Search results for: open and distant learning programme
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10264

Search results for: open and distant learning programme

5314 Studies on the Feasibility of Cow Dung as a Non-Conventional Energy Source

Authors: Raj Kumar Rajak, Bharat Mishra

Abstract:

Bio-batteries represent an entirely new long-term, reasonable, reachable and ecofriendly approach to produce sustainable energy. In the present experimental work, we have studied the effect of generation of power by bio-battery using different electrode pairs. The tests show that it is possible to generate electricity using cow dung as an electrolyte. C-Mg electrode pair shows maximum voltage and SCC (Short Circuit Current) while C-Zn electrode pair shows less OCV (Open Circuit Voltage) and SCC. We have chosen C-Zn electrodes because Mg electrodes are not economical. By the studies of different electrodes and cow dung, it is found that C-Zn electrode battery is more suitable. This result shows that the bio-batteries have the potency to full fill the need of electricity demand for lower energy equipment.

Keywords: bio-batteries, electricity, cow-dung, electrodes, non-conventional

Procedia PDF Downloads 193
5313 A Machine Learning Framework Based on Biometric Measurements for Automatic Fetal Head Anomalies Diagnosis in Ultrasound Images

Authors: Hanene Sahli, Aymen Mouelhi, Marwa Hajji, Amine Ben Slama, Mounir Sayadi, Farhat Fnaiech, Radhwane Rachdi

Abstract:

Fetal abnormality is still a public health problem of interest to both mother and baby. Head defect is one of the most high-risk fetal deformities. Fetal head categorization is a sensitive task that needs a massive attention from neurological experts. In this sense, biometrical measurements can be extracted by gynecologist doctors and compared with ground truth charts to identify normal or abnormal growth. The fetal head biometric measurements such as Biparietal Diameter (BPD), Occipito-Frontal Diameter (OFD) and Head Circumference (HC) needs to be monitored, and expert should carry out its manual delineations. This work proposes a new approach to automatically compute BPD, OFD and HC based on morphological characteristics extracted from head shape. Hence, the studied data selected at the same Gestational Age (GA) from the fetal Ultrasound images (US) are classified into two categories: Normal and abnormal. The abnormal subjects include hydrocephalus, microcephaly and dolichocephaly anomalies. By the use of a support vector machines (SVM) method, this study achieved high classification for automated detection of anomalies. The proposed method is promising although it doesn't need expert interventions.

Keywords: biometric measurements, fetal head malformations, machine learning methods, US images

Procedia PDF Downloads 277
5312 A Neural Network Approach to Understanding Turbulent Jet Formations

Authors: Nurul Bin Ibrahim

Abstract:

Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.

Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence

Procedia PDF Downloads 54
5311 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: anomaly detection, autoencoder, data centers, deep learning

Procedia PDF Downloads 176
5310 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors

Authors: Duc V. Nguyen

Abstract:

Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest bene t based on their requirements. These are the key requirements of a robust prognostics and health management system.

Keywords: fault detection, FFT, induction motor, predictive maintenance

Procedia PDF Downloads 149
5309 The Influences of Facies and Fine Kaolinite Formation Migration on Sandstones’ Reservoir Quality, Sarir Formation, Sirt Basin Libya

Authors: Faraj M. Elkhatri, Hana Ali Alafi

Abstract:

The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. (present-day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Basin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly found by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some of fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets but also small disaggregated kaolinite platelets derived from the disaggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore, but also coat some of the surrounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and reduce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats, with limited occlusion by kaolinite. very fine-grained elemental combinations (Si/Al/Na/Cl, Si/Al Ca/Cl/Ti, and Qtz/Ti) have been identified and conformed by EDS analysis. However, the identification of the fine grained disaggregated material as mainly kaolinite though study area.

Keywords: fine migration, formation damage, kaolinite, soled bulging.

Procedia PDF Downloads 56
5308 Functional Dimension of Reuse: Use of Antalya Kaleiçi Traditional Dwellings as Hotel

Authors: Dicle Aydın, Süheyla Büyükşahin Sıramkaya

Abstract:

Conservation concept gained importance especially in 19th century, it found value with the change and developments lived globally. Basic values in the essence of the concept are important in the continuity of historical and cultural fabrics which have character special to them. Reuse of settlements and spaces carrying historical and cultural values in the frame of socio-cultural and socio-economic conditions is related with functional value. Functional dimension of reuse signifies interrogation of the usage potential of the building with a different aim other than its determined aim. If a building carrying historical and cultural values cannot be used with its own function because of environmental, economical, structural and functional reasons, it is advantageous to maintain its reuse from the point of environmental ecology. By giving a new function both a requirement of the society is fulfilled and a culture entity is conserved because of its functional value. In this study, functional dimension of reuse is exemplified in Antalya Kaleiçi where has a special location and importance with its natural, cultural and historical heritage characteristics. Antayla Kaleiçi settlement preserves its liveliness as a touristic urban fabric with its almost fifty thousand years of past, traditional urban form, civil architectural examples of 18th–19th century reflecting the life style of the region and monumental buildings. The civil architectural examples in the fabric have a special character formed according to Mediterranean climate with their outer sofa (open or closed), one, two or three storey, courtyards and oriels. In the study reuse of five civil architectural examples as boutique hotel by forming a whole with their environmental arrangements is investigated, it is analyzed how the spatial requirements of a boutique hotel are fulfilled in traditional dwellings. Usage of a cultural entity as a boutique hotel is evaluated under the headlines of i.functional requirement, ii.satisfactoriness of spatial dimensions, iii.functional organization. There are closed and open restaurant, kitchen, pub, lobby, administrative offices in the hotel with 70 bed capacity and 28 rooms in total. There are expansions to urban areas on second and third floors by the means of oriels in the hotel surrounded by narrow streets in three directions. This boutique hotel, formed by unique five different dwellings having similar plan scheme in traditional fabric, is different with its structure opened to outside and connected to each other by the means of courtyards, and its outside spaces which gained mobility because of the elevation differences in courtyards.

Keywords: reuse, adaptive reuse, functional dimension of reuse, traditional dwellings

Procedia PDF Downloads 304
5307 Solar Cell Using Chemical Bath Deposited PbS:Bi3+ Films as Electron Collecting Layer

Authors: Melissa Chavez Portillo, Mauricio Pacio Castillo, Hector Juarez Santiesteban, Oscar Portillo Moreno

Abstract:

Chemical bath deposited PbS:Bi3+ as an electron collection layer is introduced between the silicon wafer and the Ag electrode the performance of the PbS heterojunction thin film solar thin film solar cells with 1 cm2 active area. We employed Bi-doping to transform it into an n-type semiconductor. The experimental results reveal that the cell response parameters depend critically on the deposition procedures in terms of bath temperature, deposition time. The device achieves an open-circuit voltage of 0.4 V. The simple and low-cost deposition method of PbS:Bi3+ films is promising for the fabrication.

Keywords: Bi doping, PbS, thin films, solar cell

Procedia PDF Downloads 498
5306 Embedded Hybrid Intuition: A Deep Learning and Fuzzy Logic Approach to Collective Creation and Computational Assisted Narratives

Authors: Roberto Cabezas H

Abstract:

The current work shows the methodology developed to create narrative lighting spaces for the multimedia performance piece 'cluster: the vanished paradise.' This empirical research is focused on exploring unconventional roles for machines in subjective creative processes, by delving into the semantics of data and machine intelligence algorithms in hybrid technological, creative contexts to expand epistemic domains trough human-machine cooperation. The creative process in scenic and performing arts is guided mostly by intuition; from that idea, we developed an approach to embed collective intuition in computational creative systems, by joining the properties of Generative Adversarial Networks (GAN’s) and Fuzzy Clustering based on a semi-supervised data creation and analysis pipeline. The model makes use of GAN’s to learn from phenomenological data (data generated from experience with lighting scenography) and algorithmic design data (augmented data by procedural design methods), fuzzy logic clustering is then applied to artificially created data from GAN’s to define narrative transitions built on membership index; this process allowed for the creation of simple and complex spaces with expressive capabilities based on position and light intensity as the parameters to guide the narrative. Hybridization comes not only from the human-machine symbiosis but also on the integration of different techniques for the implementation of the aided design system. Machine intelligence tools as proposed in this work are well suited to redefine collaborative creation by learning to express and expand a conglomerate of ideas and a wide range of opinions for the creation of sensory experiences. We found in GAN’s and Fuzzy Logic an ideal tool to develop new computational models based on interaction, learning, emotion and imagination to expand the traditional algorithmic model of computation.

Keywords: fuzzy clustering, generative adversarial networks, human-machine cooperation, hybrid collective data, multimedia performance

Procedia PDF Downloads 129
5305 Error Analysis: Examining Written Errors of English as a Second Language (ESL) Spanish Speaking Learners

Authors: Maria Torres

Abstract:

After the acknowledgment of contrastive analysis, Pit Coder’s establishment of error analysis revolutionized the way instructors analyze and examine students’ writing errors. One question that relates to error analysis with speakers of a first language, in this case, Spanish, who are learning a second language (English), is the type of errors that these learners make along with the causes of these errors. Many studies have looked at the way the native tongue influences second language acquisition, but this method does not take into account other possible sources of students’ errors. This paper examines writing samples from an advanced ESL class whose first language is Spanish at non-profit organization, Learning Quest Stanislaus Literacy Center. Through error analysis, errors in the students’ writing were identified, described, and classified. The purpose of this paper was to discover the type and origin of their errors which generated appropriate treatments. The results in this paper show that the most frequent errors in the advanced ESL students’ writing pertain to interlanguage and a small percentage from an intralanguage source. Lastly, the least type of errors were ones that originate from negative transfer. The results further solidify the idea that there are other errors and sources of errors to account for rather than solely focusing on the difference between the students’ mother and target language. This presentation will bring to light some strategies and techniques that address the issues found in this research. Taking into account the amount of error pertaining to interlanguage, an ESL teacher should provide metalinguistic awareness of the students’ errors.

Keywords: error analysis, ESL, interlanguage, intralangauge

Procedia PDF Downloads 288
5304 Systems Intelligence in Management (High Performing Organizations and People Score High in Systems Intelligence)

Authors: Raimo P. Hämäläinen, Juha Törmänen, Esa Saarinen

Abstract:

Systems thinking has been acknowledged as an important approach in the strategy and management literature ever since the seminal works of Ackhoff in the 1970´s and Senge in the 1990´s. The early literature was very much focused on structures and organizational dynamics. Understanding systems is important but making improvements also needs ways to understand human behavior in systems. Peter Senge´s book The Fifth Discipline gave the inspiration to the development of the concept of Systems Intelligence. The concept integrates the concepts of personal mastery and systems thinking. SI refers to intelligent behavior in the context of complex systems involving interaction and feedback. It is a competence related to the skills needed in strategy and the environment of modern industrial engineering and management where people skills and systems are in an increasingly important role. The eight factors of Systems Intelligence have been identified from extensive surveys and the factors relate to perceiving, attitude, thinking and acting. The personal self-evaluation test developed consists of 32 items which can also be applied in a peer evaluation mode. The concept and test extend to organizations too. One can talk about organizational systems intelligence. This paper reports the results of an extensive survey based on peer evaluation. The results show that systems intelligence correlates positively with professional performance. People in a managerial role score higher in SI than others. Age improves the SI score but there is no gender difference. Top organizations score higher in all SI factors than lower ranked ones. The SI-tests can also be used as leadership and management development tools helping self-reflection and learning. Finding ways of enhancing learning organizational development is important. Today gamification is a new promising approach. The items in the SI test have been used to develop an interactive card game following the Topaasia game approach. It is an easy way of engaging people in a process which both helps participants see and approach problems in their organization. It also helps individuals in identifying challenges in their own behavior and in improving in their SI.

Keywords: gamification, management competence, organizational learning, systems thinking

Procedia PDF Downloads 78
5303 A Proposal for Professional Development of Mathematics Teachers in the Kingdom of Saudi Arabia According to the Orientation of Science, Technology, Engineering and Mathematics (STEM)

Authors: Ali Taher Othman Ali

Abstract:

The aim of this research is to provide a draft proposal for the professional development of mathematics teachers in accordance with the orientation of science, technology, engineering and mathematics which is known by the abbreviation STEM, as a modern and contemporary orientation in the teaching and learning of mathematics and in order to achieve the objective of the research, the researcher used the theoretical descriptive method through the induction of the literature of education and the previous studies and experiments related to the topic. The researcher concluded by providing the proposal according to five basic axes, the first axe: professional development as a system, and its requirements include: development of educational systems, and allocate sufficient budgets to support the requirements of teaching STEM, identifying mechanisms for incentives and rewards for teachers attending professional development programs based on STEM; the second: development of in-depth knowledge content and its requirements include: basic sciences content development for STEM, linking the scientific understanding of teachers with real-world issues and problems, to provide the necessary resources to expand teachers' knowledge in this area; the third: the necessary pedagogical skills of teachers in the field of STEM, and its requirements include: identification of the required training and development needs and the mechanism of determining these needs, the types of professional development programs and the mechanism of designing it, the mechanisms and places of execution, evaluation and follow-up; the fourth: professional development strategies and mechanisms in the field of STEM, and its requirements include: using a variety of strategies to enable teachers to design and transfer effective educational experiences which reflect their scientific mastery in the fields of STEM, provide learning opportunities, and developing the skills of procedural research to generate new knowledge about the STEM; the fifth: to support professional development in the area of STEM, and its requirements include: support leadership within the school, provide a clear and appropriate opportunities for professional development for teachers within the school through professional learning communities, building partnerships between the Ministry of education and the local and international community institutions. The proposal includes other factors that should be considered when implementing professional development programs for mathematics teachers in the field of STEM.

Keywords: professional development, mathematics teachers, the orientation of science, technology, engineering and mathematics (STEM)

Procedia PDF Downloads 383
5302 Perspectives of charitable organisations on the impact of the COVID-19 pandemic on family carers of people with profound and multiple intellectual disabilities.

Authors: Mark Linden, Trisha Forbes, Michael Brown, Lynne Marsh, Maria Truesdale, Stuart Todd, Nathan Hughes

Abstract:

Background The COVID-19 pandemic resulted in a reduction of health care services for many family carers of people with profound and multiple intellectual disabilities (PMID). Due to lack of services, family carers turned to charities for support during the pandemic. We explored the views of charity workers across the UK and Ireland who supported family carers during the COVID-19 pandemic and explored their views on effective online support programmes for family carers. Methods This was a qualitative study using online focus groups with participants (n = 24) from five charities across the UK and Ireland. Questions focused on challenges, supports, coping and resources which helped during lockdown restrictions. Focus groups were audio recorded, transcribed verbatim, and analysed through thematic analysis. Findings Four themes were identified (i) ‘mental and emotional health’, (ii) ‘they who shout the loudest’ (fighting for services), (iii) ‘lack of trust in statutory services’ and (iv) ‘creating an online support programme’. Mental and emotional health emerged as the most prominent theme and included three subthemes named as ‘isolation’, ‘fear of COVID-19’ and ‘the exhaustion of caring’. Conclusions The withdrawal of many services during the COVID-19 pandemic further isolated and placed strain on family carers. Even after the end of the pandemic family cares continue to report on the struggle to receive adequate support. There is a critical need to design services, including online support programmes, in partnership with family carers which adequately address their needs.

Keywords: intellectual disability, family carers, COVID-19, charities

Procedia PDF Downloads 49
5301 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 82
5300 Innovative Tool for Improving Teaching and Learning

Authors: Izharul Haq

Abstract:

Every one of us seek to aspire to gain quality education. The biggest stake holders are students who labor through years acquiring knowledge and skill to help them prepare for their career. Parents spend a fortune on their children’s education. Companies spend billions of dollars to enhance standards by developing new education products and services. Quality education is the golden key to a long lasting prosperity for the individual and the nation. But unfortunately, education standards are continuously deteriorating and it has become a global phenomenon. Unfortunately, teaching is often described as a ‘popularity contest’ and those teachers who are usually popular with students are often those who compromise teaching to appease students. Such teachers also ‘teach-to-the-test’ ensuring high test scores. Such teachers, hence, receive good student rating. Teachers who are conscientious, rigorous and thorough are often the victims of good appraisal. Government and private organizations are spending billions of dollars trying to capture the characteristics of a good teacher. But the results are still vague and inconclusive. At present there is no objective way to measure teaching effectiveness. In this paper we present an innovative method to objectively measure teaching effectiveness using a new teaching tool (TSquare). The TSquare tool used in the study is practical, easy to use, cost effective and requires no special equipment to implement. Hence it has a global appeal for poor and the rich countries alike.

Keywords: measuring teaching effectiveness, quality in education, student learning, teaching styles

Procedia PDF Downloads 291
5299 On-Chip Ku-Band Bandpass Filter with Compact Size and Wide Stopband

Authors: Jyh Sheen, Yang-Hung Cheng

Abstract:

This paper presents a design of a microstrip bandpass filter with a compact size and wide stopband by using 0.15-μm GaAs pHEMT process. The wide stop band is achieved by suppressing the first and second harmonic resonance frequencies. The slow-wave coupling stepped impedance resonator with cross coupled structure is adopted to design the bandpass filter. A two-resonator filter was fabricated with 13.5GHz center frequency and 11% bandwidth was achieved. The devices are simulated using the ADS design software. This device has shown a compact size and very low insertion loss of 2.6 dB. Microstrip planar bandpass filters have been widely adopted in various communication applications due to the attractive features of compact size and ease of fabricating. Various planar resonator structures have been suggested. In order to reach a wide stopband to reduce the interference outside the passing band, various designs of planar resonators have also been submitted to suppress the higher order harmonic frequencies of the designed center frequency. Various modifications to the traditional hairpin structure have been introduced to reduce large design area of hairpin designs. The stepped-impedance, slow-wave open-loop, and cross-coupled resonator structures have been studied to miniaturize the hairpin resonators. In this study, to suppress the spurious harmonic bands and further reduce the filter size, a modified hairpin-line bandpass filter with cross coupled structure is suggested by introducing the stepped impedance resonator design as well as the slow-wave open-loop resonator structure. In this way, very compact circuit size as well as very wide upper stopband can be achieved and realized in a Roger 4003C substrate. On the other hand, filters constructed with integrated circuit technology become more attractive for enabling the integration of the microwave system on a single chip (SOC). To examine the performance of this design structure at the integrated circuit, the filter is fabricated by the 0.15 μm pHEMT GaAs integrated circuit process. This pHEMT process can also provide a much better circuit performance for high frequency designs than those made on a PCB board. The design example was implemented in GaAs with center frequency at 13.5 GHz to examine the performance in higher frequency in detail. The occupied area is only about 1.09×0.97 mm2. The ADS software is used to design those modified filters to suppress the first and second harmonics.

Keywords: microstrip resonator, bandpass filter, harmonic suppression, GaAs

Procedia PDF Downloads 313
5298 Cognitive Behavioral Modification in the Treatment of Aggressive Behavior in Children

Authors: Dijana Sulejmanović

Abstract:

Cognitive-behavioral modification (CBM) is a combination of cognitive and behavioral learning principles to shape and encourage the desired behaviors. A crucial element of cognitive-behavioral modification is that a change the behavior precedes awareness of how it affects others. CBM is oriented toward changing inner speech and learning to control behaviors through self-regulation techniques. It aims to teach individuals how to develop the ability to recognize, monitor and modify their thoughts, feelings, and behaviors. The review of literature emphasizes the efficiency the CBM approach in the treatment of children's hyperactivity and negative emotions such as anger. The results of earlier research show how impulsive and hyperactive behavior, agitation, and aggression may slow down and block the child from being able to actively monitor and participate in regular classes, resulting in the disruption of the classroom and the teaching process, and the children may feel rejected, isolated and develop long-term poor image of themselves and others. In this article, we will provide how the use of CBM, adapted to child's age, can incorporate measures of cognitive and emotional functioning which can help us to better understand the children’s cognitive processes, their cognitive strengths, and weaknesses, and to identify factors that may influence their behavioral and emotional regulation. Such a comprehensive evaluation can also help identify cognitive and emotional risk factors associated with aggressive behavior, specifically the processes involved in modulating and regulating cognition and emotions.

Keywords: aggressive behavior, cognitive behavioral modification, cognitive behavioral theory, modification

Procedia PDF Downloads 307
5297 “Student Veterans’ Transition to Nursing Education: Barriers and Facilitators

Authors: Bruce Hunter

Abstract:

Background: The transition for student veterans from military service to higher education can be a challenging endeavor, especially for those pursuing an education in nursing. While the experiences and perspectives of each student veteran is unique, their successful integration into an academic environment can be influenced by a complex array of barriers and facilitators. This mixed-methods study aims to explore the themes and concepts that can be found in the transition experiences of student veterans in nursing education, with a focus on identifying the barriers they face and the facilitators that support their success. Methods: This study utilizes an explanatory mixed-methods approach. The research participants include student veterans enrolled in nursing programs across three academic institutions in the Southeastern United States. Quantitative Phase: A Likert scale instrument is distributed to a sample of student veterans in nursing programs. The survey assesses demographic information, academic experiences, social experiences, and perceptions of institutional support. Quantitative data is analyzed using descriptive statistics to assess demographics and to identify barriers and facilitators to the transition. Qualitative Phase: Two open-ended questions were posed to student veterans to explore their lived experiences, barriers, and facilitators during the transition to nursing education and to further explain the quantitative findings. Thematic analysis with line-by-line coding is employed to identify recurring themes and narratives that may shed light on the barriers and facilitators encountered. Results: This study found that the successful academic integration of student veterans lies in recognizing the diversity of values and attitudes among student veterans, understanding the potential challenges they face, and engaging in initiative-taking steps to create an inclusive and supportive academic environment that accommodates the unique experiences of this demographic. Addressing these academic and social integration concerns can contribute to a more understanding environment for student veterans in the BSN program. Conclusion: Providing support during this transitional period is crucial not only for retaining veterans, but also for bolstering their success in achieving the status of registered nurses. Acquiring an understanding of military culture emerges as an essential initial step for nursing faculty in student veteran retention and for successful completion of their programs. Participants found that their transition experience lacked meaningful social interactions, which could foster a positive learning environment, enhance their emotional well-being, and could contribute significantly to their overall success and satisfaction in their nursing education journey. Recognizing and promoting academic and social integration is important in helping veterans experience a smooth transition into and through the unfamiliar academic environment of nursing education.

Keywords: nursing, education, student veterans, barriers, facilitators

Procedia PDF Downloads 36
5296 Teaching Reading in English: The Neglect of Phonics in Nigeria

Authors: Abdulkabir Abdullahi

Abstract:

Nigeria has not yet welcomed phonics into its primary schools. In government-owned primary schools teachers are functionally ignorant of the stories of the reading wars amongst international scholars. There are few or no Nigerian-authored phonics textbooks, and there has been no government-owned phonics curriculum either. There are few or no academic journal articles on phonics in the country and there is, in fact, a certain danger of confusion between phonics and phonetics among Nigerian publishers, authors, writers and academics as if Nigerian teachers of English and the educational policy makers of the country were unaware of reading failures/problems amongst Nigerian children, or had never heard of phonics or read of the stories of the reading wars or the annual phonics test in the United Kingdom, the United States of America and other parts of the world. It is on this note that this article reviews and examines, in the style of a qualitative inquiry, the body of arguments on phonics, and explores the effectiveness of phonics teaching, particularly, in a second-language learning contexts. While the merit of the paper is, perhaps, situated in its supreme effort to draw global attention to reading failures/problems in Nigeria and the ways the situation may affect English language learning, international academic relations and the educational future of the country, it leaves any quantitative verification of its claims to interested quantitative researchers in the world.

Keywords: graphemes, phonics, reading, reading wars, reading theories, phonemic awareness

Procedia PDF Downloads 218
5295 Lessons Learned from Covid19 - Related ERT in Universities

Authors: Sean Gay, Cristina Tat

Abstract:

This presentation will detail how a university in Western Japan has implemented its English for Academic Purposes (EAP) program during the onset of CoViD-19 in the spring semester of 2020. In the spring semester of 2020, after a 2 week delay, all courses within the School of Policy Studies EAP Program at Kwansei Gakuin University were offered in an online asynchronous format. The rationale for this decision was not to disadvantage students who might not have access to devices necessary for taking part in synchronous online lessons. The course coordinators were tasked with consolidating the materials originally designed for face-to-face14 week courses for a 12 week asynchronous online semester and with uploading the modified course materials to Luna, the university’s network, which is a modified version of Blackboard. Based on research to determine the social and academic impacts of this CoViD-19 ERT approach on the students who took part in this EAP program, this presentation explains how future curriculum design and implementation can be managed in a post-CoViD world. There are a wide variety of lessons that were salient. The role of the classroom as a social institution was very prominent; however, awareness of cognitive burdens and strategies to mitigate that burden may be more valuable for teachers. The lessons learned during this period of ERT can help teachers moving forward.

Keywords: asynchronous online learning, emergency remote teaching (ERT), online curriculum design, synchronous online learning

Procedia PDF Downloads 189
5294 Studying Educational Processes through a Multifocal Viewpoint: Educational and Social Studies

Authors: Noa Shriki, Atara Shriki

Abstract:

Lifelong learning is considered as essential for teacher's professional development, which in turn has implications for the improvement of the entire education system. In recent years, many programs designed to support teachers' professional development are criticized for not achieving their goal. A variety of reasons have been proposed for the purpose of explaining the causes of the ineffectiveness of such programs. In this study, we put to test the possibility that teachers do not change as a result of their participation in professional programs due to a gap between the contents and approaches included in them and teacher's beliefs about teaching and learning. Eighteen elementary school mathematics teachers participated in the study. These teachers were involved in collaborating with their students in inquiring mathematical ideas, while implementing action research. Employing educational theories, the results indicated that this experience had a positive effect on teacher's professional development. In particular, there was an evident change in their beliefs regarding their role as mathematics teachers. However, while employing a different perspective for analyzing the data, the lens of Kurt Lewin's theory of re-education, we realized that this change of beliefs must be questioned. Therefore, it is suggested that analysis of educational processes should be carried out not only through common educational theories, but also on the basis of social and organizational theories. It is assumed that both the field of education and the fields of social studies and organizational consulting will benefit from the multifocal viewpoint

Keywords: educational theories, professional development, re-education, teachers' beliefs

Procedia PDF Downloads 127
5293 The Influence of Argumentation Strategy on Student’s Web-Based Argumentation in Different Scientific Concepts

Authors: Xinyue Jiao, Yu-Ren Lin

Abstract:

Argumentation is an essential aspect of scientific thinking which has been widely concerned in recent reform of science education. The purpose of the present studies was to explore the influences of two variables termed ‘the argumentation strategy’ and ‘the kind of science concept’ on student’s web-based argumentation. The first variable was divided into either monological (which refers to individual’s internal discourse and inner chain reasoning) or dialectical (which refers to dialogue interaction between/among people). The other one was also divided into either descriptive (i.e., macro-level concept, such as phenomenon can be observed and tested directly) or theoretical (i.e., micro-level concept which is abstract, and cannot be tested directly in nature). The present study applied the quasi-experimental design in which 138 7th grade students were invited and then assigned to either monological group (N=70) or dialectical group (N=68) randomly. An argumentation learning program called ‘the PWAL’ was developed to improve their scientific argumentation abilities, such as arguing from multiple perspectives and based on scientific evidence. There were two versions of PWAL created. For the individual version, students can propose argument only through knowledge recall and self-reflecting process. On the other hand, the students were allowed to construct arguments through peers’ communication in the collaborative version. The PWAL involved three descriptive science concept-based topics (unit 1, 3 and 5) and three theoretical concept-based topics (unit 2, 4 and 6). Three kinds of scaffoldings were embedded into the PWAL: a) argument template, which was used for constructing evidence-based argument; b) the model of the Toulmin’s TAP, which shows the structure and elements of a sound argument; c) the discussion block, which enabled the students to review what had been proposed during the argumentation. Both quantitative and qualitative data were collected and analyzed. An analytical framework for coding students’ arguments proposed in the PWAL was constructed. The results showed that the argumentation approach has a significant effect on argumentation only in theoretical topics (f(1, 136)=48.2, p < .001, η2=2.62). The post-hoc analysis showed the students in the collaborative group perform significantly better than the students in the individual group (mean difference=2.27). However, there is no significant difference between the two groups regarding their argumentation in descriptive topics. Secondly, the students made significant progress in the PWAL from the earlier descriptive or theoretical topic to the later one. The results enabled us to conclude that the PWAL was effective for students’ argumentation. And the students’ peers’ interaction was essential for students to argue scientifically especially for the theoretical topic. The follow-up qualitative analysis showed student tended to generate arguments through critical dialogue interactions in the theoretical topic which promoted them to use more critiques and to evaluate and co-construct each other’s arguments. More explanations regarding the students’ web-based argumentation and the suggestions for the development of web-based science learning were proposed in our discussions.

Keywords: argumentation, collaborative learning, scientific concepts, web-based learning

Procedia PDF Downloads 93
5292 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam

Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen

Abstract:

In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.

Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks

Procedia PDF Downloads 186
5291 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks

Authors: Mehrdad Shafiei Dizaji, Hoda Azari

Abstract:

The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.

Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven

Procedia PDF Downloads 7
5290 MEET (Maximise the Erasmus Experience Together): Gains, Challenges and Proposals

Authors: Susana Olmos, Catherine Spencer

Abstract:

Every year our School in DIT (Dublin Institute of Technology) hosts approximately 80 Erasmus students from partner universities across Europe. Our own students are required to spend a compulsory 3rd year abroad on study and/or work placements. This is an extremely rewarding experience for all of the students, however, it can also be a challenging one. With this in mind, we started a project which aimed to make this transition as easy and productive as possible. The project, which is called MEET: Maximise the Erasmus Experience Together, focuses on the students’ own active engagement in learning and preparation – outside of the classroom –and their own self-directed pursuit of opportunities to develop their confidence and preparedness, which would work as an important foundation for the transformative learning that study abroad implies. We focussed on creating more structured opportunities where Erasmus students from our partner universities (currently studying at DIT) and our second-year students could interact and learn from each other, and in so doing improve both their language and intercultural skills. Our experience so far has been quite positive and we have seen how students taking part in this project have developed as autonomous learners as well as enhanced both their linguistic and intercultural knowledge. As the linguistic element of our project was one of our main priorities, we asked the students to keep a reflective diary on the activities that were organised by the group in the TL. Also, we use questionnaires as well as personal interviews to assess their development. However, there are challenges and proposals we would make to bring this project forward for the near future.

Keywords: erasmus, intercultural competence, linguistic competence, extra curriculum activities

Procedia PDF Downloads 364
5289 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.

Keywords: classification, computer vision, convolutional neural networks, drone control

Procedia PDF Downloads 192
5288 Improving Climate Awareness and the Knowledge Related to Climate Change's Health Impacts on Medical Schools

Authors: Abram Zoltan

Abstract:

Over the past hundred years, human activities, particularly the burning of fossil fuels, have released enough carbon dioxide and other greenhouse gases to dissipate additional heat into the lower atmosphere and affect the global climate. Climate change affects many social and environmental determinants of health: clean air, safe drinking water, and adequate food. Our aim is to draw attention to the effects of climate change on the health and health care system. Improving climate awareness and the knowledge related to climate change's health impacts are essential among medical students and practicing medical doctors. Therefore, in their everyday practice, they also need some assistance and up-to-date knowledge of how climate change can endanger human health and deal with these novel health problems. Our activity, based on the cooperation of more universities, aims to develop new curriculum outlines and learning materials on climate change's health impacts for medical schools. Special attention is intended to pay to the possible preventative measures against these impacts. For all of this, the project plans to create new curriculum outlines and learning materials for medical students, elaborate methodological guidelines and create training materials for medical doctors' postgraduate learning programs. The target groups of the project are medical students, educational staff of medical schools and universities, practicing medical doctors with special attention to the general practitioners and family doctors. We had searched various surveys, domestic and international studies about the effects of climate change and statistical estimation of the possible consequences. The health effects of climate change can be measured only approximately by considering only a fraction of the potential health effects and assuming continued economic growth and health progress. We can estimate that climate change is expected to cause about 250,000 more deaths. We conclude that climate change is one of the most serious problems of the 21st century, affecting all populations. In the short- to medium-term, the health effects of climate change will be determined mainly by human vulnerability. In the longer term, the effects depend increasingly on the extent to which transformational action is taken now to reduce emissions. We can contribute to reducing environmental pollution by raising awareness and by educating the population.

Keywords: climate change, health impacts, medical students, education

Procedia PDF Downloads 112
5287 Towards Automatic Calibration of In-Line Machine Processes

Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales

Abstract:

In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820

Keywords: data model, machine learning, industrial winding, calibration

Procedia PDF Downloads 227
5286 Exploring Communities of Practice through Public Health Walks for Nurse Education

Authors: Jacqueline P. Davies

Abstract:

Introduction: Student nurses must develop skills in observation, communication and reflection as well as public health knowledge from their first year of training. This paper will explain a method developed for students to collect their own findings about public health in urban areas. These areas are both rich in the history of old public health that informs the content of many traditional public health walks, but are also locations where new public health concerns about chronic disease are concentrated. The learning method explained in this paper enables students to collect their own data and write original work as first year students. Examples of their findings will be given. Methodology: In small groups, health care students are instructed to walk in neighbourhoods near to the hospitals they will soon attend as apprentice nurses. On their walks, they wander slowly, engage in conversations, and enter places open to the public. As they drift, they observe with all five senses in the real three dimensional world to collect data for their reflective accounts of old and new public health. They are encouraged to stop for refreshments and taste, as well as look, hear, smell, and touch while on their walk. They reflect as a group and later develop an individual reflective account in which they write up their deep reflections about what they observed on their walk. In preparation for their walk, they are encouraged to look at studies of quality of Life and other neighbourhood statistics as well as undertaking a risk assessment for their walk. Findings: Reflecting on their walks, students apply theoretical concepts around social determinants of health and health inequalities to develop their understanding of communities in the neighbourhoods visited. They write about the treasured historical architecture made of stone, bronze and marble which have outlived those who built them; but also how the streets are used now. The students develop their observations into thematic analyses such as: what we drink as illustrated by the empty coke can tossed into a now disused drinking fountain; the shift in home-life balance illustrated by streets where families once lived over the shop which are now walked by commuters weaving around each other as they talk on their mobile phones; and security on the street, with CCTV cameras placed at regular intervals, signs warning trespasses and barbed wire; but little evidence of local people watching the street. Conclusion: In evaluations of their first year, students have reported the health walk as one of their best experiences. The innovative approach was commended by the UK governing body of nurse education and it received a quality award from the nurse education funding body. This approach to education allows students to develop skills in the real world and write original work.

Keywords: education, innovation, nursing, urban

Procedia PDF Downloads 269
5285 Ontology for a Voice Transcription of OpenStreetMap Data: The Case of Space Apprehension by Visually Impaired Persons

Authors: Said Boularouk, Didier Josselin, Eitan Altman

Abstract:

In this paper, we present a vocal ontology of OpenStreetMap data for the apprehension of space by visually impaired people. Indeed, the platform based on produsage gives a freedom to data producers to choose the descriptors of geocoded locations. Unfortunately, this freedom, called also folksonomy leads to complicate subsequent searches of data. We try to solve this issue in a simple but usable method to extract data from OSM databases in order to send them to visually impaired people using Text To Speech technology. We focus on how to help people suffering from visual disability to plan their itinerary, to comprehend a map by querying computer and getting information about surrounding environment in a mono-modal human-computer dialogue.

Keywords: TTS, ontology, open street map, visually impaired

Procedia PDF Downloads 279