in a polysulfide containing electrolyte by potentiodynamic measurements and a Butler-Volmer fit including diffusion limitation. The samples have been examined by Scanning Electron Microscopy (SEM) after the potentiodynamic measurements. Up to now, our work shows that cobalt is a promising material with good electrocatalytic properties for the polysulfide reactions and good chemical stability in the system. Furthermore, an electrodeposition from a modified Watt’s nickel electrolyte with a sulfur source seems to provide an autocatalytic effect, but the electrocatalytic behavior decreases after several cycles of the current-potential-curve.Keywords: electrocatalyst, energy storage, lithium sulfur battery, sulfur electrode materials
Procedia PDF Downloads 369174 Gender and Work-Family Conflict Gaps in Hong Kong: The Impact of Family-Friendly Policies
Authors: Lina Vyas
Abstract:
Gender gap, unfortunately, is still prevalent in the workplace around the world. In most countries, women are less likely than men to participate in the workplace. They earn considerably less than men for doing the same work and are generally expected to prioritize family obligations over work responsibilities. Women often face more conflicts while balancing the increasingly normalized roles of both worker and mother. True gender equality in the workplace is still a long way off. In Hong Kong, no less is this true. Despite the fact that female students are outnumbered by males at universities, only 55% of women are active participants in the labour market, and for those in the workforce, the gender pay gap is 22%. This structural inequality also exacerbates the issues of confronting biases at work for choosing to be employed as a mother, as well as reinforces the societal expectation of women to be the primary caregiver at home. These pressures are likely to add up for women and contribute to increased levels of work-life conflict, which may be a further barrier for the inclusion of women into the workplace. Family-friendly policies have long been thought to be an alleviator of work-life conflict through helping employees balance the demands in both work and family. Particularly, for women, this could be a facilitator of their integration into the workplace. However, little research has looked at how family-friendly policies may also have a gender differential in effect, as opposed to traditional notions of having universal efficacy. This study investigates both how and how much the gender dimension impacts work-family conflict. In addition to disentangling the reasons for gender gaps existing in work-life conflict for women, this study highlights what can be done at an organizational level to alleviate these conflicts. Most importantly, the policies recommendations derived from this study serve as an avenue for more active participation for women in the workplace and can be considered as a pathway for promoting greater gender egalitarianism and fairness in a traditionally gender-segregated society.Keywords: family-friendly policies, Hong Kong, work-family conflict, workplace
Procedia PDF Downloads 178173 The Security Trade-Offs in Resource Constrained Nodes for IoT Application
Authors: Sultan Alharby, Nick Harris, Alex Weddell, Jeff Reeve
Abstract:
The concept of the Internet of Things (IoT) has received much attention over the last five years. It is predicted that the IoT will influence every aspect of our lifestyles in the near future. Wireless Sensor Networks are one of the key enablers of the operation of IoTs, allowing data to be collected from the surrounding environment. However, due to limited resources, nature of deployment and unattended operation, a WSN is vulnerable to various types of attack. Security is paramount for reliable and safe communication between IoT embedded devices, but it does, however, come at a cost to resources. Nodes are usually equipped with small batteries, which makes energy conservation crucial to IoT devices. Nevertheless, security cost in terms of energy consumption has not been studied sufficiently. Previous research has used a security specification of 802.15.4 for IoT applications, but the energy cost of each security level and the impact on quality of services (QoS) parameters remain unknown. This research focuses on the cost of security at the IoT media access control (MAC) layer. It begins by studying the energy consumption of IEEE 802.15.4 security levels, which is followed by an evaluation for the impact of security on data latency and throughput, and then presents the impact of transmission power on security overhead, and finally shows the effects of security on memory footprint. The results show that security overhead in terms of energy consumption with a payload of 24 bytes fluctuates between 31.5% at minimum level over non-secure packets and 60.4% at the top security level of 802.15.4 security specification. Also, it shows that security cost has less impact at longer packet lengths, and more with smaller packet size. In addition, the results depicts a significant impact on data latency and throughput. Overall, maximum authentication length decreases throughput by almost 53%, and encryption and authentication together by almost 62%.Keywords: energy consumption, IEEE 802.15.4, IoT security, security cost evaluation
Procedia PDF Downloads 169172 Integrated Water Resources Management to Ensure Water Security of Arial Khan River Catchment
Authors: Abul Kalam Azad
Abstract:
Water security has become an increasingly important issue both at the national and international levels. Bangladesh having an abundance of water during monsoon while the shortage of water during the dry season is far from being water secured. Though water security has been discussed discretely at a different level but a holistic effort to ensure water security is yet to be made. The elements of water security such as sectoral demands of water, conflicting requirements amongst the sectors, balancing between demand and supply including the quality of water can best be understood and managed in a catchment as it is the standard functioning unit. The Arial Khan River catchment consists of parts of Faridpur, Madaripur, Shariatpur and Barishal districts have all the components of water demands such as agriculture, domestic, commercial, industrial, forestry, fisheries, navigation or recreation and e-flow requirements. Based on secondary and primary data, water demands of various sectors have been determined. CROPWAT 8.0 has been used to determine the Agricultural Water Demand. Mean Annual Flow (MAF) and Flow Duration Curve (FDC) have been used to determine the e-flow requirements. Water Evaluation and Planning System (WEAP) based decision support tool as part of Integrated Water Resources Management (IWRM) has been utilized for ensuring the water security of the Arial Khan River catchment. Studies and practice around the globe connected with water security were consulted to mitigate the pressure on demand and supply including the options available to ensure the water security. Combining all the information, a framework for ensuring water security has been suggested for Arial Khan River catchment which can further be projected to river basin as well as for the country. This will assist planners and researchers to introduce the model for integrated water resources management of any catchment/river basins.Keywords: water security, water demand, water supply, WEAP, CROPWAT
Procedia PDF Downloads 22171 Mn3O4-NiFe Layered Double Hydroxides(LDH)/Carbon Composite Cathode for Rechargeable Zinc-Air Battery
Authors: L. K. Nivedha, V. Maruthapandian, R. Kothandaraman
Abstract:
Rechargeable zinc-air batteries (ZAB) are gaining significant research attention owing to their high energy density and copious zinc resources worldwide. However, the unsolved obstacles such as dendrites, passivation, depth of discharge and the lack of an efficient cathode catalyst restrict their practical application1. By and large, non-noble transition metal-based catalysts are well-reputed materials for catalysing oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with greater stability in alkaline medium2. Herein, we report the synthesis and application of Mn₃O4-NiFeLDH/Carbon composite as a cathode catalyst for rechargeable ZAB. The synergetic effects of the mixed transition metals (Mn/Ni/Fe) have aided in catalysing ORR and OER in alkaline electrolyte with a shallow potential gap of 0.7 V. The composite, by its distinctive physicochemical characteristics, shows an excellent OER activity with a current density of 1.5 mA cm⁻² at a potential of 1.6 V and a superior ORR activity with an onset potential of 0.8 V when compared with their counterparts. Nevertheless, the catalyst prefers a two-electron pathway for the electrochemical reduction of oxygen which results in a limiting current density of 2.5 mA cm⁻². The bifunctional activity of the Mn₃O₄-NiFeLDH/Carbon composite was utilized in developing rechargeable ZAB. The fully fabricated ZAB delivers an open circuit voltage of 1.4 V, a peak power density of 70 mW cm⁻², and a specific capacity of 800 mAh g⁻¹ at a current density of 20 mA cm⁻² with an average discharge voltage of 1 V and the cell is operable upto 50 mA cm-2. Rechargeable ZAB demonstrated over 110 h at 10 mA cm⁻². Further, the cause for the diminished charge-discharge performance experienced beyond the 100th cycle was investigated, and carbon corrosion was testified using Infrared spectroscopy.Keywords: rechargeable zinc-air battery, oxygen evolution reaction, bifunctional catalyst, alkaline medium
Procedia PDF Downloads 82170 Investigation on Reducing the Bandgap in Nanocomposite Polymers by Doping
Authors: Sharvare Palwai, Padmaja Guggilla
Abstract:
Smart materials, also called as responsive materials, undergo reversible physical or chemical changes in their properties as a consequence of small environmental variations. They can respond to a single or multiple stimuli such as stress, temperature, moist, electric or magnetic fields, light, or chemical compounds. Hence smart materials are the basis of many applications, including biosensors and transducers, particularly electroactive polymers. As the polymers exhibit good flexibility, high transparency, easy processing, and low cost, they would be promising for the sensor material. Polyvinylidene Fluoride (PVDF), being a ferroelectric polymer, exhibits piezoelectric and pyro electric properties. Pyroelectric materials convert heat directly into electricity, while piezoelectric materials convert mechanical energy into electricity. These characteristics of PVDF make it useful in biosensor devices and batteries. However, the influence of nanoparticle fillers such as Lithium Tantalate (LiTaO₃/LT), Potassium Niobate (KNbO₃/PN), and Zinc Titanate (ZnTiO₃/ZT) in polymer films will be studied comprehensively. Developing advanced and cost-effective biosensors is pivotal to foresee the fullest potential of polymer based wireless sensor networks, which will further enable new types of self-powered applications. Finally, nanocomposites films with best set of properties; the sensory elements will be designed and tested for their performance as electric generators under laboratory conditions. By characterizing the materials for their optical properties and investigate the effects of doping on the bandgap energies, the science in the next-generation biosensor technologies can be advanced.Keywords: polyvinylidene fluoride, PVDF, lithium tantalate, potassium niobate, zinc titanate
Procedia PDF Downloads 136169 A Study of The STEAM Toy Pedagogy Plan Evaluation for Elementary School
Authors: Wen-Te Chang, Yun-Hsin Pai
Abstract:
Purpose: Based on the interdisciplinary of lower grade Elementary School with the integration of STEAM concept, related wooden toy and pedagogy plans were developed and evaluated. The research goal was to benefit elementary school education. Design/methodology/approach: The subjects were teachers from two primary school teachers and students from the department of design of universities in Taipei. Amount of 103participants (Male: 34, Female: 69) were invited to participate in the research. The research tools are “STEAM toy design” and “questionnaire of STEAM toy Pedagogy plan.” The STEAM toy pedagogy plans were evaluated after the activity of “The interdisciplinary literacy discipline guiding study program--STEAM wooden workshop,” Finding/results: The study results: (1) As factors analyzing of the questionnaire indicated the percentage on the major factors were cognition teaching 68.61%, affection 80.18% and technique 80.14%, with α=.936 of validity. The assessment tools were proved to be valid for STEAM pedagogy plan evaluation; (2) The analysis of the questionnaires investigation confirmed that the main effect of the teaching factors was not significant (affection = technique = cognition); however, the interaction between STEAM factors revealed to be significant (F (8, 1164) =5.51, p < .01); (3) The main effect of the six pedagogy plans was significant (climbing toy > bird toy = gondola toy > frog castanets > train toy > balancing toy), and an interactive effect between STEAM factors also reached a significant level, (F (8, 1164) =5.51, p < .01), especially on the artistic (A/ Art) aspect. Originality/value: The main achievement of research: (1) A pedagogy plan evaluation was successfully developed. (2) The interactive effect between the STEAM and the teaching factors reached a significant level. (3) An interactive effect between the STEAM factors and the pedagogy plans reached a significant level too.Keywords: STEAM, toy design, pedagogy plans, evaluation
Procedia PDF Downloads 284168 Single Ion Conductors for Lithium-Ion Battery Application
Authors: Seyda Tugba Gunday Anil, Ayhan Bozkurt
Abstract:
Next generation lithium batteries are taking more attention and single-ion polymer electrolytes are expected to play a significant role in the development of these kinds of energy storage systems. In the present work we used a different strategy to design of novel solid single-ion conducting inorganic polymer electrolytes based on lithium polyvinyl alcohol oxalate borate (Li(PVAOB), lithium polyacrylic acid oxalate borate (LiPAAOB) and poly (ethylene glycol) methacrylate (PEGMA). Free radical polymerization was used to convert PEGMA into PPEGMA and LiPAAOB is prepared from poly (acrylic acid), oxalic acid and boric acid. Blend polymer electrolytes were produced by mixing of LiPAAOB or Li (PVAOB with PPEGMA at different stoichiometric ratios to enhance the single ion conductivity of the systems. To exploit the flexible chemistry and increase the segmental mobility of the blend electrolyte, the composition was changed up to 80% with respect to the guest polymer, PPEGMA. FT-IR and differential scanning calorimeter techniques confirmed the interaction between the host and guest polymers. TGA verified that the thermal stability of the blends increased up to approximately 200 C. Scanning electron microscopy images confirm the homogeneity of the blend electrolytes. CV studies showed that electrochemical stability electrochemical stability window is approximately 5 V versus Li/Li⁺. The effect of PPEGMA on to the Lithium-ion conductivity was investigated using dielectric impedance analyzer. The maximum single ion conductivity was measured as 1.3 × 10⁻⁴ S/cm at 100 C for the sample LiPAAOB-80PPEGMA. Clearly, the results confirmed the positive effect to the increment in ionic conductivity of the blend electrolytes with the addition of PPEGMA.Keywords: single-ion conductor, inorganic polymer, blends, polymer electrolyte
Procedia PDF Downloads 168167 Disclosure Experience of Working People Living with HIV/AIDS in Nigeria: A Qualitative Research
Authors: Dorcas I. Adeoye
Abstract:
Disclosure experience of people living with HIV/AIDS has been a public health concern, it has also been attributed to effective way of limiting the spread of the disease. However, among working people living with HIV, it is a great issue that attracts several consequences, it is also a way of managing HIV and balancing their emotional, physical and social aspect of life. The economic, social and political aspect has been affected since the emergent of HIV. It is also not a medical problem that only needs a medical approach; it is a psychological problem that needs not to be ignored. Work attitude model and consequential theory were used to understanding the experience of disclosure or non-disclosure in the workplace. Work attitude model explains the job satisfaction and the organisational commitment of an employee that have effect on the decision and well-being in the workplace; it can also influence a decision to disclosure one’s health condition, however, consequential theory comes to play when a decision is being made, either to disclose or not, and that will attract consequences (either negative or positive) in which ever decision made. A phenomenological study was conducted among employed people that are infected with HIV/AIDS in a south-eastern region of Nigeria where unemployment rate is high. A one-to-one semi-structured interview was used to gather in-depth information about the experience of 20 working people living with HIV. Participants were recruited in a hospital and for some, hospital serves as their workplace. The outcome of the research shows that participants’ experiences vary. One thing that stood out and was found similar among all participants including participants that have disclosed, planning to disclose, or never intended to disclose, is that workplace is a place not to be trusted despite the positive outcomes disclosure could give in the workplace, and disclosure decision needs to be carefully taken. The study was concluded with recommendations that cover various aspects; however, clearer policies should be followed by all organisations to protect people living with HIV in the workplace.Keywords: disclosure, employment, HIV/AIDS, Nigeria, workplace
Procedia PDF Downloads 305166 Study of Structural Behavior and Proton Conductivity of Inorganic Gel Paste Electrolyte at Various Phosphorous to Silicon Ratio by Multiscale Modelling
Authors: P. Haldar, P. Ghosh, S. Ghoshdastidar, K. Kargupta
Abstract:
In polymer electrolyte membrane fuel cells (PEMFC), the membrane electrode assembly (MEA) is consisting of two platinum coated carbon electrodes, sandwiched with one proton conducting phosphoric acid doped polymeric membrane. Due to low mechanical stability, flooding and fuel cell crossover, application of phosphoric acid in polymeric membrane is very critical. Phosphorous and silica based 3D inorganic gel gains the attention in the field of supercapacitors, fuel cells and metal hydrate batteries due to its thermally stable highly proton conductive behavior. Also as a large amount of water molecule and phosphoric acid can easily get trapped in Si-O-Si network cavities, it causes a prevention in the leaching out. In this study, we have performed molecular dynamics (MD) simulation and first principle calculations to understand the structural, electronics and electrochemical and morphological behavior of this inorganic gel at various P to Si ratios. We have used dipole-dipole interactions, H bonding, and van der Waals forces to study the main interactions between the molecules. A 'structure property-performance' mapping is initiated to determine optimum P to Si ratio for best proton conductivity. We have performed the MD simulations at various temperature to understand the temperature dependency on proton conductivity. The observed results will propose a model which fits well with experimental data and other literature values. We have also studied the mechanism behind proton conductivity. And finally we have proposed a structure for the gel paste with optimum P to Si ratio.Keywords: first principle calculation, molecular dynamics simulation, phosphorous and silica based 3D inorganic gel, polymer electrolyte membrane fuel cells, proton conductivity
Procedia PDF Downloads 129