Search results for: Francisco J. Real
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5440

Search results for: Francisco J. Real

4960 Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination

Authors: Gilberto Goracci, Fabio Curti

Abstract:

This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown.

Keywords: artificial intelligence, extended Kalman filter, orbit determination, magnetic field

Procedia PDF Downloads 105
4959 The Impact of Behavioral Factors on the Decision Making of Real Estate Investor of Pakistan

Authors: Khalid Bashir, Hammad Zahid

Abstract:

Most of the investors consider that economic and financial information is the most important at the time of making investment decisions. But it is not true, as in the past two decades, the Behavioral aspects and the behavioral biases have gained an important place in the decision-making process of an investor. This study is basically conducted on this fact. The purpose of this study is to examine the impact of behavioral factors on the decision-making of the individual real estate investor in Pakistan. Some important behavioral factors like overconfidence, anchoring, gambler’s fallacy, home bias, loss aversion, regret aversion, mental accounting, herding and representativeness are used in this study to find their impact on the psychology of individual investors. The targeted population is the real estate investor of Pakistan, and a sample of 650 investors is selected on the basis of convenience sampling technique. The data is collected through the questionnaire with a response rate of 46.15 %. Descriptive statistical techniques and SEM are used to analyze the data by using statistical software. The results revealed the fact that some behavioral factors have a significant impact on the decision-making of investors. Among all the behavioral biases, overconfidence, anchoring, gambler’s fallacy, loss aversion and representativeness have a significant positive impact on the decision-making of the individual investor, while the rest of biases like home bias, regret aversion, mental accounting, herding have less impact on the decision-making process of an individual.

Keywords: behavioral finance, anchoring, gambler’s fallacy, loss aversion

Procedia PDF Downloads 70
4958 Discussion on Big Data and One of Its Early Training Application

Authors: Fulya Gokalp Yavuz, Mark Daniel Ward

Abstract:

This study focuses on a contemporary and inevitable topic of Data Science and its exemplary application for early career building: Big Data and Leaving Learning Community (LLC). ‘Academia’ and ‘Industry’ have a common sense on the importance of Big Data. However, both of them are in a threat of missing the training on this interdisciplinary area. Some traditional teaching doctrines are far away being effective on Data Science. Practitioners needs some intuition and real-life examples how to apply new methods to data in size of terabytes. We simply explain the scope of Data Science training and exemplified its early stage application with LLC, which is a National Science Foundation (NSF) founded project under the supervision of Prof. Ward since 2014. Essentially, we aim to give some intuition for professors, researchers and practitioners to combine data science tools for comprehensive real-life examples with the guides of mentees’ feedback. As a result of discussing mentoring methods and computational challenges of Big Data, we intend to underline its potential with some more realization.

Keywords: Big Data, computation, mentoring, training

Procedia PDF Downloads 363
4957 Government Size and Economic Growth: Testing the Non-Linear Hypothesis for Nigeria

Authors: R. Santos Alimi

Abstract:

Using time-series techniques, this study empirically tested the validity of existing theory which stipulates there is a nonlinear relationship between government size and economic growth; such that government spending is growth-enhancing at low levels but growth-retarding at high levels, with the optimal size occurring somewhere in between. This study employed three estimation equations. First, for the size of government, two measures are considered as follows: (i) share of total expenditures to gross domestic product, (ii) share of recurrent expenditures to gross domestic product. Second, the study adopted real GDP (without government expenditure component), as a variant measure of economic growth other than the real total GDP, in estimating the optimal level of government expenditure. The study is based on annual Nigeria country-level data for the period 1970 to 2012. Estimation results show that the inverted U-shaped curve exists for the two measures of government size and the estimated optimum shares are 19.81% and 10.98%, respectively. Finally, with the adoption of real GDP (without government expenditure component), the optimum government size was found to be 12.58% of GDP. Our analysis shows that the actual share of government spending on average (2000 - 2012) is about 13.4%.This study adds to the literature confirming that the optimal government size exists not only for developed economies but also for developing economy like Nigeria. Thus, a public intervention threshold level that fosters economic growth is a reality; beyond this point economic growth should be left in the hands of the private sector. This finding has a significant implication for the appraisal of government spending and budgetary policy design.

Keywords: public expenditure, economic growth, optimum level, fully modified OLS

Procedia PDF Downloads 422
4956 A Measurement and Motor Control System for Free Throw Shots in Basketball Using Gyroscope Sensor

Authors: Niloofar Zebarjad

Abstract:

This research aims at finding a tool to provide basketball players with real-time audio feedback on their shooting form in free throw shots. Free throws played a pivotal role in taking the lead in fierce competitions. The major problem in performing an accurate free throw seems to be improper training. Since the arm movement during the free throw shot is complex, the coach or the athlete might miss the movement details during practice. Hence, there is a necessity to create a system that measures arm movements' critical characteristics and control for improper kinematics. The proposed setup in this study quantifies arm kinematics and provides real-time feedback as an audio signal consisting of a gyroscope sensor. Spatial shoulder angle data are transmitted in a mobile application in real-time and can be saved and processed for statistical and analysis purposes. The proposed system is easy to use, inexpensive, portable, and real-time applicable. Objectives: This research aims to modify and control the free throw using audio feedback and determine if and to what extent the new setup reduces errors in arm formations during throws and finally assesses the successful throw rate. Methods: One group of elite basketball athletes and two novice athletes (control and study group) participated in this study. Each group contains 5 participants being studied in three separate sessions over a week. Results: Empirical results showed enhancements in the free throw shooting style, shot pocket (SP), and locked position (LP). The mean values of shoulder angle were controlled on 25° and 45° for SP and LP, respectively, recommended by valid FIBA references. Conclusion: Throughout the experiments, the system helped correct and control the shoulder angles toward the targeted pattern of shot pocket (SP) and locked position (LP). According to the desired results for arm motion, adding another sensor to measure and control the elbow angle is recommended.

Keywords: audio-feedback, basketball, free-throw, locked-position, motor-control, shot-pocket

Procedia PDF Downloads 296
4955 The Evaluation of Fuel Desulfurization Performance of Choline-Chloride Based Deep Eutectic Solvents with Addition of Graphene Oxide as Catalyst

Authors: Chiau Yuan Lim, Hayyiratul Fatimah Mohd Zaid, Fai Kait Chong

Abstract:

Deep Eutectic Solvent (DES) is used in various applications due to its simplicity in synthesis procedure, biodegradable, inexpensive and easily available chemical ingredients. Graphene Oxide is a popular catalyst that being used in various processes due to its stacking carbon sheets in layer which theoretically rapid up the catalytic processes. In this study, choline chloride based DESs were synthesized and ChCl-PEG(1:4) was found to be the most effective DES in performing desulfurization, which it is able to remove up to 47.4% of the sulfur content in the model oil in just 10 minutes, and up to 95% of sulfur content after repeat the process for six times. ChCl-PEG(1:4) able to perform up to 32.7% desulfurization on real diesel after 6 multiple stages. Thus, future research works should focus on removing the impurities on real diesel before utilising DESs in petroleum field.

Keywords: choline chloride, deep eutectic solvent, fuel desulfurization, graphene oxide

Procedia PDF Downloads 153
4954 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks

Authors: Danilo López, Edwin Rivas, Leyla López

Abstract:

This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.

Keywords: cognitive radio, base station, best effort, MLPNN, prediction, real time

Procedia PDF Downloads 332
4953 Real-Time Pothole Detection Using YOLOv11

Authors: Kosuri Harshitha Durga, Ritesh Yaduwanshi

Abstract:

Potholes are one of the most significant problems that affect road safety and the quality of infrastructure. The aim of pothole detection using OpenCV is to design an automated system that will detect and create a map of potholes on the road surfaces to improve the safety of roads and ease the maintenance process. This system is based on high-powered computer vision methods that use still images or video footage taken by cameras located in cars or drones. This paper presents an analysis of the implementation of the YOLOv11 model in pedestrian detection and demonstrates greater effectiveness of this method in regards to accuracy, speed, and efficiency of inference. The improved system now supports enhanced prompt diagnosis and timely repair leaving little or no damage on the infrastructure and also ensuring that enhanced road safety is achieved. This technology can also be used as a safety feature for the car itself by being installed in ADAS systems that would alert drivers in real-time while driving to avoid driving over potholes.

Keywords: deep learning, Potholes, segmentation, object detection, YOLO

Procedia PDF Downloads 5
4952 Kitchenary Metaphors in Hindi-Urdu: A Cognitive Analysis

Authors: Bairam Khan, Premlata Vaishnava

Abstract:

The ability to conceptualize one entity in terms of another allows us to communicate through metaphors. This central feature of human cognition has evolved with the development of language, and the processing of metaphors is without any conscious appraisal and is quite effortless. South Asians, like other speech communities, have been using the kitchenary [culinary] metaphor in a very simple yet interesting way and are known for bringing into new and unique constellations wherever they are. This composite feature of our language is used to communicate in a precise and compact manner and maneuvers the expression. The present study explores the role of kitchenary metaphors in the making and shaping of idioms by applying Cognitive Metaphor Theories. Drawing on examples from a corpus of adverts, print, and electronic media, the study looks at the metaphorical language used by real people in real situations. The overarching theme throughout the course is that kitchenary metaphors are powerful tools of expression in Hindi-Urdu.

Keywords: cognitive metaphor theories, kitchenary metaphors, hindi-urdu print, and electronic media, grammatical structure of kitchenary metaphors of hindi-urdu

Procedia PDF Downloads 94
4951 Use of Acid Mine Drainage as a Source of Iron to Initiate the Solar Photo-Fenton Treatment of Municipal Wastewater: Circular Economy Effect

Authors: Tooba Aslam, Efthalia Chatzisymeon

Abstract:

Untreated Municipal Wastewater (MWW) is renowned as the utmost harmful pollution caused to environmental water due to the high presence of nutrients and organic contaminants. Removal of Chemical Oxygen Demand (COD) from synthetic as well as municipal wastewater is investigated by using acid mine drainage as a source of iron to initiate the solar photo-Fenton treatment of municipal wastewater. In this study, Acid Mine Drainage (AMD) and different minerals enriched in iron, such as goethite, hematite, magnetite, and magnesite, have been used as the source of iron to initiate the photo-Fenton process. Co-treatment of real municipal wastewater and acid mine drainage /minerals is widely examined. The effects of different parameters such as minerals recovery from AMD, AMD as a source of iron, H₂O₂ concentration, and COD concentrations on the COD percentage removal of the process are studied. The results show that, out of all the four minerals, only hematite (1g/L) could remove 30% of the pollutants at about 100 minutes and 1000 ppm of H₂O₂. The addition of AMD as a source of iron is performed and compared with both synthetic as well as real wastewater from South Africa under the same conditions, i.e., 1000 ppm of H₂O₂, ambient temperature, 2.8 pH, and solar simulator. In the case of synthetic wastewater, the maximum removal (56%) is achieved with 50 ppm of iron (AMD source) at 160 minutes. On the other hand, in real wastewater, the removal efficiency is 99% with 30 ppm of iron at 90 minutes and 96% with 50 ppm of iron at 120 minutes. In conclusion, overall, the co-treatment of AMD and MWW by solar photo-Fenton treatment appears to be an effective and promising method to remove organic materials from Municipal wastewater.

Keywords: municipal wastewater treatment, acid mine drainage, co-treatment, COD removal, solar photo-Fenton, circular economy

Procedia PDF Downloads 89
4950 The On-Board Critical Message Transmission Design for Navigation Satellite Delay/Disruption Tolerant Network

Authors: Ji-yang Yu, Dan Huang, Guo-ping Feng, Xin Li, Lu-yuan Wang

Abstract:

The navigation satellite network, especially the Beidou MEO Constellation, can relay data effectively with wide coverage and is applied in navigation, detection, and position widely. But the constellation has not been completed, and the amount of satellites on-board is not enough to cover the earth, which makes the data-relay disrupted or delayed in the transition process. The data-relay function needs to tolerant the delay or disruption in some extension, which make the Beidou MEO Constellation a delay/disruption-tolerant network (DTN). The traditional DTN designs mainly employ the relay table as the basic of data path schedule computing. But in practical application, especially in critical condition, such as the war-time or the infliction heavy losses on the constellation, parts of the nodes may become invalid, then the traditional DTN design could be useless. Furthermore, when transmitting the critical message in the navigation system, the maximum priority strategy is used, but the nodes still inquiry the relay table to design the path, which makes the delay more than minutes. Under this circumstances, it needs a function which could compute the optimum data path on-board in real-time according to the constellation states. The on-board critical message transmission design for navigation satellite delay/disruption-tolerant network (DTN) is proposed, according to the characteristics of navigation satellite network. With the real-time computation of parameters in the network link, the least-delay transition path is deduced to retransmit the critical message in urgent conditions. First, the DTN model for constellation is established based on the time-varying matrix (TVM) instead of the time-varying graph (TVG); then, the least transition delay data path is deduced with the parameters of the current node; at last, the critical message transits to the next best node. For the on-board real-time computing, the time delay and misjudges of constellation states in ground stations are eliminated, and the residual information channel for each node can be used flexibly. Compare with the minute’s delay of traditional DTN; the proposed transmits the critical message in seconds, which improves the re-transition efficiency. The hardware is implemented in FPGA based on the proposed model, and the tests prove the validity.

Keywords: critical message, DTN, navigation satellite, on-board, real-time

Procedia PDF Downloads 344
4949 Kitchenary Metaphors In Hindi-urdu: A Cognitive Analysis

Authors: Bairam Khan, Premlata Vaishnava

Abstract:

The ability to conceptualize one entity in terms of another allows us to communicate through metaphors. This central feature of human cognition has evolved with the development of language, and the processing of metaphors is without any conscious appraisal and is quite effortless. South Asians, like other speech communities, have been using the kitchenary [culinary] metaphor in a very simple yet interesting way and are known for bringing into new and unique constellations wherever they are. This composite feature of our language is used to communicate in a precise and compact manner and maneuvers the expression. The present study explores the role of kitchenary metaphors in the making and shaping of idioms by applying Cognitive Metaphor Theories. Drawing on examples from a corpus of adverts, print, and electronic media, the study looks at the metaphorical language used by real people in real situations. The overarching theme throughout the course is that kitchenary metaphors are powerful tools of expression in Hindi-Urdu.

Keywords: cognitive metaphor theory, source domain, target domain, signifier- signified, kitchenary, ethnocultural elements of south asia and hindi- urdu language

Procedia PDF Downloads 78
4948 The Effect of Outliers on the Economic and Social Survey on Income and Living Conditions

Authors: Encarnación Álvarez, Rosa M. García-Fernández, Francisco J. Blanco-Encomienda, Juan F. Muñoz

Abstract:

The European Union Survey on Income and Living Conditions (EU-SILC) is a popular survey which provides information on income, poverty, social exclusion and living conditions of households and individuals in the European Union. The EUSILC contains variables which may contain outliers. The presence of outliers can have an impact on the measures and indicators used by the EU-SILC. In this paper, we used data sets from various countries to analyze the presence of outliers. In addition, we obtain some indicators after removing these outliers, and a comparison between both situations can be observed. Finally, some conclusions are obtained.

Keywords: poverty line, headcount index, risk of poverty, skewness coefficient

Procedia PDF Downloads 402
4947 Robust and Real-Time Traffic Counting System

Authors: Hossam M. Moftah, Aboul Ella Hassanien

Abstract:

In the recent years the importance of automatic traffic control has increased due to the traffic jams problem especially in big cities for signal control and efficient traffic management. Traffic counting as a kind of traffic control is important to know the road traffic density in real time. This paper presents a fast and robust traffic counting system using different image processing techniques. The proposed system is composed of the following four fundamental building phases: image acquisition, pre-processing, object detection, and finally counting the connected objects. The object detection phase is comprised of the following five steps: subtracting the background, converting the image to binary, closing gaps and connecting nearby blobs, image smoothing to remove noises and very small objects, and detecting the connected objects. Experimental results show the great success of the proposed approach.

Keywords: traffic counting, traffic management, image processing, object detection, computer vision

Procedia PDF Downloads 295
4946 IT-Aided Business Process Enabling Real-Time Analysis of Candidates for Clinical Trials

Authors: Matthieu-P. Schapranow

Abstract:

Recruitment of participants for clinical trials requires the screening of a big number of potential candidates, i.e. the testing for trial-specific inclusion and exclusion criteria, which is a time-consuming and complex task. Today, a significant amount of time is spent on identification of adequate trial participants as their selection may affect the overall study results. We introduce a unique patient eligibility metric, which allows systematic ranking and classification of candidates based on trial-specific filter criteria. Our web application enables real-time analysis of patient data and assessment of candidates using freely definable inclusion and exclusion criteria. As a result, the overall time required for identifying eligible candidates is tremendously reduced whilst additional degrees of freedom for evaluating the relevance of individual candidates are introduced by our contribution.

Keywords: in-memory technology, clinical trials, screening, eligibility metric, data analysis, clustering

Procedia PDF Downloads 493
4945 Enhancing Large Language Models' Data Analysis Capability with Planning-and-Execution and Code Generation Agents: A Use Case for Southeast Asia Real Estate Market Analytics

Authors: Kien Vu, Jien Min Soh, Mohamed Jahangir Abubacker, Piyawut Pattamanon, Soojin Lee, Suvro Banerjee

Abstract:

Recent advances in Generative Artificial Intelligence (GenAI), in particular Large Language Models (LLMs) have shown promise to disrupt multiple industries at scale. However, LLMs also present unique challenges, notably, these so-called "hallucination" which is the generation of outputs that are not grounded in the input data that hinders its adoption into production. Common practice to mitigate hallucination problem is utilizing Retrieval Agmented Generation (RAG) system to ground LLMs'response to ground truth. RAG converts the grounding documents into embeddings, retrieve the relevant parts with vector similarity between user's query and documents, then generates a response that is not only based on its pre-trained knowledge but also on the specific information from the retrieved documents. However, the RAG system is not suitable for tabular data and subsequent data analysis tasks due to multiple reasons such as information loss, data format, and retrieval mechanism. In this study, we have explored a novel methodology that combines planning-and-execution and code generation agents to enhance LLMs' data analysis capabilities. The approach enables LLMs to autonomously dissect a complex analytical task into simpler sub-tasks and requirements, then convert them into executable segments of code. In the final step, it generates the complete response from output of the executed code. When deployed beta version on DataSense, the property insight tool of PropertyGuru, the approach yielded promising results, as it was able to provide market insights and data visualization needs with high accuracy and extensive coverage by abstracting the complexities for real-estate agents and developers from non-programming background. In essence, the methodology not only refines the analytical process but also serves as a strategic tool for real estate professionals, aiding in market understanding and enhancement without the need for programming skills. The implication extends beyond immediate analytics, paving the way for a new era in the real estate industry characterized by efficiency and advanced data utilization.

Keywords: large language model, reasoning, planning and execution, code generation, natural language processing, prompt engineering, data analysis, real estate, data sense, PropertyGuru

Procedia PDF Downloads 88
4944 Requirements to Establish a Taxi Sharing System in an Urban Area

Authors: Morteza Ahmadpur, Ilgin Gokasar, Saman Ghaffarian

Abstract:

That Transportation system plays an important role in management of societies is an undeniable fact and it is one of the most challenging issues in human beings routine life. But by increasing the population in urban areas, the demand for transportation modes also increase. Accordingly, it is obvious that more flexible and dynamic transportation system is required to satisfy peoples’ requirements. Nowadays, there is significant increase in number of environmental issues all over the world which is because of human activities. New technological achievements bring new horizons for humans and so they changed the life style of humans in every aspect of their life and transportation is not an exception. By using new technology, societies can modernize their transportation system and increase the feasibility of their system. Real–time Taxi sharing systems is one of the novel and most modern systems all over the world. For establishing this kind of system in an urban area it is required to use the most advanced technologies in a transportation system. GPS navigation devices, computers and social networks are just some parts of this kind of system. Like carpooling, real-time taxi sharing is one of the best ways to better utilize the empty seats in most cars and taxis, thus decreasing energy consumption and transport costs. It can serve areas not covered by a public transit system and act as a transit feeder service. Taxi sharing is also capable of serving one-time trips, not only recurrent commute trips or scheduled trips. In this study, we describe the requirements and parameters that we need to establish a useful real-time ride sharing system for an urban area. The parameters and requirements of this study can be used in any urban area.

Keywords: transportation, intelligent transportation systems, ride-sharing, taxi sharing

Procedia PDF Downloads 429
4943 A Multi-Dimensional Neural Network Using the Fisher Transform to Predict the Price Evolution for Algorithmic Trading in Financial Markets

Authors: Cristian Pauna

Abstract:

Trading the financial markets is a widespread activity today. A large number of investors, companies, public of private funds are buying and selling every day in order to make profit. Algorithmic trading is the prevalent method to make the trade decisions after the electronic trading release. The orders are sent almost instantly by computers using mathematical models. This paper will present a price prediction methodology based on a multi-dimensional neural network. Using the Fisher transform, the neural network will be instructed for a low-latency auto-adaptive process in order to predict the price evolution for the next period of time. The model is designed especially for algorithmic trading and uses the real-time price series. It was found that the characteristics of the Fisher function applied at the nodes scale level can generate reliable trading signals using the neural network methodology. After real time tests it was found that this method can be applied in any timeframe to trade the financial markets. The paper will also include the steps to implement the presented methodology into an automated trading system. Real trading results will be displayed and analyzed in order to qualify the model. As conclusion, the compared results will reveal that the neural network methodology applied together with the Fisher transform at the nodes level can generate a good price prediction and can build reliable trading signals for algorithmic trading.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, neural network

Procedia PDF Downloads 162
4942 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach

Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas

Abstract:

Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.

Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)

Procedia PDF Downloads 76
4941 Automated Detection of Targets and Retrieve the Corresponding Analytics Using Augmented Reality

Authors: Suvarna Kumar Gogula, Sandhya Devi Gogula, P. Chanakya

Abstract:

Augmented reality is defined as the collection of the digital (or) computer generated information like images, audio, video, 3d models, etc. and overlay them over the real time environment. Augmented reality can be thought as a blend between completely synthetic and completely real. Augmented reality provides scope in a wide range of industries like manufacturing, retail, gaming, advertisement, tourism, etc. and brings out new dimensions in the modern digital world. As it overlays the content, it makes the users enhance the knowledge by providing the content blended with real world. In this application, we integrated augmented reality with data analytics and integrated with cloud so the virtual content will be generated on the basis of the data present in the database and we used marker based augmented reality where every marker will be stored in the database with corresponding unique ID. This application can be used in wide range of industries for different business processes, but in this paper, we mainly focus on the marketing industry which helps the customer in gaining the knowledge about the products in the market which mainly focus on their prices, customer feedback, quality, and other benefits. This application also focuses on providing better market strategy information for marketing managers who obtain the data about the stocks, sales, customer response about the product, etc. In this paper, we also included the reports from the feedback got from different people after the demonstration, and finally, we presented the future scope of Augmented Reality in different business processes by integrating with new technologies like cloud, big data, artificial intelligence, etc.

Keywords: augmented reality, data analytics, catch room, marketing and sales

Procedia PDF Downloads 238
4940 Forest Soil Greenhouse Gas Real-Time Analysis Using Quadrupole Mass Spectrometry

Authors: Timothy L. Porter, T. Randy Dillingham

Abstract:

Vegetation growth and decomposition, along with soil microbial activity play a complex role in the production of greenhouse gases originating in forest soils. The absorption or emission (respiration) of these gases is a function of many factors relating to the soils themselves, the plants, and the environment in which the plants are growing. For this study, we have constructed a battery-powered, portable field mass spectrometer for use in analyzing gases in the soils surrounding trees, plants, and other areas. We have used the instrument to sample in real-time the greenhouse gases carbon dioxide and methane in soils where plant life may be contributing to the production of gases such as methane. Gases such as isoprene, which may help correlate gas respiration to microbial activity have also been measured. The instrument is composed of a quadrupole mass spectrometer with part per billion or better sensitivity, coupled to battery-powered turbo and diaphragm pumps. A unique ambient air pressure differentially pumped intake apparatus allows for the real-time sampling of gases in the soils from the surface to several inches below the surface. Results show that this instrument is capable of instant, part-per-billion sensitivity measurement of carbon dioxide and methane in the near surface region of various forest soils. We have measured differences in soil respiration resulting from forest thinning, forest burning, and forest logging as compared to pristine, untouched forests. Further studies will include measurements of greenhouse gas respiration as a function of temperature, microbial activity as measured by isoprene production, and forest restoration after fire.

Keywords: forest, soil, greenhouse, quadrupole

Procedia PDF Downloads 117
4939 A Memetic Algorithm for an Energy-Costs-Aware Flexible Job-Shop Scheduling Problem

Authors: Christian Böning, Henrik Prinzhorn, Eric C. Hund, Malte Stonis

Abstract:

In this article, the flexible job-shop scheduling problem is extended by consideration of energy costs which arise owing to the power peak, and further decision variables such as work in process and throughput time are incorporated into the objective function. This enables a production plan to be simultaneously optimized in respect of the real arising energy and logistics costs. The energy-costs-aware flexible job-shop scheduling problem (EFJSP) which arises is described mathematically, and a memetic algorithm (MA) is presented as a solution. In the MA, the evolutionary process is supplemented with a local search. Furthermore, repair procedures are used in order to rectify any infeasible solutions that have arisen in the evolutionary process. The potential for lowering the real arising costs of a production plan through consideration of energy consumption levels is highlighted.

Keywords: energy costs, flexible job-shop scheduling, memetic algorithm, power peak

Procedia PDF Downloads 346
4938 Types of Limit Application Problems in Engineering Students: Case Studies

Authors: Veronica Diaz Quezada

Abstract:

The society of the 21st century requires training of engineers capable of solving routine and non-routine problems in applications of the limit of real functions, as part of the course Calculus I. For this purpose, research was conducted with a methodological design that combines quantitative and qualitative procedures and that aims, to identify and to characterize the types of problems according to their nature and context, through the application of a mathematics test; to know— through a questionnaire— the opinion of difficulties in their solution, previous and missing knowledge of some students of three engineering careers of a state university in Chile. This research is completed with three case studies. The results favor the performance of students in solving problems of a fantasist and realistic context, but these do not guarantee mathematical skills which are necessary to solve non-routine problems of limit applications. In conclusion, through this research, it became clear that the students of the three engineerings do not have all the necessary skills to solve problems of application of the limit of a function of the real variable.

Keywords: case studies, engineering program, limits, problem solving

Procedia PDF Downloads 130
4937 Virtual Life: Fashion, Expression, and Identity in the Digital World

Authors: Elizabeth Bourgeois

Abstract:

During social distancing, fashion and self-expression have been pushed further into virtual environments. In VR spaces, identities can be curated easily, untethered from the necessities of life and work. Personal styles reach a wider audience and follow new rules. Digital platforms leave some, but not all, 'real world' clothing constraints behind. Virtual aesthetics are set by the user and the software. Gen Z is a native user, applying face filters on Instagram and Snapchat and styling outfits and skins in apps like Gacha Life, Roblox, and Fortnite. These games cultivate space for community and personal style. Loosely tied to human forms, each app has physical aesthetics, with clear vernacular dress defining it. There are ecosystems of makers, consumers, and critics. Designer-modelers create original assets, brands, and luxury items. Fashion and beauty are ephemeral but always reflect the idealization of form and self. Online communities have already established new beauty ideals that impact live fashion trends. Fashion houses develop AR filters, gaming hairstyles challenge real-world colorists, and musicians perform virtual concerts in their avatar forms. In these times, social media and gaming communities promote the expression of public identity. The online dress is no longer tied to 'real' bodies or cloth. In virtual worlds, there are still tribes, status symbols, gender identities, and roles, but free of fabric, form, and static social structure, there is room for fantastic invention.

Keywords: virtual reality, fashion, Gen Z, social media, gaming

Procedia PDF Downloads 137
4936 Low-Cost Embedded Biometric System Based on Fingervein Modality

Authors: Randa Boukhris, Alima Damak, Dorra Sellami

Abstract:

Fingervein biometric authentication is one of the most popular and accurate technologies. However, low cost embedded solution is still an open problem. In this paper, a real-time implementation of fingervein recognition process embedded in Raspberry-Pi has been proposed. The use of Raspberry-Pi reduces overall system cost and size while allowing an easy user interface. Implementation of a target technology has guided to opt some specific parallel and simple processing algorithms. In the proposed system, we use four structural directional kernel elements for filtering finger vein images. Then, a Top-Hat and Bottom-Hat kernel filters are used to enhance the visibility and the appearance of venous images. For feature extraction step, a simple Local Directional Code (LDC) descriptor is applied. The proposed system presents an Error Equal Rate (EER) and Identification Rate (IR), respectively, equal to 0.02 and 98%. Furthermore, experimental results show that real-time operations have good performance.

Keywords: biometric, Bottom-Hat, Fingervein, LDC, Rasberry-Pi, ROI, Top-Hat

Procedia PDF Downloads 205
4935 Real-Time Working Environment Risk Analysis with Smart Textiles

Authors: Jose A. Diaz-Olivares, Nafise Mahdavian, Farhad Abtahi, Kaj Lindecrantz, Abdelakram Hafid, Fernando Seoane

Abstract:

Despite new recommendations and guidelines for the evaluation of occupational risk assessments and their prevention, work-related musculoskeletal disorders are still one of the biggest causes of work activity disruption, productivity loss, sick leave and chronic work disability. It affects millions of workers throughout Europe, with a large-scale economic and social burden. These specific efforts have failed to produce significant results yet, probably due to the limited availability and high costs of occupational risk assessment at work, especially when the methods are complex, consume excessive resources or depend on self-evaluations and observations of poor accuracy. To overcome these limitations, a pervasive system of risk assessment tools in real time has been developed, which has the characteristics of a systematic approach, with good precision, usability and resource efficiency, essential to facilitate the prevention of musculoskeletal disorders in the long term. The system allows the combination of different wearable sensors, placed on different limbs, to be used for data collection and evaluation by a software solution, according to the needs and requirements in each individual working environment. This is done in a non-disruptive manner for both the occupational health expert and the workers. The creation of this solution allows us to attend different research activities that require, as an essential starting point, the recording of data with ergonomic value of very diverse origin, especially in real work environments. The software platform is here presented with a complimentary smart clothing system for data acquisition, comprised of a T-shirt containing inertial measurement units (IMU), a vest sensorized with textile electronics, a wireless electrocardiogram (ECG) and thoracic electrical bio-impedance (TEB) recorder and a glove sensorized with variable resistors, dependent on the angular position of the wrist. The collected data is processed in real-time through a mobile application software solution, implemented in commercially available Android-based smartphones and tablet platforms. Based on the collection of this information and its analysis, real-time risk assessment and feedback about postural improvement is possible, adapted to different contexts. The result is a tool which provides added value to ergonomists and occupational health agents, as in situ analysis of postural behavior can assist in a quantitative manner in the evaluation of work techniques and the occupational environment.

Keywords: ergonomics, mobile technologies, risk assessment, smart textiles

Procedia PDF Downloads 119
4934 Peril´s Environment of Energetic Infrastructure Complex System, Modelling by the Crisis Situation Algorithms

Authors: Jiří F. Urbánek, Alena Oulehlová, Hana Malachová, Jiří J. Urbánek Jr.

Abstract:

Crisis situations investigation and modelling are introduced and made within the complex system of energetic critical infrastructure, operating on peril´s environments. Every crisis situations and perils has an origin in the emergency/ crisis event occurrence and they need critical/ crisis interfaces assessment. Here, the emergency events can be expected - then crisis scenarios can be pre-prepared by pertinent organizational crisis management authorities towards their coping; or it may be unexpected - without pre-prepared scenario of event. But the both need operational coping by means of crisis management as well. The operation, forms, characteristics, behaviour and utilization of crisis management have various qualities, depending on real critical infrastructure organization perils, and prevention training processes. An aim is always - better security and continuity of the organization, which successful obtainment needs to find and investigate critical/ crisis zones and functions in critical infrastructure organization models, operating in pertinent perils environment. Our DYVELOP (Dynamic Vector Logistics of Processes) method is disposables for it. Here, it is necessary to derive and create identification algorithm of critical/ crisis interfaces. The locations of critical/ crisis interfaces are the flags of crisis situation in organization of critical infrastructure models. Then, the model of crisis situation will be displayed at real organization of Czech energetic crisis infrastructure subject in real peril environment. These efficient measures are necessary for the infrastructure protection. They will be derived for peril mitigation, crisis situation coping and for environmentally friendly organization survival, continuity and its sustainable development advanced possibilities.

Keywords: algorithms, energetic infrastructure complex system, modelling, peril´s environment

Procedia PDF Downloads 403
4933 Problems Arising in Visual Perception

Authors: K. A. Tharanga, K. H. H. Damayanthi

Abstract:

Perception is an epistemological concept discussed in Philosophy. Perception, in other word, vision, is one of the ways that human beings get empirical knowledge after five senses. However, we face innumerable problems when achieving knowledge from perception, and therefore the knowledge gained through perception is uncertain. what we see in the external world is not real. These are the major issues that we face when receiving knowledge through perception. Sometimes there is no physical existence of what we really see. In such cases, the perception is relative. The following frames will be taken into consideration when perception is analyzed illusions and delusions, the figure of a physical object, appearance and the reality of a physical object, time factor, and colour of a physical object.seeing and knowing become vary according to the above conceptual frames. We cannot come to a proper conclusion of what we see in the empirical world. Because the things that we see are not really there. Hence the scientific knowledge which is gained from observation is doubtful. All the factors discussed in science remain in the physical world. There is a leap from ones existence to the existence of a world outside his/her mind. Indeed, one can suppose that what he/she takes to be real is just anmassive deception. However, depending on the above facts, if someone begins to doubt about the whole world, it is unavoidable to become his/her view a scepticism or nihilism. This is a certain reality.

Keywords: empirical, perception, sceptisism, nihilism

Procedia PDF Downloads 95
4932 Temporal Fixed Effects: The Macroeconomic Implications on Industry Return

Authors: Mahdy Elhusseiny, Richard Gearhart, Mariam Alyammahi

Abstract:

In this study we analyse the impact of a number of major macroeconomic variables on industry-specific excess rates of return. In later specifications, we include time and recession fixed effects, to potentially capture time-specific trends that may have been changing over our panel. We have a number of results that bear mentioning. Seasonal and temporal factors found to have very large role in sector-specific excess returns. Increases in M1(money supply) decreases bank, insurance, real estate, and telecommunications, while increases industrial and transportation excess returns. The results indicate that the market return increases every sector-specific rate of return. The 2007 to 2009 recession significantly reduced excess returns in the bank, real estate, and transportation sectors.

Keywords: macroeconomic factors, industry returns, fixed effects, temporal factors

Procedia PDF Downloads 76
4931 Exploring the Potential of Phase Change Materials in Construction Environments

Authors: A. Ait Ahsene F., B. Boughrara S.

Abstract:

The buildings sector accounts for a significant portion of global energy consumption, with much of this energy used to heat and cool indoor spaces. In this context, the integration of innovative technologies such as phase change materials (PCM) holds promising potential to improve the energy efficiency and thermal comfort of buildings. This research topic explores the benefits and challenges associated with the use of PCMs in buildings, focusing on their ability to store and release thermal energy to regulate indoor temperature. We investigated the different types of PCM available, their thermal properties, and their potential applications in various climate zones and building types. To evaluate and compare the performance of PCMs, our methodology includes a series of laboratory and field experiments. In the laboratory, we measure the thermal storage capacity, melting and solidification temperatures, latent heat, and thermal conductivity of various PCMs. These measurements make it possible to quantify the capacity of each PCM to store and release thermal energy, as well as its capacity to transfer this energy through the construction materials. Additionally, field studies are conducted to evaluate the performance of PCMs in real-world environments. We install PCM systems in real buildings and monitor their operation over time, measuring energy savings, occupant thermal comfort, and material durability. These empirical data allow us to compare the effectiveness of different types of PCMs under real-world use conditions. By combining the results of laboratory and field experiments, we provide a comprehensive analysis of the advantages and limitations of PCMs in buildings, as well as recommendations for their effective application in practice.

Keywords: energy saving, phase change materials, material sustainability, buildings sector

Procedia PDF Downloads 43