Search results for: diurnal temperature cycle model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23687

Search results for: diurnal temperature cycle model

18707 Effect of Al2O3 Nanoparticles on Corrosion Behavior of Aluminum Alloy Fabricated by Powder Metallurgy

Authors: Muna Khethier Abbass, Bassma Finner Sultan

Abstract:

In this research the effect of Al2O3 nanoparticles on corrosion behavior of aluminum base alloy(Al-4.5wt%Cu-1.5wt%Mg) has been investigated. Nanocomopsites reinforced with variable contents of 1,3 & 5wt% of Al2O3 nanoparticles were fabricated using powder metallurgy. All samples were prepared from the base alloy powders under the best powder metallurgy processing conditions of 6 hr of mixing time , 450 MPa of compaction pressure and 560°C of sintering temperature. Density and micro hardness measurements, and electrochemical corrosion tests are performed for all prepared samples in 3.5wt%NaCl solution at room temperature using potentiostate instrument. It has been found that density and micro hardness of the nanocomposite increase with increasing of wt% Al2O3 nanoparticles to Al matrix. It was found from Tafel extrapolation method that corrosion rates of the nanocomposites reinforced with alumina nanoparticles were lower than that of base alloy. From results of corrosion test by potentiodynamic cyclic polarization method, it was found the pitting corrosion resistance improves with adding of Al2O3 nanoparticles . It was noticed that the pits disappear and the hysteresis loop disappears also from anodic polarization curve.

Keywords: powder metallurgy, nano composites, Al-Cu-Mg alloy, electrochemical corrosion

Procedia PDF Downloads 461
18706 A Study of the Effects of Temperatures and Optimum pH on the Specific Methane Production of Perennial Ryegrass during Anaerobic Digestion Process under a Discontinuous Daily Feeding Condition

Authors: Uchenna Egwu, Paul Jonathan Sallis

Abstract:

Perennial ryegrass is an abundant renewable lignocellulosic biofuel feedstock for biomethane production through anaerobic digestion (AD). In this study, six anaerobic continuously stirred tank reactors (CSTRs) were set up in three pairs. Each pair of the CSTRs was then used to study the effects of operating temperatures – psychrophilic, mesophilic, and thermophilic, and optimum pH on the specific methane production (SMP) of the ryegrass during AD under discontinuous daily feeding conditions. The reactors were fed at an organic loading rate (OLR) ranging from 1-1.5 kgVS.L⁻¹d⁻¹ and hydraulic residence time, HRT=20 days for 140 days. The pH of the digesters was maintained at the range of 6.8-7.2 using 1 M NH₄HCO₃ solution, but this was replaced with biomass ash-extracts from day 105-140. The results obtained showed that the mean SMP of ryegrass measured between HRT 3 and 4 were 318.4, 425.4 and 335 N L CH₄ kg⁻¹VS.d⁻¹ for the psychrophilic (25 ± 2°C), mesophilic (40 ± 1°C) and thermophilic (60 ± 1°C) temperatures respectively. It was also observed that the buffering ability of the reactors increased with operating temperature, probably due to an increase in the solubility of ammonium bicarbonate (NH₄HCO₃) with temperature. The reactors also achieved a mean VS destruction of 61.9, 68.5 and 63.5%, respectively, which signifies that the mesophilic reactors achieved the highest specific methane production (SMP), while the psychrophilic reactors achieved the lowest. None of the reactors attained steady-state condition due to the discontinuous daily feeding times, and therefore, such feeding practice may not be the most effective for maximum biogas production over long periods of time. The addition of NH₄HCO₃ as supplement provided a good buffering condition in these AD digesters, but the digesters failed in the long run due to inhibition from the accumulation of free ammonia, which later led to decrease in pH, acidification, and souring of the digesters. However, the addition of biomass ash extracts was shown to potentially revive failed AD reactors by providing an adequate buffering and essential trace nutrient supplements necessary for optimal bacterial growth.

Keywords: anaerobic digestion, discontinuous feeding, perennial ryegrass, specific methane production, supplements, temperature

Procedia PDF Downloads 127
18705 Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model

Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes

Abstract:

In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain.

Keywords: mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity

Procedia PDF Downloads 324
18704 A Predictive Model of Supply and Demand in the State of Jalisco, Mexico

Authors: M. Gil, R. Montalvo

Abstract:

Business Intelligence (BI) has become a major source of competitive advantages for firms around the world. BI has been defined as the process of data visualization and reporting for understanding what happened and what is happening. Moreover, BI has been studied for its predictive capabilities in the context of trade and financial transactions. The current literature has identified that BI permits managers to identify market trends, understand customer relations, and predict demand for their products and services. This last capability of BI has been of special concern to academics. Specifically, due to its power to build predictive models adaptable to specific time horizons and geographical regions. However, the current literature of BI focuses on predicting specific markets and industries because the impact of such predictive models was relevant to specific industries or organizations. Currently, the existing literature has not developed a predictive model of BI that takes into consideration the whole economy of a geographical area. This paper seeks to create a predictive model of BI that would show the bigger picture of a geographical area. This paper uses a data set from the Secretary of Economic Development of the state of Jalisco, Mexico. Such data set includes data from all the commercial transactions that occurred in the state in the last years. By analyzing such data set, it will be possible to generate a BI model that predicts supply and demand from specific industries around the state of Jalisco. This research has at least three contributions. Firstly, a methodological contribution to the BI literature by generating the predictive supply and demand model. Secondly, a theoretical contribution to BI current understanding. The model presented in this paper incorporates the whole picture of the economic field instead of focusing on a specific industry. Lastly, a practical contribution might be relevant to local governments that seek to improve their economic performance by implementing BI in their policy planning.

Keywords: business intelligence, predictive model, supply and demand, Mexico

Procedia PDF Downloads 123
18703 An Intelligent Watch-Over System Using an IoT Device, for Elderly People Living by Themselves

Authors: Hideo Suzuki, Yuya Kiyonobu, Kotaro Matsushita, Masaki Hanada, Rie Suzuki, Noriko Niijima, Noriko Uosaki, Tadao Nakamura

Abstract:

People often worry about their elderly family members who are living by themselves or staying alone somewhere. An intelligent watch-over system for such elderly people, using a Raspberry Pi IoT device, has been newly developed to monitor those who live or stay separately from their families and alert them if a problem occurs. The system consists of motion sensors and temperature-humidity combined sensors that are located at seven points within an elderly person's home. The intelligent algorithms of the system detect signs and the possibility of unhealthy situations arising for the elderly relative; e.g., an unusually long bathing time, or a visit to a restroom, too high a room temperature, etc., by using data cached by the sensors above, at seven points within their house. The system gives more consideration to the elderly person's privacy, by using the sensors above, instead of using cameras and microphones placed around the house. The system invented and described here, can send a Twitter direct message to designated family members when an elderly relative is possibly in an unhealthy condition. Thus the system helps decrease family members' anxieties regarding their elderly relatives and increases their sense of security.

Keywords: elderly person, IoT device, Raspberry Pi, watch-over system

Procedia PDF Downloads 224
18702 Market Integration in the ECCAS Sub-Region

Authors: Mouhamed Mbouandi Njikam

Abstract:

This work assesses the trade potential of countries in the Economic Community of Central Africa States (ECCAS). The gravity model of trade is used to evaluate the trade flows of member countries, and to compute the trade potential index of ECCAS during 1995-2010. The focus is on the removal of tariffs and non-tariff barriers in the sub-region. Estimates from the gravity model are used for the calculation of the sub-region’s commercial potential. Its three main findings are: (i) the background research shows a low level of integration in the sub-region and open economies; (ii) a low level of industrialization and diversification are the main factors reducing trade potential in the sub-region; (iii) the trade creation predominate on the deflections of trade between member countries.

Keywords: gravity model, ECCAS, trade flows, trade potential, regional cooperation

Procedia PDF Downloads 426
18701 Development of Time Series Forecasting Model for Dengue Cases in Nakhon Si Thammarat, Southern Thailand

Authors: Manit Pollar

Abstract:

Identifying the dengue epidemic periods early would be helpful to take necessary actions to prevent the dengue outbreaks. Providing an accurate prediction on dengue epidemic seasons will allow sufficient time to take the necessary decisions and actions to safeguard the situation for local authorities. This study aimed to develop a forecasting model on number of dengue incidences in Nakhon Si Thammarat Province, Southern Thailand using time series analysis. We develop Seasonal Autoregressive Moving Average (SARIMA) models on the monthly data collected between 2003-2011 and validated the models using data collected between January-September 2012. The result of this study revealed that the SARIMA(1,1,0)(1,2,1)12 model closely described the trends and seasons of dengue incidence and confirmed the existence of dengue fever cases in Nakhon Si Thammarat for the years between 2003-2011. The study showed that the one-step approach for predicting dengue incidences provided significantly more accurate predictions than the twelve-step approach. The model, even if based purely on statistical data analysis, can provide a useful basis for allocation of resources for disease prevention.

Keywords: SARIMA, time series model, dengue cases, Thailand

Procedia PDF Downloads 358
18700 Structural Analysis and Detail Design of APV Module Structure Using Topology Optimization Design

Authors: Hyun Kyu Cho, Jun Soo Kim, Young Hoon Lee, Sang Hoon Kang, Young Chul Park

Abstract:

In the study, structure for one of offshore drilling system APV(Air Pressure Vessle) modules was designed by using topology optimum design and performed structural safety evaluation according to DNV rules. 3D model created base on design area and non-design area separated by using topology optimization for the environmental loads. This model separated 17 types for wind loads and dynamic loads and performed structural analysis evaluation for each model. As a result, the maximum stress occurred 181.25MPa.

Keywords: APV, topology optimum design, DNV, structural analysis, stress

Procedia PDF Downloads 426
18699 Developing Integrated Model for Building Design and Evacuation Planning

Authors: Hao-Hsi Tseng, Hsin-Yun Lee

Abstract:

In the process of building design, the designers have to complete the spatial design and consider the evacuation performance at the same time. It is usually difficult to combine the two planning processes and it results in the gap between spatial design and evacuation performance. Then the designers cannot complete an integrated optimal design solution. In addition, the evacuation routing models proposed by previous researchers is different from the practical evacuation decisions in the real field. On the other hand, more and more building design projects are executed by Building Information Modeling (BIM) in which the design content is formed by the object-oriented framework. Thus, the integration of BIM and evacuation simulation can make a significant contribution for designers. Therefore, this research plan will establish a model that integrates spatial design and evacuation planning. The proposed model will provide the support for the spatial design modifications and optimize the evacuation planning. The designers can complete the integrated design solution in BIM. Besides, this research plan improves the evacuation routing method to make the simulation results more practical. The proposed model will be applied in a building design project for evaluation and validation when it will provide the near-optimal design suggestion. By applying the proposed model, the integration and efficiency of the design process are improved and the evacuation plan is more useful. The quality of building spatial design will be better.

Keywords: building information modeling, evacuation, design, floor plan

Procedia PDF Downloads 456
18698 Effects of Copper and Cobalt Co-Doping on Structural, Optical and Electrical Properties of Tio2 Thin Films Prepared by Sol Gel Method

Authors: Rabah Bensaha, Badreeddine Toubal

Abstract:

Un-doped TiO2, Co single doped TiO2 and (Cu-Co) co-doped TiO2 thin films have been growth on silicon substrates by the sol-gel dip coating technique. We mainly investigated both effects of the dopants and annealing temperature on the structural, optical and electrical properties of TiO2 films using X-ray diffraction (XRD), Raman and FTIR spectroscopy, Atomic force microscopy (AFM), Scanning electron microscopy (SEM), UV–Vis spectroscopy. The chemical compositions of Co-doped and (Cu-Co) co-doped TiO2 films were confirmed by XRD, Raman and FTIR studies. The average grain sizes of CoTiO3-TiO2 nanocomposites were increased with annealing temperature. AFM and SEM reveal a completely the various nanostructures of CoTiO3-TiO2 nanocomposites thin films. The films exhibit a high optical reflectance with a large band gap. The highest electrical conductivity was obtained for the (Cu-Co) co-doped TiO2 films. The polyhedral surface morphology might possibly improve the surface contact between particle sizes and then contribute to better electron mobility as well as conductivity. The obtained results suggest that the prepared TiO2 films can be used for optoelectronic applications.

Keywords: sol-gel, TiO2 thin films, CoTiO3-TiO2 nanocomposites films, Electrical conductivity

Procedia PDF Downloads 443
18697 Performances Analysis and Optimization of an Adsorption Solar Cooling System

Authors: Nadia Allouache

Abstract:

The use of solar energy in cooling systems is an interesting alternative to the increasing demand of energy in the world and more specifically in southern countries where the needs of refrigeration and air conditioning are tremendous. This technique is even more attractive with regards to environmental issues. This study focuses on performances analysis and optimization of solar reactor of an adsorption cooling machine working with activated carbon-methanol pair. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The results show the poor heat conduction inside the porous medium and the resistance between the metallic wall and the bed engender the important temperature gradient and a great difference between the metallic wall and the bed temperature; this is considered as the essential causes decreasing the performances of the machine. For fixed conditions of functioning, the total desorbed mass presents a maximum for an optimal value of the height of the adsorber; this implies the existence of an optimal dimensioning of the adsorber.

Keywords: solar cooling system, performances Analysis, optimization, heat and mass transfer, activated carbon-methanol pair, numerical modeling

Procedia PDF Downloads 439
18696 Application of Public Access Two-Dimensional Hydrodynamic and Distributed Hydrological Models for Flood Forecasting in Ungauged Basins

Authors: Ahmad Shayeq Azizi, Yuji Toda

Abstract:

In Afghanistan, floods are the most frequent and recurrent events among other natural disasters. On the other hand, lack of monitoring data is a severe problem, which increases the difficulty of making the appropriate flood countermeasures of flood forecasting. This study is carried out to simulate the flood inundation in Harirud River Basin by application of distributed hydrological model, Integrated Flood Analysis System (IFAS) and 2D hydrodynamic model, International River Interface Cooperative (iRIC) based on satellite rainfall combined with historical peak discharge and global accessed data. The results of the simulation can predict the inundation area, depth and velocity, and the hardware countermeasures such as the impact of levee installation can be discussed by using the present method. The methodology proposed in this study is suitable for the area where hydrological and geographical data including river survey data are poorly observed.

Keywords: distributed hydrological model, flood inundation, hydrodynamic model, ungauged basins

Procedia PDF Downloads 166
18695 Numerical Modeling of Flow in USBR II Stilling Basin with End Adverse Slope

Authors: Hamidreza Babaali, Alireza Mojtahedi, Nasim Soori, Saba Soori

Abstract:

Hydraulic jump is one of the effective ways of energy dissipation in stilling basins that the ‎energy is highly dissipated by jumping. Adverse slope surface at the end stilling basin is ‎caused to increase energy dissipation and stability of the hydraulic jump. In this study, the adverse slope ‎has been added to end of United States Bureau of Reclamation (USBR) II stilling basin in hydraulic model of Nazloochay dam with scale 1:40, and flow simulated into stilling basin using Flow-3D ‎software. The numerical model is verified by experimental data of water depth in ‎stilling basin. Then, the parameters of water level profile, Froude Number, pressure, air ‎entrainment and turbulent dissipation investigated for discharging 300 m3/s using K-Ɛ and Re-Normalization Group (RNG) turbulence ‎models. The results showed a good agreement between numerical and experimental model‎ as ‎numerical model can be used to optimize of stilling basins.‎

Keywords: experimental and numerical modelling, end adverse slope, flow ‎parameters, USBR II stilling basin

Procedia PDF Downloads 180
18694 Effect of Yttrium Doping on Properties of Bi2Sr1.9Ca0.1-xYxCu2O7+δ (Bi-2202) Cuprate Ceramics

Authors: Y. Boudjadja, A. Amira, A. Saoudel, A. Varilci, S. P. Altintas, C. Terzioglu

Abstract:

In this work, we report the effect of Y3+ doping on structural, mechanical and electrical properties of Bi-2202 phase. Samples of Bi2Sr1.9Ca0.1-xYxCu2O7+δ with x = 0, 0.025, 0.05, 0.075 and 0.1 are elaborated in air by conventional solid state reaction and characterized by X-Ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) combined with EDS spectroscopy, density, Vickers micro-hardness and resistivity measurements. A good correlation between the variations of the bulk density and the Vickers micro-hardness with doping is obtained. The SEM photograph shows that the samples are composed of grains with a flat shape that characterizes the Bi-based cuprates. Quantitative EDS analysis confirms the reduction of Ca content and the increase of Y content when x is increased. The variation of resistivity with temperature shows that only samples with x = 0, 0.025 and 0.05 present an onset transition to the superconducting state. The higher onset transition temperature is obtained for x = 0.025 and is about 93.62 K. The transition is wide and is realized in two steps confirming then the presence of the low Tc Bi-2201 phase in the samples. For x = 0.075 and 0.1, a transition to a semiconducting state is seen at low temperatures. Some physical parameters are extracted from these curves and discussed.

Keywords: Bi-2202 phase, doping, structure, mechanical and electrical properties

Procedia PDF Downloads 323
18693 Evaluation of an Integrated Supersonic System for Inertial Extraction of CO₂ in Post-Combustion Streams of Fossil Fuel Operating Power Plants

Authors: Zarina Chokparova, Ighor Uzhinsky

Abstract:

Carbon dioxide emissions resulting from burning of the fossil fuels on large scales, such as oil industry or power plants, leads to a plenty of severe implications including global temperature raise, air pollution and other adverse impacts on the environment. Besides some precarious and costly ways for the alleviation of CO₂ emissions detriment in industrial scales (such as liquefaction of CO₂ and its deep-water treatment, application of adsorbents and membranes, which require careful consideration of drawback effects and their mitigation), one physically and commercially available technology for its capture and disposal is supersonic system for inertial extraction of CO₂ in after-combustion streams. Due to the flue gas with a carbon dioxide concentration of 10-15 volume percent being emitted from the combustion system, the waste stream represents a rather diluted condition at low pressure. The supersonic system induces a flue gas mixture stream to expand using a converge-and-diverge operating nozzle; the flow velocity increases to the supersonic ranges resulting in rapid drop of temperature and pressure. Thus, conversion of potential energy into the kinetic power causes a desublimation of CO₂. Solidified carbon dioxide can be sent to the separate vessel for further disposal. The major advantages of the current solution are its economic efficiency, physical stability, and compactness of the system, as well as needlessness of addition any chemical media. However, there are several challenges yet to be regarded to optimize the system: the way for increasing the size of separated CO₂ particles (as they are represented on a micrometers scale of effective diameter), reduction of the concomitant gas separated together with carbon dioxide and provision of CO₂ downstream flow purity. Moreover, determination of thermodynamic conditions of the vapor-solid mixture including specification of the valid and accurate equation of state remains to be an essential goal. Due to high speeds and temperatures reached during the process, the influence of the emitted heat should be considered, and the applicable solution model for the compressible flow need to be determined. In this report, a brief overview of the current technology status will be presented and a program for further evaluation of this approach is going to be proposed.

Keywords: CO₂ sequestration, converging diverging nozzle, fossil fuel power plant emissions, inertial CO₂ extraction, supersonic post-combustion carbon dioxide capture

Procedia PDF Downloads 141
18692 A Novel Machining Method and Tool-Path Generation for Bent Mandrel

Authors: Hong Lu, Yongquan Zhang, Wei Fan, Xiangang Su

Abstract:

Bent mandrel has been widely used as precise mould in automobile industry, shipping industry and aviation industry. To improve the versatility and efficiency of turning method of bent mandrel with fixed rotational center, an instantaneous machining model based on cutting parameters and machine dimension is prospered in this paper. The spiral-like tool path generation approach in non-axisymmetric turning process of bent mandrel is developed as well to deal with the error of part-to-part repeatability in existed turning model. The actual cutter-location points are calculated by cutter-contact points, which are obtained from the approach of spiral sweep process using equal-arc-length segment principle in polar coordinate system. The tool offset is set to avoid the interference between tool and work piece is also considered in the machining model. Depend on the spindle rotational angle, synchronization control of X-axis, Z-axis and C-axis is adopted to generate the tool-path of the turning process. The simulation method is developed to generate NC program according to the presented model, which includes calculation of cutter-location points and generation of tool-path of cutting process. With the approach of a bent mandrel taken as an example, the maximum offset of center axis is 4mm in the 3D space. Experiment results verify that the machining model and turning method are appropriate for the characteristics of bent mandrel.

Keywords: bent mandrel, instantaneous machining model, simulation method, tool-path generation

Procedia PDF Downloads 336
18691 Assessing Effects of an Intervention on Bottle-Weaning and Reducing Daily Milk Intake from Bottles in Toddlers Using Two-Part Random Effects Models

Authors: Yungtai Lo

Abstract:

Two-part random effects models have been used to fit semi-continuous longitudinal data where the response variable has a point mass at 0 and a continuous right-skewed distribution for positive values. We review methods proposed in the literature for analyzing data with excess zeros. A two-part logit-log-normal random effects model, a two-part logit-truncated normal random effects model, a two-part logit-gamma random effects model, and a two-part logit-skew normal random effects model were used to examine effects of a bottle-weaning intervention on reducing bottle use and daily milk intake from bottles in toddlers aged 11 to 13 months in a randomized controlled trial. We show in all four two-part models that the intervention promoted bottle-weaning and reduced daily milk intake from bottles in toddlers drinking from a bottle. We also show that there are no differences in model fit using either the logit link function or the probit link function for modeling the probability of bottle-weaning in all four models. Furthermore, prediction accuracy of the logit or probit link function is not sensitive to the distribution assumption on daily milk intake from bottles in toddlers not off bottles.

Keywords: two-part model, semi-continuous variable, truncated normal, gamma regression, skew normal, Pearson residual, receiver operating characteristic curve

Procedia PDF Downloads 350
18690 Ag-Cu and Bi-Cd Eutectics Ribbons under Superplastic Tensile Test Regime

Authors: Edgar Ochoa, G. Torres-Villasenor

Abstract:

Superplastic deformation is shown by materials with a fine grain size, usually less than 10 μm, when they are deformed within the strain rate range 10-5 10-1 s-1 at temperatures greater than 0.5Tm, where Tm is the melting point in Kelvin. According to the constitutive equation for superplastic flow, refinement of the grain size would be expected to increase the optimum strain rate and decrease the temperature required for superplastic flow. Ribbons of eutectic Ag-Cu and Bi-Cd alloys were manufactured by using a single roller melt-spinning technique to obtain a fine grain structure for later test in superplastic regime. The eutectics ribbons were examined by scanning electron microscopy and X-Ray diffraction, and the grain size was determined using the image analysis software ImageJ. The average grain size was less than 1 μm. Tensile tests were carried out from 10-4 to 10-1 s-1, at room temperature, to evaluate the superplastic behavior. The largest deformation was shown by the Bi-Cd eutectic ribbons, Ɛ=140 %, despite that these ribbons have a hexagonal unit cell. On the other hand, Ag-Cu eutectic ribbons have a minor grain size and cube unit cell, however they showed a lower deformation in tensile test under the same conditions than Bi-Cd ribbons. This is because the Ag-Cu grew in a strong cube-cube orientation relationship.

Keywords: eutectic ribbon, fine grain, superplastic deformation, cube-cube orientation

Procedia PDF Downloads 169
18689 Paraffin/Expanded Perlite Composite as a Novel Form-Stable Phase Change Material for Latent Heat Energy Storage

Authors: Awni Alkhazaleh

Abstract:

Latent heat storage using Phase Change Materials (PCMs) has attracted growing attention recently in the renewable energy utilization and building energy efficiency. Paraffin (PA) of low melting temperature, which is close to human comfort temperature in the range of 24-28 °C has been considered to be used in building applications. A form-stable composite Paraffin/Expanded perlite (PA-EP) has been prepared by retaining PA into porous particles of EP. DSC (Differential scanning calorimeter) is used to measure the thermal properties of PA in the form-stable composite with/without building materials. TGA (Thermal gravimetric analysis) shows that the composite is thermally stable. SEM (Scanning electron microscope) demonstrates that the layer structure of the EP particles is uniformly absorbed by PA. The mechanical properties in flexural mode have been discussed. The thermal energy storage performance has been evaluated using a small test room (100 mm ×100 mm ×100 mm) with thickness 10 mm. The flammability test of modified sample has been discussed using a cone calorimeter. The results confirm that the form-stable composite PA has the function of reducing building energy consumption.

Keywords: flammability, latent heat storage, paraffin, plasterboard

Procedia PDF Downloads 219
18688 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 130
18687 Design and Thermal Simulation Analysis of the Chinese Accelerator Driven Sub-Critical System Injector-I Cryomodule

Authors: Rui-Xiong Han, Rui Ge, Shao-Peng Li, Lin Bian, Liang-Rui Sun, Min-Jing Sang, Rui Ye, Ya-Ping Liu, Xiang-Zhen Zhang, Jie-Hao Zhang, Zhuo Zhang, Jian-Qing Zhang, Miao-Fu Xu

Abstract:

The Chinese Accelerator Driven Sub-critical system (C-ADS) uses a high-energy proton beam to bombard the metal target and generate neutrons to deal with the nuclear waste. The Chinese ADS proton linear has two 0~10 MeV injectors and one 10~1500 MeV superconducting linac. Injector-I is studied by the Institute of High Energy Physics (IHEP) under construction in the Beijing, China. The linear accelerator consists of two accelerating cryomodules operating at the temperature of 2 Kelvin. This paper describes the structure and thermal performances analysis of the cryomodule. The analysis takes into account all the main contributors (support posts, multilayer insulation, current leads, power couplers, and cavities) to the static and dynamic heat load at various cryogenic temperature levels. The thermal simulation analysis of the cryomodule is important theory foundation of optimization and commissioning.

Keywords: C-ADS, cryomodule, structure, thermal simulation, static heat load, dynamic heat load

Procedia PDF Downloads 401
18686 Analytical Solution for Stellar Distance Based on Photon Dominated Cosmic Expansion Model

Authors: Xiaoyun Li, Suoang Longzhou

Abstract:

This paper derives the analytical solution of stellar distance according to its redshift based on the photon-dominated universe expansion model. Firstly, it calculates stellar separation speed and the farthest distance of observable stars via simulation. Then the analytical solution of stellar distance according to its redshift is derived. It shows that when the redshift is large, the stellar distance (and its separation speed) is not proportional to its redshift due to the relativity effect. It also reveals the relationship between stellar age and its redshift. The correctness of the analytical solution is verified by the latest astronomic observations of Ia supernovas in 2020.

Keywords: redshift, cosmic expansion model, analytical solution, stellar distance

Procedia PDF Downloads 161
18685 Knowledge Audit Model for Requirement Elicitation Process

Authors: Laleh Taheri, Noraini C. Pa, Rusli Abdullah, Salfarina Abdullah

Abstract:

Knowledge plays an important role to the success of any organization. Software development organizations are highly knowledge-intensive organizations especially in their Requirement Elicitation Process (REP). There are several problems regarding communicating and using the knowledge in REP such as misunderstanding, being out of scope, conflicting information and changes of requirements. All of these problems occurred in transmitting the requirements knowledge during REP. Several researches have been done in REP in order to solve the problem towards requirements. Knowledge Audit (KA) approaches were proposed in order to solve managing knowledge in human resources, financial, and manufacturing. There is lack of study applying the KA in requirements elicitation process. Therefore, this paper proposes a KA model for REP in supporting to acquire good requirements.

Keywords: knowledge audit, requirement elicitation process, KA model, knowledge in requirement elicitation

Procedia PDF Downloads 345
18684 Preference for Housing Services and Rational House Price Bubbles

Authors: Stefanie Jeanette Huber

Abstract:

This paper explores the relevance and implications of preferences for housing services on house price fluctuations through the lens of an overlapping generation’s model. The model implies that an economy whose agents have lower preferences for housing services is characterized with lower expenditure shares on housing services and will tend to experience more frequent and more volatile housing bubbles. These model predictions are tested empirically in the companion paper Housing Booms and Busts - Convergences and Divergences across OECD countries. Between 1970 - 2013, countries who spend less on housing services as a share of total income experienced significantly more housing cycles and the associated housing boom-bust cycles were more violent. Finally, the model is used to study the impact of rental subsidies and help-to-buy schemes on rational housing bubbles. Rental subsidies are found to contribute to the control of housing bubbles, whereas help-to- buy scheme makes the economy more bubble-prone.

Keywords: housing bubbles, housing booms and busts, preference for housing services, expenditure shares for housing services, rental and purchase subsidies

Procedia PDF Downloads 299
18683 Survival of Four Probiotic Strains in Acid, Bile Salt and After Spray Drying

Authors: Rawichar Chaipojjana, Suttipong Phosuksirikul, Arunsri Leejeerajumnean

Abstract:

The objective of the study was to select the survival of probiotic strains when exposed to acidic and bile salts condition. Four probiotic strains (Lactobacillus casei subsp. rhamnosus TISTR 047, Lactobacillus casei TISTR 1500, Lactobacillus acidophilus TISTR 1338 and Lactobacillus plantarum TISTR 1465) were cultured in MRS broth and incubated at 35ºC for 15 hours before being inoculated into acidic condition (5 M HCl, pH 2) for 2 hours and bile salt (0.3%, pH 5.8) for 8 hour. The survived probiotics were counted in MRS agar. Among four stains, Lactobacillus casei subsp. rhamnosus TISTR 047 was the highest tolerance specie. Lactobacillus casei subsp. rhamnosus TISTR 047 reduced 6.74±0.07 log CFU/ml after growing in acid and 5.52±0.05 log CFU/ml after growing in bile salt. Then, double emulsion of microorganisms was chosen to encapsulate before spray drying. Spray drying was done with the inlet temperature 170ºC and outlet temperature 80ºC. The results showed that the survival of encapsulated Lactobacillus casei subsp. rhamnosus TISTR 047 after spray drying decreased from 9.63 ± 0.32 to 8.31 ± 0.11 log CFU/ml comparing with non-encapsulated, 9.63 ± 0.32 to 4.06 ± 0.08 log CFU/ml. Therefore, Lactobacillus casei subsp. rhamnosus TISTR 047 would be able to survive in gastrointestinal and spray drying condition.

Keywords: probiotic, acid, bile salt, spray drying

Procedia PDF Downloads 359
18682 Autonomous Quantum Competitive Learning

Authors: Mohammed A. Zidan, Alaa Sagheer, Nasser Metwally

Abstract:

Real-time learning is an important goal that most of artificial intelligence researches try to achieve it. There are a lot of problems and applications which require low cost learning such as learn a robot to be able to classify and recognize patterns in real time and real-time recall. In this contribution, we suggest a model of quantum competitive learning based on a series of quantum gates and additional operator. The proposed model enables to recognize any incomplete patterns, where we can increase the probability of recognizing the pattern at the expense of the undesired ones. Moreover, these undesired ones could be utilized as new patterns for the system. The proposed model is much better compared with classical approaches and more powerful than the current quantum competitive learning approaches.

Keywords: competitive learning, quantum gates, quantum gates, winner-take-all

Procedia PDF Downloads 472
18681 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach

Authors: Riznaldi Akbar

Abstract:

In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.

Keywords: debt crisis, external debt, artificial neural network, ANN

Procedia PDF Downloads 444
18680 Failure Inference and Optimization for Step Stress Model Based on Bivariate Wiener Model

Authors: Soudabeh Shemehsavar

Abstract:

In this paper, we consider the situation under a life test, in which the failure time of the test units are not related deterministically to an observable stochastic time varying covariate. In such a case, the joint distribution of failure time and a marker value would be useful for modeling the step stress life test. The problem of accelerating such an experiment is considered as the main aim of this paper. We present a step stress accelerated model based on a bivariate Wiener process with one component as the latent (unobservable) degradation process, which determines the failure times and the other as a marker process, the degradation values of which are recorded at times of failure. Parametric inference based on the proposed model is discussed and the optimization procedure for obtaining the optimal time for changing the stress level is presented. The optimization criterion is to minimize the approximate variance of the maximum likelihood estimator of a percentile of the products’ lifetime distribution.

Keywords: bivariate normal, Fisher information matrix, inverse Gaussian distribution, Wiener process

Procedia PDF Downloads 317
18679 The Effects of Different Parameters of Wood Floating Debris on Scour Rate Around Bridge Piers

Authors: Muhanad Al-Jubouri

Abstract:

A local scour is the most important of the several scours impacting bridge performance and security. Even though scour is widespread in bridges, especially during flood seasons, the experimental tests could not be applied to many standard highway bridges. A computational fluid dynamics numerical model was used to solve the problem of calculating local scouring and deposition for non-cohesive silt and clear water conditions near single and double cylindrical piers with the effect of floating debris. When FLOW-3D software is employed with the Rang turbulence model, the Nilsson bed-load transfer equation and fine mesh size are considered. The numerical findings of single cylindrical piers correspond pretty well with the physical model's results. Furthermore, after parameter effectiveness investigates the range of outcomes based on predicted user inputs such as the bed-load equation, mesh cell size, and turbulence model, the final numerical predictions are compared to experimental data. When the findings are compared, the error rate for the deepest point of the scour is equivalent to 3.8% for the single pier example.

Keywords: local scouring, non-cohesive, clear water, computational fluid dynamics, turbulence model, bed-load equation, debris

Procedia PDF Downloads 69
18678 Actionable Personalised Learning Strategies to Improve a Growth-Mindset in an Educational Setting Using Artificial Intelligence

Authors: Garry Gorman, Nigel McKelvey, James Connolly

Abstract:

This study will evaluate a growth mindset intervention with Junior Cycle Coding and Senior Cycle Computer Science students in Ireland, where gamification will be used to incentivise growth mindset behaviour. An artificial intelligence (AI) driven personalised learning system will be developed to present computer programming learning tasks in a manner that is best suited to the individuals’ own learning preferences while incentivising and rewarding growth mindset behaviour of persistence, mastery response to challenge, and challenge seeking. This research endeavours to measure mindset with before and after surveys (conducted nationally) and by recording growth mindset behaviour whilst playing a digital game. This study will harness the capabilities of AI and aims to determine how a personalised learning (PL) experience can impact the mindset of a broad range of students. The focus of this study will be to determine how personalising the learning experience influences female and disadvantaged students' sense of belonging in the computer science classroom when tasks are presented in a manner that is best suited to the individual. Whole Brain Learning will underpin this research and will be used as a framework to guide the research in identifying key areas such as thinking and learning styles, cognitive potential, motivators and fears, and emotional intelligence. This research will be conducted in multiple school types over one academic year. Digital games will be played multiple times over this period, and the data gathered will be used to inform the AI algorithm. The three data sets are described as follows: (i) Before and after survey data to determine the grit scores and mindsets of the participants, (ii) The Growth Mind-Set data from the game, which will measure multiple growth mindset behaviours, such as persistence, response to challenge and use of strategy, (iii) The AI data to guide PL. This study will highlight the effectiveness of an AI-driven personalised learning experience. The data will position AI within the Irish educational landscape, with a specific focus on the teaching of CS. These findings will benefit coding and computer science teachers by providing a clear pedagogy for the effective delivery of personalised learning strategies for computer science education. This pedagogy will help prevent students from developing a fixed mindset while helping pupils to exhibit persistence of effort, use of strategy, and a mastery response to challenges.

Keywords: computer science education, artificial intelligence, growth mindset, pedagogy

Procedia PDF Downloads 88