Search results for: arts based research
39586 Software Component Identification from Its Object-Oriented Code: Graph Metrics Based Approach
Authors: Manel Brichni, Abdelhak-Djamel Seriai
Abstract:
Systems are increasingly complex. To reduce their complexity, an abstract view of the system can simplify its development. To overcome this problem, we propose a method to decompose systems into subsystems while reducing their coupling. These subsystems represent components. Consisting of an existing object-oriented systems, the main idea of our approach is based on modelling as graphs all entities of an oriented object source code. Such modelling is easy to handle, so we can apply restructuring algorithms based on graph metrics. The particularity of our approach consists in integrating in addition to standard metrics, such as coupling and cohesion, some graph metrics giving more precision during the components identication. To treat this problem, we relied on the ROMANTIC approach that proposed a component-based software architecture recovery from an object oriented system.Keywords: software reengineering, software component and interfaces, metrics, graphs
Procedia PDF Downloads 50439585 The Effect of Acute Consumption of a Nutritional Supplement Derived from Vegetable Extracts Rich in Nitrate on Athletic Performance
Authors: Giannis Arnaoutis, Dimitra Efthymiopoulou, Maria-Foivi Nikolopoulou, Yannis Manios
Abstract:
AIM: Nitrate-containing supplements have been used extensively as ergogenic in many sports. However, extract fractions from plant-based nutritional sources high in nitrate and their effect on athletic performance, has not been systematically investigated. The purpose of the present study was to examine the possible effect of acute consumption of a “smart mixture” from beetroot and rocket on exercise capacity. MATERIAL & METHODS: 12 healthy, nonsmoking, recreationally active, males (age: 25±4 years, % fat: 15.5±5.7, Fat Free Mass: 65.8±5.6 kg, VO2 max: 45.46.1 mL . kg -1 . min -1) participated in a double-blind, placebo-controlled trial study, in a randomized and counterbalanced order. Eligibility criteria for participation in this study included normal physical examination, and absence of any metabolic, cardiovascular, or renal disease. All participants completed a time to exhaustion cycling test at 75% of their maximum power output, twice. The subjects consumed either capsules containing 360 mg of nitrate in total or placebo capsules, in the morning, under fasted state. After 3h of passive recovery the performance test followed. Blood samples were collected upon arrival of the participants and 3 hours after the consumption of the corresponding capsules. Time until exhaustion, pre- and post-test lactate concentrations, and rate of perceived exertion for the same time points were assessed. RESULTS: Paired-sample t-test analysis found a significant difference in time to exhaustion between the trial with the nitrate consumption versus placebo [16.1±3.0 Vs 13.5±2.6 min, p=0.04] respectively. No significant differences were observed for the concentrations of lactic acid as well as for the values in the Borg scale between the two trials (p>0.05). CONCLUSIONS: Based on the results of the present study, it appears that a nutritional supplement derived from vegetable extracts rich in nitrate, improves athletic performance in recreationally active young males. However, the precise mechanism is not clear and future studies are needed. Acknowledgment: This research has been co‐financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code:T2EDK-00843).Keywords: sports performance, ergogenic supplements, nitrate, extract fractions
Procedia PDF Downloads 7439584 Optimization Query Image Using Search Relevance Re-Ranking Process
Authors: T. G. Asmitha Chandini
Abstract:
Web-based image search re-ranking, as an successful method to get better the results. In a query keyword, the first stair is store the images is first retrieve based on the text-based information. The user to select a query keywordimage, by using this query keyword other images are re-ranked based on their visual properties with images.Now a day to day, people projected to match images in a semantic space which is used attributes or reference classes closely related to the basis of semantic image. though, understanding a worldwide visual semantic space to demonstrate highly different images from the web is difficult and inefficient. The re-ranking images, which automatically offline part learns dissimilar semantic spaces for different query keywords. The features of images are projected into their related semantic spaces to get particular images. At the online stage, images are re-ranked by compare their semantic signatures obtained the semantic précised by the query keyword image. The query-specific semantic signatures extensively improve both the proper and efficiency of image re-ranking.Keywords: Query, keyword, image, re-ranking, semantic, signature
Procedia PDF Downloads 55539583 Child Molesters’ Perceptions of Their Abusive Behavior in a Greek Prison
Authors: Polychronis Voultsos, Theodora Pandelidou, Alexandra K. Tsaroucha
Abstract:
Aim: To explore child molesters' perceptions of their sexually offensive behavior in Greece. To our knowledge, there is a relative research gap on this topic. Method: A prospective qualitative study using in-depth interviews with eight child molesters who were convicted and imprisoned in a Greek prison. The research was conducted in May 2022. Results: Child molesters' cognitive distortions including justifications, rationalizations and minimizations emerged from our data analysis (content analysis). Importantly, child molesters. adopted a particularly daring ‘role reversal’. Participants reported themselves as being ‘victims’. They said that the children (namely, their victims) were the ones who made the first move and got them in the mood for having sex with the children. Furthermore, we discuss our results in the context of the existing international academic literature on the area of this research. Conclusions: Child molesters' different cognitive distortions emerged from our data analysis, with ‘role reversal’ being prevalent.Keywords: child molesters, sex offenders, cognitive distortions, Greece
Procedia PDF Downloads 13039582 A Content Analysis of Corporate Sustainability Performance and Business Excellence Models
Authors: Kari M. Solomon
Abstract:
Companies with a culture accepting of change management and performance excellence are better suited to determine their sustainability performance and impacts. A mature corporate culture supportive of performance excellence is better positioned to integrate sustainability management tools into their standard business strategy. Companies use various sustainability management tools and reporting standards to communicate levels of sustainability performance to their stakeholders, more often focusing on shareholders and investors. A research gap remains in understanding how companies adapt business excellence models to define corporate sustainability performance. A content analysis of medium-sized enterprises using corporate sustainability reports and business excellence models reveals the challenges and opportunities of reporting sustainability performance in the context of organizational excellence. The outcomes of this content analysis contribute knowledge on the resources needed for companies to build sustainability performance management systems integral to existing management systems. The findings of this research inform academic research areas of corporate sustainability performance, the business community contributing to sustainable development initiatives, and integrating sustainable development issues into business excellence models. There are potential research links between sustainability performance management and the alignment of the United Nations Sustainable Development Goals (UN SDGs) when organizations promote a culture of performance or business excellence.Keywords: business excellence, corporate sustainability, performance excellence, sustainability performance
Procedia PDF Downloads 18739581 Marketing and Business Intelligence and Their Impact on Products and Services Through Understanding Based on Experiential Knowledge of Customers in Telecommunications Companies
Authors: Ali R. Alshawawreh, Francisco Liébana-Cabanillas, Francisco J. Blanco-Encomienda
Abstract:
Collaboration between marketing and business intelligence (BI) is crucial in today's ever-evolving business landscape. These two domains play pivotal roles in molding customers' experiential knowledge. Marketing insights offer valuable information regarding customer needs, preferences, and behaviors. Conversely, BI facilitates data-driven decision-making, leading to heightened operational efficiency, product quality, and customer satisfaction. Customer experiential knowledge (CEK) encompasses customers' implicit comprehension of consumption experiences influenced by diverse factors, including social and cultural influences. This study primarily focuses on telecommunications companies in Jordan, scrutinizing how experiential customer knowledge mediates the relationship between marketing intelligence and business intelligence. Drawing on theoretical frameworks such as the resource-based view (RBV) and service-dominant logic (SDL), the research aims to comprehend how organizations utilize their resources, particularly knowledge, to foster Evolution. Employing a quantitative research approach, the study collected and analyzed primary data to explore hypotheses. Structural equation modeling (SEM) facilitated by Smart PLS software evaluated the relationships between the constructs, followed by mediation analysis to assess the indirect associations in the model. The study findings offer insights into the intricate dynamics of organizational Creation, uncovering the interconnected relationships between business intelligence, customer experiential knowledge-based innovation (CEK-DI), marketing intelligence (MI), and product and service innovation (PSI), underscoring the pivotal role of advanced intelligence capabilities in developing innovative practices rooted in a profound understanding of customer experiences. Furthermore, the positive impact of BI on PSI reaffirms the significance of data-driven decision-making in shaping the innovation landscape. The significant impact of CEK-DI on PSI highlights the critical role of customer experiences in driving an organization. Companies that actively integrate customer insights into their opportunity creation processes are more likely to create offerings that match customer expectations, which drives higher levels of product and service sophistication. Additionally, the positive and significant impact of MI on CEK-DI underscores the critical role of market insights in shaping evolutionary strategies. While the relationship between MI and PSI is positive, the slightly weaker significance level indicates a subtle association, suggesting that while MI contributes to the development of ideas, In conclusion, the study emphasizes the fundamental role of intelligence capabilities, especially artificial intelligence, emphasizing the need for organizations to leverage market and customer intelligence to achieve effective and competitive innovation practices. Collaborative efforts between marketing and business intelligence serve as pivotal drivers of development, influencing customer experiential knowledge and shaping organizational strategies and practices. Future research could adopt longitudinal designs and gather data from various sectors to offer broader insights. Additionally, the study focuses on the effects of marketing intelligence, business intelligence, customer experiential knowledge, and innovation, but other unexamined variables may also influence innovation processes. Future studies could investigate additional factors, mediators, or moderators, including the role of emerging technologies like AI and machine learning in driving innovation.Keywords: marketing intelligence, business intelligence, product, customer experiential knowledge-driven innovation
Procedia PDF Downloads 3839580 The Research about Environmental Assessment Index of Brownfield Redevelopment in Taiwan - A Case Study on Formosa Chemicals and Fibre Corporation, Changhua Branch
Authors: Yang, Min-chih, Shih-Jen Feng, Bo-Tsang Li
Abstract:
The concept of “Brownfield” has been developed for nearly 35 years since it was put forward in 《Comprehensive Environmental Response, Compensation, and Liability Act, CERCLA》of USA in 1980 for solving the problem of soil contamination of those old industrial lands, and later, many countries have put forward relevant policies and researches continuously. But the related concept in Taiwan, a country has developed its industry for 60 years, is still in its infancy. This leads to the slow development of Brownfield related research and policy in Taiwan. When it comes to build the foundation of Brownfield development, we have to depend on the related experience and research of other countries. They are four aspects about Brownfield: 1. Contaminated Land; 2. Derelict Land; 3. Vacant Land; 4. Previously Development Land. This study will focus on and deeply investigate the Vacant land and contaminated land.Keywords: brownfield, industrial land, redevelopment, assessment index
Procedia PDF Downloads 46839579 Mindfulness, Acceptance and Meaning in Life for Adults with Cancer
Authors: Fernanda F. Zimmermann, Beverley Burrell, Jennifer Jordan
Abstract:
Introduction: Supportive care for people affected by cancer is recognised as a priority for research but yet there is little solid evidence of the effectiveness of psychological treatments for those with advanced cancer. The literature suggests that mindfulness-based interventions may be acceptable and beneficial for this population. This study aims to develop a mindfulness intervention to provide emotional support for advanced cancer population. The treatment package includes mindfulness meditation, developing an acceptance attitude and reflections on meaning in life. Methods: This study design is a one-group pre-post test with a mixed methods approach. Participants are recruited through public and private hospitals in Christchurch, NZ. Quantitative measures are the Acceptance and Action Questionnaire-II, Mindful Coping Scale and, the Meaning in Life Questionnaire. Qualitative semi-structured interviews enquire about emotional support before and after the diagnosis, participants’ thoughts about meaning in life, expectations and reflections on the mindfulness training. Qualitative data will be analysed using thematic analysis. Treatment consists of one to one 30 minutes session weekly for 4 weeks using a pre-recorded CD/podcast of the mindfulness training. This research is part of the presenter’s PhD study. Findings: This project is currently underway. The presenter will provide preliminary data on the acceptability of the mindfulness training package being delivered to participants along with the recruitment strategies. We anticipate that this novel treatment used as a self-management tool will reduce psychological distress and enable better coping for patients with advanced cancer.Keywords: acceptance, cancer, meaning in life, mindfulness
Procedia PDF Downloads 35839578 The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace Ethylene-Propylene-Diene Monomer Rubber
Authors: S. Dikmen Kucuk, A. Tozluoglu, Y. Guner
Abstract:
In recent years, petroleum-based polymers began to be limited due to effects on human and environmental point of view in many countries. Thus, organic-based biodegradable materials have attracted much interest in the composite industry because of environmental concerns. As a result of this, it has been asked that inorganic and petroleum-based materials should be reduced and altered with biodegradable materials. In this point, in this study, it is aimed to investigate the potential of use of TEMPO (2,2,6,6- tetramethylpiperidine 1-oxyl)-mediated oxidation nano-fibrillated cellulose instead of EPDM (ethylene-propylene-diene monomer) rubber, which is a petroleum-based material. Thus, the exchange of petroleum-based EPDM rubber with organic based cellulose nanofibers, which are environmentally friendly (green) and biodegradable, will be realized. The effect of tempo-oxidized cellulose nanofibers (TCNF) instead of EPDM rubber was analyzed by rheological, mechanical, chemical, thermal and aging analyses. The aged surfaces were visually scrutinized and surface morphological changes were examined via scanning electron microscopy (SEM). The results obtained showed that TEMPO oxidation nano-fibrillated cellulose can be used at an amount of 1.0 and 2.2 phr resulting the values stay within tolerance according to customer standard and without any chemical degradation, crack, colour change or staining.Keywords: EPDM, cellulose, green materials, nanofibrillated cellulose, TCNF, tempo-oxidized nanofiber
Procedia PDF Downloads 11539577 The Impact of Social Interaction, Wellbeing and Mental Health on Student Achievement During COVID-19 Lockdown in Saudi Arabia
Authors: Shatha Ahmad Alharthi
Abstract:
Prior research suggests that reduced social interaction can negatively affect well-being and impair mental health (e.g., depression and anxiety), resulting in lower academic performance. The COVID-19 pandemic has significantly limited social interaction among Saudi Arabian school children since the government closed schools and implemented lockdown restrictions to reduce the spread of the disease. These restrictions have resulted in prolonged remote learning for middle school students with unknown consequences for perceived academic performance, mental health, and well-being. This research project explores how middle school Saudi students’ current remote learning practices affect their mental health (e.g., depression and anxiety) and well-being during the lockdown. Furthermore, the study will examine the association between social interaction, mental health, and well-being pertaining to students’ perceptions of their academic achievement. Research findings could lead to a better understanding of the role of lockdown on depression, anxiety, well-being and perceived academic performance. Research findings may also inform policy-makers or practitioners (e.g., teachers and school leaders) about the importance of facilitating increased social interactions in remote learning situations and help to identify important factors to consider when seeking to re-integrate students into a face-to-face classroom setting. Potential implications for future educational research include exploring remote learning interventions targeted at bolstering students’ mental health and academic achievement during periods of remote learning.Keywords: depression, anxiety, academic performance, social interaction
Procedia PDF Downloads 12239576 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing
Authors: Tolulope Aremu
Abstract:
This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving
Procedia PDF Downloads 4239575 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods
Authors: Mohammad Arabi
Abstract:
The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.Keywords: electric motor, fault detection, frequency features, temporal features
Procedia PDF Downloads 5639574 Evaluation of Reliability Flood Control System Based on Uncertainty of Flood Discharge, Case Study Wulan River, Central Java, Indonesia
Authors: Anik Sarminingsih, Krishna V. Pradana
Abstract:
The failure of flood control system can be caused by various factors, such as not considering the uncertainty of designed flood causing the capacity of the flood control system is exceeded. The presence of the uncertainty factor is recognized as a serious issue in hydrological studies. Uncertainty in hydrological analysis is influenced by many factors, starting from reading water elevation data, rainfall data, selection of method of analysis, etc. In hydrological modeling selection of models and parameters corresponding to the watershed conditions should be evaluated by the hydraulic model in the river as a drainage channel. River cross-section capacity is the first defense in knowing the reliability of the flood control system. Reliability of river capacity describes the potential magnitude of flood risk. Case study in this research is Wulan River in Central Java. This river occurring flood almost every year despite some efforts to control floods such as levee, floodway and diversion. The flood-affected areas include several sub-districts, mainly in Kabupaten Kudus and Kabupaten Demak. First step is analyze the frequency of discharge observation from Klambu weir which have time series data from 1951-2013. Frequency analysis is performed using several distribution frequency models such as Gumbel distribution, Normal, Normal Log, Pearson Type III and Log Pearson. The result of the model based on standard deviation overlaps, so the maximum flood discharge from the lower return periods may be worth more than the average discharge for larger return periods. The next step is to perform a hydraulic analysis to evaluate the reliability of river capacity based on the flood discharge resulted from several methods. The selection of the design flood discharge of flood control system is the result of the method closest to bankfull capacity of the river.Keywords: design flood, hydrological model, reliability, uncertainty, Wulan river
Procedia PDF Downloads 29739573 Network Analysis of Genes Involved in the Biosynthesis of Medicinally Important Naphthodianthrone Derivatives of Hypericum perforatum
Authors: Nafiseh Noormohammadi, Ahmad Sobhani Najafabadi
Abstract:
Hypericins (hypericin and pseudohypericin) are natural napthodianthrone derivatives produced by Hypericum perforatum (St. John’s Wort), which have many medicinal properties such as antitumor, antineoplastic, antiviral, and antidepressant activities. Production and accumulation of hypericin in the plant are influenced by both genetic and environmental conditions. Despite the existence of different high-throughput data on the plant, genetic dimensions of hypericin biosynthesis have not yet been completely understood. In this research, 21 high-quality RNA-seq data on different parts of the plant were integrated into metabolic data to reconstruct a coexpression network. Results showed that a cluster of 30 transcripts was correlated with total hypericin. The identified transcripts were divided into three main groups based on their functions, including hypericin biosynthesis genes, transporters, detoxification genes, and transcription factors (TFs). In the biosynthetic group, different isoforms of polyketide synthase (PKSs) and phenolic oxidative coupling proteins (POCPs) were identified. Phylogenetic analysis of protein sequences integrated into gene expression analysis showed that some of the POCPs seem to be very important in the biosynthetic pathway of hypericin. In the TFs group, six TFs were correlated with total hypericin. qPCR analysis of these six TFs confirmed that three of them were highly correlated. The identified genes in this research are a rich resource for further studies on the molecular breeding of H. perforatum in order to obtain varieties with high hypericin production.Keywords: hypericin, St. John’s Wort, data mining, transcription factors, secondary metabolites
Procedia PDF Downloads 9739572 The Attitude towards Sustainable Development Issues among Malaysian Engineering Undergraduates
Authors: Balamuralithara Balakrishnan
Abstract:
This paper reports the findings of the perception and attitude towards Sustainable Development among Malaysian undergraduates. The study was carried out involving 86 engineering undergraduates from three universities in Malaysia. This research was conducted based on a survey whereby the respondents were given a questionnaire to gauge their attitude towards sustainable development. The output of the analyses showed that the respondents have an appropriate attitude towards the sustainability issues expect for economic and social equality aspects. These findings suggest that the engineering educators involved in sustainable development education need to educate undergraduate students on this important issue. This investigation serves as a cornerstone to which the current paradigm of sustainable development education can be examined for further improvement by related stakeholders.Keywords: sustainable development, engineering education, Malaysia, attitude
Procedia PDF Downloads 16139571 An Optimal Matching Design Method of Space-Based Optical Payload for Typical Aerial Target Detection
Authors: Yin Zhang, Kai Qiao, Xiyang Zhi, Jinnan Gong, Jianming Hu
Abstract:
In order to effectively detect aerial targets over long distances, an optimal matching design method of space-based optical payload is proposed. Firstly, main factors affecting optical detectability of small targets under complex environment are analyzed based on the full link of a detection system, including band center, band width and spatial resolution. Then a performance characterization model representing the relationship between image signal-to-noise ratio (SCR) and the above influencing factors is established to describe a detection system. Finally, an optimal matching design example is demonstrated for a typical aerial target by simulating and analyzing its SCR under different scene clutter coupling with multi-scale characteristics, and the optimized detection band and spatial resolution are presented. The method can provide theoretical basis and scientific guidance for space-based detection system design, payload specification demonstration and information processing algorithm optimization.Keywords: space-based detection, aerial targets, optical system design, detectability characterization
Procedia PDF Downloads 17139570 Neurosciences in Entrepreneurship: The Multitasking Case in Favor of Social Entrepreneurship Innovation
Authors: Berger Aida
Abstract:
Social entrepreneurship has emerged as an active area of practice and research within the last three decades and has called for a focus on Social Entrepreneurship innovation. Areas such as academics, practitioners , institutions or governments have placed Social Entrepreneurship on the priority list of reflexion and action. It has been accepted that Social entrepreneurship (SE) shares large similarities with its parent, Traditional Entrepreneurship (TE). SE has grown over the past ten years exploring entrepreneurial cognition and the analysis of the ways of thinking of entrepreneurs. The research community believes that value exists in grounding entrepreneurship in neuroscience and notes that SE, like Traditional Entrepreneurship, needs to undergo efforts in clarification, definition and differentiation. Moreover, gaps in SE research call for integrative multistage and multilevel framework for further research. The cognitive processes underpinning entrepreneurial action are similar for SE and TE even if Social Entrepreneurship orientation shows an increased empathy value. Theoretically, there is a need to develop sound models of how to process functions and how to work more effectively as entrepreneurs and research on efficiency improvement calls for the analysis of the most common practices in entrepreneurship. Multitasking has been recognized as a daily and unavoidable habit of entrepreneurs. Hence, we believe in the need of analyzing the multiple task phenomena as a methodology for skill acquisition. We will conduct our paper including Social Entrepreneurship within the wider spectrum of Traditional Entrepreneurship, for the purpose of simplifying the neuroscientific lecture of the entrepreneurial cognition. A question to be inquired is to know if there is a way of developing multitasking habits in order to improve entrepreneurial skills such as speed of information processing , creativity and adaptability . Nevertheless, the direct link between the neuroscientific approach to multitasking and entrepreneurship effectiveness is yet to be uncovered. That is why an extensive Literature Review on Multitasking is a propos.Keywords: cognitive, entrepreneurial, empathy, multitasking
Procedia PDF Downloads 17539569 The Quotation-Based Algorithm for Distributed Decision Making
Authors: Gennady P. Ginkul, Sergey Yu. Soloviov
Abstract:
The article proposes to use so-called "quotation-based algorithm" for simulation of decision making process in distributed expert systems and multi-agent systems. The idea was adopted from the techniques for group decision-making. It is based on the assumption that one expert system to perform its logical inference may use rules from another expert system. The application of the algorithm was demonstrated on the example in which the consolidated decision is the decision that requires minimal quotation.Keywords: backward chaining inference, distributed expert systems, group decision making, multi-agent systems
Procedia PDF Downloads 37939568 Historical Development of Negative Emotive Intensifiers in Hungarian
Authors: Martina Katalin Szabó, Bernadett Lipóczi, Csenge Guba, István Uveges
Abstract:
In this study, an exhaustive analysis was carried out about the historical development of negative emotive intensifiers in the Hungarian language via NLP methods. Intensifiers are linguistic elements which modify or reinforce a variable character in the lexical unit they apply to. Therefore, intensifiers appear with other lexical items, such as adverbs, adjectives, verbs, infrequently with nouns. Due to the complexity of this phenomenon (set of sociolinguistic, semantic, and historical aspects), there are many lexical items which can operate as intensifiers. The group of intensifiers are admittedly one of the most rapidly changing elements in the language. From a linguistic point of view, particularly interesting are a special group of intensifiers, the so-called negative emotive intensifiers, that, on their own, without context, have semantic content that can be associated with negative emotion, but in particular cases, they may function as intensifiers (e.g.borzasztóanjó ’awfully good’, which means ’excellent’). Despite their special semantic features, negative emotive intensifiers are scarcely examined in literature based on large Historical corpora via NLP methods. In order to become better acquainted with trends over time concerning the intensifiers, The exhaustively analysed a specific historical corpus, namely the Magyar TörténetiSzövegtár (Hungarian Historical Corpus). This corpus (containing 3 millions text words) is a collection of texts of various genres and styles, produced between 1772 and 2010. Since the corpus consists of raw texts and does not contain any additional information about the language features of the data (such as stemming or morphological analysis), a large amount of manual work was required to process the data. Thus, based on a lexicon of negative emotive intensifiers compiled in a previous phase of the research, every occurrence of each intensifier was queried, and the results were stored in a separate data frame. Then, basic linguistic processing (POS-tagging, lemmatization etc.) was carried out automatically with the ‘magyarlanc’ NLP-toolkit. Finally, the frequency and collocation features of all the negative emotive words were automatically analyzed in the corpus. Outcomes of the research revealed in detail how these words have proceeded through grammaticalization over time, i.e., they change from lexical elements to grammatical ones, and they slowly go through a delexicalization process (their negative content diminishes over time). What is more, it was also pointed out which negative emotive intensifiers are at the same stage in this process in the same time period. Giving a closer look to the different domains of the analysed corpus, it also became certain that during this process, the pragmatic role’s importance increases: the newer use expresses the speaker's subjective, evaluative opinion at a certain level.Keywords: historical corpus analysis, historical linguistics, negative emotive intensifiers, semantic changes over time
Procedia PDF Downloads 23839567 Assessing the Walkability and Urban Design Qualities of Campus Streets
Authors: Zhehao Zhang
Abstract:
Walking has become an indispensable and sustainable way of travel for college students in their daily lives; campus street is an important carrier for students to walk and take part in a variety of activities, improving the walkability of campus streets plays an important role in optimizing the quality of campus space environment, promoting the campus walking system and inducing multiple walking behaviors. The purpose of this paper is to explore the effect of campus layout, facility distribution, and location site selection on the walkability of campus streets, and assess the street design qualities from the elements of imageability, enclosure, complexity, transparency, and human scale, and further examines the relationship between street-level urban design perceptual qualities and walkability and its effect on walking behavior in the campus. Taking Tianjin University as the research object, this paper uses the optimized walk score method based on walking frequency, variety, and distance to evaluate the walkability of streets from a macro perspective and measures the urban design qualities in terms of the calculation of street physical environment characteristics, as well as uses behavior annotation and street image data to establish temporal and spatial behavior database to analyze walking activity from the microscopic view. In addition, based on the conclusions, the improvement and design strategy will be presented from the aspects of the built walking environment, street vitality, and walking behavior.Keywords: walkability, streetscapes, pedestrian activity, walk score
Procedia PDF Downloads 14739566 Consumer Based Online Authenticity: An Exploratory Approach: Case of Terroir Product of Souss Massa Region, Morocco
Authors: Fatima Ezzahra Ouboutaib, Abdellatif Aitheda, Soumiya Mekkaoui
Abstract:
Marketing research is starting to focus on authenticity to position an offer, especially local products. However, its use remains more problematic with the internet for cooperatives. This paper investigates how digitalization impacts the satisfaction of the quest for authenticity. On the theoretical level, it explains authenticity in online and offline contexts in the postmodernism era. Then, an exploratory qualitative study tries to understand the contribution of digitization to the satisfaction of the search for authenticity. Therefore, cooperatives selling terroir products on the Internet are advised to keep also direct contact which tends to show a traditional manner of production to enhance customers’ perception of terroir product authenticity.Keywords: authenticity, terroir product, online authenticity, postmodernism
Procedia PDF Downloads 14739565 Furnishing Ancillary Alternatives for High Speed Corridors and Pedestrian Crossing: Elevated Cycle Track, an Expedient to Urban Space Prototype in New Delhi
Authors: Suneet Jagdev, Hrishabh Amrodia, Siddharth Menon, Abhishek Singh, Mansi Shivhare
Abstract:
Delhi, the National Capital, has undergone a surge in development rate, consequently engendering an unprecedented increase in population. Over the years the city has transformed into a car-centric infrastructure with high-speed corridors, flyovers and fast lanes. A considerable section of the population is hankering to rehabilitate to the good old cycling days, in order to contribute towards a green environment as well as to maintain their physical well-being. Furthermore, an extant section of Delhi’s population relies on cycles as their primary means of commuting in the city. Delhi has the highest number of cyclists and second highest number of pedestrians in the country. However, the tumultuous problems of unregulated traffic, inadequate space on roads, adverse weather conditions stifle them to opt for cycling. Lately, the city has been facing a conglomeration of problems such as haphazard traffic movement, clogged roads, congestion, pollution, accidents, safety issues, etc. In 1957, Delhi’s cyclists accounted for 36 per cent of trips which dropped down to a mere 4 per cent in 2008. The declining rate is due to unsafe roads and lack of proper cycle lanes. Now as the 10 percent of the city has cycle tracks. There is also a lack of public recreational activities in the city. These conundrums incite the need of a covered elevated cycling bridge track to facilitate the safe and smooth cycle commutation in the city which would also serve the purpose of an alternate urban public space over the cycle bridge reducing the cost as well as the space requirement for the same, developing a user–friendly transportation and public interaction system for urban areas in the city. Based on the archival research methodologies, the following research draws information and extracts records from the data accounts of the Delhi Metro Rail Corporation Ltd. as well as the Centre for Science and Environment, India. This research will predominantly focus on developing a prototype design for high speed elevated bicycle lanes based on different road typologies, which can be replicated with minor variations in similar situations, all across the major cities of our country including the proposed smart cities. Furthermore, how these cycling lanes could be utilized for the place making process accommodating cycle parking and renting spaces, public recreational spaces, food courts as well as convenient shopping facilities with appropriate optimization. How to preserve and increase the share of smooth and safe cycling commute cycling for the routine transportation of the urban community of the polluted capital which has been on a steady decline over the past few decades.Keywords: bicycle track, prototype, road safety, urban spaces
Procedia PDF Downloads 16439564 Diamond-Like Carbon-Based Structures as Functional Layers on Shape-Memory Alloy for Orthopedic Applications
Authors: Piotr Jablonski, Krzysztof Mars, Wiktor Niemiec, Agnieszka Kyziol, Marek Hebda, Halina Krawiec, Karol Kyziol
Abstract:
NiTi alloys, possessing unique mechanical properties such as pseudoelasticity and shape memory effect (SME), are suitable for many applications, including implanthology and biomedical devices. Additionally, these alloys have similar values of elastic modulus to those of human bones, what is very important in orthopedics. Unfortunately, the environment of physiological fluids in vivo causes unfavorable release of Ni ions, which in turn may lead to metalosis as well as allergic reactions and toxic effects in the body. For these reasons, the surface properties of NiTi alloys should be improved to increase corrosion resistance, taking into account biological properties, i.e. excellent biocompatibility. The prospective in this respect are layers based on DLC (Diamond-Like Carbon) structures, which are an attractive solution for many applications in implanthology. These coatings (DLC), usually obtained by PVD (Physical Vapour Deposition) and PA CVD (Plasma Activated Chemical Vapour Deposition) methods, can be also modified by doping with other elements like silicon, nitrogen, oxygen, fluorine, titanium and silver. These methods, in combination with a suitably designed structure of the layers, allow the possibility co-decide about physicochemical and biological properties of modified surfaces. Mentioned techniques provide specific physicochemical properties of substrates surface in a single technological process. In this work, the following types of layers based on DLC structures (incl. Si-DLC or Si/N-DLC) were proposed as prospective and attractive approach in surface functionalization of shape memory alloy. Nitinol substrates were modified in plasma conditions, using RF CVD (Radio Frequency Chemical Vapour Deposition). The influence of plasma treatment on the useful properties of modified substrates after deposition DLC layers doped with silica and/or nitrogen atoms, as well as only pre-treated in O2 NH3 plasma atmosphere in a RF reactor was determined. The microstructure and topography of the modified surfaces were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Furthermore, the atomic structure of coatings was characterized by IR and Raman spectroscopy. The research also included the evaluation of surface wettability, surface energy as well as the characteristics of selected mechanical and biological properties of the layers. In addition, the corrosion properties of alloys after and before modification in the physiological saline were also investigated. In order to determine the corrosion resistance of NiTi in the Ringer solution, the potentiodynamic polarization curves (LSV – Linear Sweep Voltamperometry) were plotted. Furthermore, the evolution of corrosion potential versus immersion time of TiNi alloy in Ringer solution was performed. Based on all carried out research, the usefullness of proposed modifications of nitinol for medical applications was assessed. It was shown, inter alia, that the obtained Si-DLC layers on the surface of NiTi alloy exhibit a characteristic complex microstructure, increased surface development, which is an important aspect in improving the osteointegration of an implant. Furthermore, the modified alloy exhibits biocompatibility, the transfer of the metal (Ni, Ti) to Ringer’s solution is clearly limited.Keywords: bioactive coatings, corrosion resistance, doped DLC structure, NiTi alloy, RF CVD
Procedia PDF Downloads 23839563 A Patent Trend Analysis for Hydrogen Based Ironmaking: Identifying the Technology’s Development Phase
Authors: Ebru Kaymaz, Aslı İlbay Hamamcı, Yakup Enes Garip, Samet Ay
Abstract:
The use of hydrogen as a fuel is important for decreasing carbon emissions. For the steel industry, reducing carbon emissions is one of the most important agendas of recent times globally. Because of the Paris Agreement requirements, European steel industry studies on green steel production. Although many literature reviews have analyzed this topic from technological and hydrogen based ironmaking, there are very few studies focused on patents of decarbonize parts of the steel industry. Hence, this study focus on technological progress of hydrogen based ironmaking and on understanding the main trends through patent data. All available patent data were collected from Questel Orbit. The trend analysis of more than 900 patent documents has been carried out by using Questel Orbit Intellixir to analyze a large number of data for scientific intelligence.Keywords: hydrogen based ironmaking, DRI, direct reduction, carbon emission, steelmaking, patent analysis
Procedia PDF Downloads 14939562 Masquerade and “What Comes Behind Six Is More Than Seven”: Thoughts on Art History and Visual Culture Research Methods
Authors: Osa D Egonwa
Abstract:
In the 21st century, the disciplinary boundaries of past centuries that we often create through mainstream art historical classification, techniques and sources may have been eroded by visual culture, which seems to provide a more inclusive umbrella for the new ways artists go about the creative process and its resultant commodities. Over the past four decades, artists in Africa have resorted to new materials, techniques and themes which have affected our ways of research on these artists and their art. Frontline artists such as El Anatsui, Yinka Shonibare, Erasmus Onyishi are demonstrating that any material is just suitable for artistic expression. Most of times, these materials come with their own techniques/effects and visual syntax: a combination of materials compounds techniques, formal aesthetic indexes, halo effects, and iconography. This tends to challenge the categories and we lean on to view, think and talk about them. This renders our main stream art historical research methods inadequate, thus suggesting new discursive concepts, terms and theories. This paper proposed the Africanist eclectic methods derived from the dual framework of Masquerade Theory and What Comes Behind Six is More Than Seven. This paper shares thoughts/research on art historical methods, terminological re-alignments on classification/source data, presentational format and interpretation arising from the emergent trends in our subject. The outcome provides useful tools to mediate new thoughts and experiences in recent African art and visual culture.Keywords: art historical methods, classifications, concepts, re-alignment
Procedia PDF Downloads 11439561 Determination of the Economic Planning Depth for Assembly Process Planning
Authors: A. Kampker, P. Burggräf, Y. Bäumers
Abstract:
In order to be competitive, companies have to reduce their production costs while meeting increasing quality requirements. Therefore, companies try to plan their assembly processes as detailed as possible. However, increasing product individualization leading to a higher number of variants, smaller batch sizes and shorter product life cycles raise the question to what extent the effort of detailed planning is still justified. An important approach in this field of research is the concept of determining the economic planning depth for assembly process planning based on production specific influencing factors. In this paper, first solution hypotheses as well as a first draft of the resulting method will be presented.Keywords: assembly process planning, economic planning depth, planning benefit, planning effort
Procedia PDF Downloads 50939560 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)
Procedia PDF Downloads 2539559 European and Scandinavian Tourists' Perceptions and Desire to Travel in Ranong Province
Authors: Wipanee Maen-In
Abstract:
The objectives of the research are i) to study the motivations of european and scandinavian tourists who select Ranong province as their destinations ii) to study their perception towards the Ranong Province and iii) to study the visitors’ decision making while visiting Ranong Province. The samples of the study are 220 European and Scandinavian tourists’ visitors at the Ranong by accidental sampling and in clouding online questionnaires for 53 sampling. The data analysis includes Percentage, Frequency and One-way ANOVA. The findings from the research are the motivation level of the visitors is considered prominent, the average score of the motivational factors ranks higher than the average of the pull factors to visit the Ranong province when considering the factors analysis, the research shows that the reason that most tourists visit the Ranong is for relaxation while the purity of the natural mineral hot springs is the most important pull factor.Keywords: European and Scandinavian, Ranong province, tourists’ perceptions, visitors’ decision making
Procedia PDF Downloads 23439558 Characterization of the Dispersion Phenomenon in an Optical Biosensor
Authors: An-Shik Yang, Chin-Ting Kuo, Yung-Chun Yang, Wen-Hsin Hsieh, Chiang-Ho Cheng
Abstract:
Optical biosensors have become a powerful detection and analysis tool for wide-ranging applications in biomedical research, pharmaceuticals and environmental monitoring. This study carried out the computational fluid dynamics (CFD)-based simulations to explore the dispersion phenomenon in the microchannel of a optical biosensor. The predicted time sequences of concentration contours were utilized to better understand the dispersion development occurred in different geometric shapes of microchannels. The simulation results showed the surface concentrations at the sensing probe (with the best performance of a grating coupler) in respect of time to appraise the dispersion effect and therefore identify the design configurations resulting in minimum dispersion.Keywords: CFD simulations, dispersion, microfluidic, optical waveguide sensors
Procedia PDF Downloads 55039557 Assessment of Rangeland Condition in a Dryland System Using UAV-Based Multispectral Imagery
Authors: Vistorina Amputu, Katja Tielboerger, Nichola Knox
Abstract:
Primary productivity in dry savannahs is constraint by moisture availability and under increasing anthropogenic pressure. Thus, considering climate change and the unprecedented pace and scale of rangeland deterioration, methods for assessing the status of such rangelands should be easy to apply, yield reliable and repeatable results that can be applied over large spatial scales. Global and local scale monitoring of rangelands through satellite data and labor-intensive field measurements respectively, are limited in accurately assessing the spatiotemporal heterogeneity of vegetation dynamics to provide crucial information that detects degradation in its early stages. Fortunately, newly emerging techniques such as unmanned aerial vehicles (UAVs), associated miniaturized sensors and improving digital photogrammetric software provide an opportunity to transcend these limitations. Yet, they have not been extensively calibrated in natural systems to encompass their complexities if they are to be integrated for long-term monitoring. Limited research using drone technology has been conducted in arid savannas, for example to assess the health status of this dynamic two-layer vegetation ecosystem. In our study, we fill this gap by testing the relationship between UAV-estimated cover of rangeland functional attributes and field data collected in discrete sample plots in a Namibian dryland savannah along a degradation gradient. The first results are based on a supervised classification performed on the ultra-high resolution multispectral imagery to distinguish between rangeland functional attributes (bare, non-woody, and woody), with a relatively good match to the field observations. Integrating UAV-based observations to improve rangeland monitoring could greatly assist in climate-adapted rangeland management.Keywords: arid savannah, degradation gradient, field observations, narrow-band sensor, supervised classification
Procedia PDF Downloads 143