Search results for: logistics network optimization
2953 Survival Analysis after a First Ischaemic Stroke Event: A Case-Control Study in the Adult Population of England.
Authors: Padma Chutoo, Elena Kulinskaya, Ilyas Bakbergenuly, Nicholas Steel, Dmitri Pchejetski
Abstract:
Stroke is associated with a significant risk of morbidity and mortality. There is scarcity of research on the long-term survival after first-ever ischaemic stroke (IS) events in England with regards to effects of different medical therapies and comorbidities. The objective of this study was to model the all-cause mortality after an IS diagnosis in the adult population of England. Using a retrospective case-control design, we extracted the electronic medical records of patients born prior to or in year 1960 in England with a first-ever ischaemic stroke diagnosis from January 1986 to January 2017 within the Health and Improvement Network (THIN) database. Participants with a history of ischaemic stroke were matched to 3 controls by sex and age at diagnosis and general practice. The primary outcome was the all-cause mortality. The hazards of the all-cause mortality were estimated using a Weibull-Cox survival model which included both scale and shape effects and a shared random effect of general practice. The model included sex, birth cohort, socio-economic status, comorbidities and medical therapies. 20,250 patients with a history of IS (cases) and 55,519 controls were followed up to 30 years. From 2008 to 2015, the one-year all-cause mortality for the IS patients declined with an absolute change of -0.5%. Preventive treatments to cases increased considerably over time. These included prescriptions of statins and antihypertensives. However, prescriptions for antiplatelet drugs decreased in the routine general practice since 2010. The survival model revealed a survival benefit of antiplatelet treatment to stroke survivors with hazard ratio (HR) of 0.92 (0.90 – 0.94). IS diagnosis had significant interactions with gender and age at entry and hypertension diagnosis. IS diagnosis was associated with high risk of all-cause mortality with HR= 3.39 (3.05-3.72) for cases compared to controls. Hypertension was associated with poor survival with HR = 4.79 (4.49 - 5.09) for hypertensive cases relative to non-hypertensive controls, though the detrimental effect of hypertension has not reached significance for hypertensive controls, HR = 1.19(0.82-1.56). This study of English primary care data showed that between 2008 and 2015, the rates of prescriptions of stroke preventive treatments increased, and a short-term all-cause mortality after IS stroke declined. However, stroke resulted in poor long-term survival. Hypertension, a modifiable risk factor, was found to be associated with poor survival outcomes in IS patients. Antiplatelet drugs were found to be protective to survival. Better efforts are required to reduce the burden of stroke through health service development and primary prevention.Keywords: general practice, hazard ratio, health improvement network (THIN), ischaemic stroke, multiple imputation, Weibull-Cox model.
Procedia PDF Downloads 1862952 Discovering the Effects of Meteorological Variables on the Air Quality of Bogota, Colombia, by Data Mining Techniques
Authors: Fabiana Franceschi, Martha Cobo, Manuel Figueredo
Abstract:
Bogotá, the capital of Colombia, is its largest city and one of the most polluted in Latin America due to the fast economic growth over the last ten years. Bogotá has been affected by high pollution events which led to the high concentration of PM10 and NO2, exceeding the local 24-hour legal limits (100 and 150 g/m3 each). The most important pollutants in the city are PM10 and PM2.5 (which are associated with respiratory and cardiovascular problems) and it is known that their concentrations in the atmosphere depend on the local meteorological factors. Therefore, it is necessary to establish a relationship between the meteorological variables and the concentrations of the atmospheric pollutants such as PM10, PM2.5, CO, SO2, NO2 and O3. This study aims to determine the interrelations between meteorological variables and air pollutants in Bogotá, using data mining techniques. Data from 13 monitoring stations were collected from the Bogotá Air Quality Monitoring Network within the period 2010-2015. The Principal Component Analysis (PCA) algorithm was applied to obtain primary relations between all the parameters, and afterwards, the K-means clustering technique was implemented to corroborate those relations found previously and to find patterns in the data. PCA was also used on a per shift basis (morning, afternoon, night and early morning) to validate possible variation of the previous trends and a per year basis to verify that the identified trends have remained throughout the study time. Results demonstrated that wind speed, wind direction, temperature, and NO2 are the most influencing factors on PM10 concentrations. Furthermore, it was confirmed that high humidity episodes increased PM2,5 levels. It was also found that there are direct proportional relationships between O3 levels and wind speed and radiation, while there is an inverse relationship between O3 levels and humidity. Concentrations of SO2 increases with the presence of PM10 and decreases with the wind speed and wind direction. They proved as well that there is a decreasing trend of pollutant concentrations over the last five years. Also, in rainy periods (March-June and September-December) some trends regarding precipitations were stronger. Results obtained with K-means demonstrated that it was possible to find patterns on the data, and they also showed similar conditions and data distribution among Carvajal, Tunal and Puente Aranda stations, and also between Parque Simon Bolivar and las Ferias. It was verified that the aforementioned trends prevailed during the study period by applying the same technique per year. It was concluded that PCA algorithm is useful to establish preliminary relationships among variables, and K-means clustering to find patterns in the data and understanding its distribution. The discovery of patterns in the data allows using these clusters as an input to an Artificial Neural Network prediction model.Keywords: air pollution, air quality modelling, data mining, particulate matter
Procedia PDF Downloads 2582951 Study of Behavior Tribological Cutting Tools Based on Coating
Authors: A. Achour L. Chekour, A. Mekroud
Abstract:
Tribology, the science of lubrication, friction and wear, plays an important role in science "crossroads" initiated by the recent developments in the industry. Its multidisciplinary nature reinforces its scientific interest. It covers all the sciences that deal with the contact between two solids loaded and relative motion. It is thus one of the many intersections more clearly established disciplines such as solid mechanics and the fluids, rheological, thermal, materials science and chemistry. As for his experimental approach, it is based on the physical and processing signals and images. The optimization of operating conditions by cutting tool must contribute significantly to the development and productivity of advanced automation of machining techniques because their implementation requires sufficient knowledge of how the process and in particular the evolution of tool wear. In addition, technological advances have developed the use of very hard materials, refractory difficult machinability, requiring highly resistant materials tools. In this study, we present the behavior wear a machining tool during the roughing operation according to the cutting parameters. The interpretation of the experimental results is based mainly on observations and analyzes of sharp edges e tool using the latest techniques: scanning electron microscopy (SEM) and optical rugosimetry laser beam.Keywords: friction, wear, tool, cutting
Procedia PDF Downloads 3312950 Optimization of Machine Learning Regression Results: An Application on Health Expenditures
Authors: Songul Cinaroglu
Abstract:
Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures.Keywords: machine learning, lasso regression, random forest regression, support vector regression, hyperparameter tuning, health expenditure
Procedia PDF Downloads 2262949 Mechanical Properties and Microstructure of Ultra-High Performance Concrete Containing Fly Ash and Silica Fume
Authors: Jisong Zhang, Yinghua Zhao
Abstract:
The present study investigated the mechanical properties and microstructure of Ultra-High Performance Concrete (UHPC) containing supplementary cementitious materials (SCMs), such as fly ash (FA) and silica fume (SF), and to verify the synergistic effect in the ternary system. On the basis of 30% fly ash replacement, the incorporation of either 10% SF or 20% SF show a better performance compared to the reference sample. The efficiency factor (k-value) was calculated as a synergistic effect to predict the compressive strength of UHPC with these SCMs. The SEM of micrographs and pore volume from BJH method indicate a high correlation with compressive strength. Further, an artificial neural networks model was constructed for prediction of the compressive strength of UHPC containing these SCMs.Keywords: artificial neural network, fly ash, mechanical properties, ultra-high performance concrete
Procedia PDF Downloads 4142948 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation
Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo
Abstract:
The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation
Procedia PDF Downloads 1862947 Optimization of Fin Type and Fin per Inch on Heat Transfer and Pressure Drop of an Air Cooler
Authors: A. Falavand Jozaei, A. Ghafouri
Abstract:
Operation enhancement in an air cooler (heat exchanger) depends on the rate of heat transfer, and pressure drop. In this paper, for a given heat duty, study of the effects of FPI (fin per inch) and fin type (circular and hexagonal fins) on two parameters mentioned above is considered in an air cooler in Iran, Arvand petrochemical. A program in EES (Engineering Equations Solver) software moreover, Aspen B-JAC and HTFS+ software are used for this purpose to solve governing equations. At first the simulated results obtained from this program is compared to the experimental data for two cases of FPI. The effects of FPI from 3 to 15 over heat transfer (Q) to pressure drop ratio (Q/Δp ratio). This ratio is one of the main parameters in design, rating, and simulation heat exchangers. The results show that heat transfer (Q) and pressure drop increase with increasing FPI (fin per inch) steadily, and the Q/Δp ratio increases to FPI = 12 (for circular fins about 47% and for hexagonal fins about 69%) and then decreased gradually to FPI = 15 (for circular fins about 5% and for hexagonal fins about 8%), and Q/Δp ratio is maximum at FPI = 12. The FPI value selection between 8 and 12 obtained as a result to optimum heat transfer to pressure drop ratio. Also by contrast, between circular and hexagonal fins results, the Q/Δp ratio of hexagonal fins more than Q/Δp ratio of circular fins for FPI between 8 and 12 (optimum FPI).Keywords: air cooler, circular and hexagonal fins, fin per inch, heat transfer and pressure drop
Procedia PDF Downloads 4542946 Firm's Growth Leading Dimensions of Blockchain Empowered Information Management System: An Empirical Study
Authors: Umang Varshney, Amit Karamchandani, Rohit Kapoor
Abstract:
Practitioners and researchers have realized that Blockchain is not limited to currency. Blockchain as a distributed ledger can ensure a transparent and traceable supply chain. Due to Blockchain-enabled IoTs, a firm’s information management system can now take inputs from other supply chain partners in real-time. This study aims to provide empirical evidence of dimensions responsible for blockchain implemented firm’s growth and highlight how sector (manufacturing or service), state's regulatory environment, and choice of blockchain network affect the blockchain's usefulness. This post-adoption study seeks to validate the findings of pre-adoption studies done on the blockchain. Data will be collected through a survey of managers working in blockchain implemented firms and analyzed through PLS-SEM.Keywords: blockchain, information management system, PLS-SEM, firm's growth
Procedia PDF Downloads 1262945 Statistical Manufacturing Cell/Process Qualification Sample Size Optimization
Authors: Angad Arora
Abstract:
In production operations/manufacturing, a cell or line is typically a bunch of similar machines (computer numerical control (CNCs), advanced cutting, 3D printing or special purpose machines. For qualifying a typical manufacturing line /cell / new process, Ideally, we need a sample of parts that can be flown through the process and then we make a judgment on the health of the line/cell. However, with huge volumes and mass production scope, such as in the mobile phone industry, for example, the actual cells or lines can go in thousands and to qualify each one of them with statistical confidence means utilizing samples that are very large and eventually add to product /manufacturing cost + huge waste if the parts are not intended to be customer shipped. To solve this, we come up with 2 steps statistical approach. We start with a small sample size and then objectively evaluate whether the process needs additional samples or not. For example, if a process is producing bad parts and we saw those samples early, then there is a high chance that the process will not meet the desired yield and there is no point in keeping adding more samples. We used this hypothesis and came up with 2 steps binomial testing approach. Further, we also prove through results that we can achieve an 18-25% reduction in samples while keeping the same statistical confidence.Keywords: statistics, data science, manufacturing process qualification, production planning
Procedia PDF Downloads 962944 Effectiveness of Column Geometry in High-Rise Buildings
Authors: Man Singh Meena
Abstract:
Structural engineers are facing different kind of challenges due to innovative & bold ideas of architects who are trying to design every structure with uniqueness. In RCC frame structures different geometry of columns can be used in design and rectangular columns can be placed with different type orientation. The analysis is design of structures can also be carried out by different type of software available i.e., STAAD Pro, ETABS and TEKLA. In recent times high-rise building modeling & analysis is done by ETABS due to its certain features which are superior to other software. The case study in this paper mainly emphasizes on structural behavior of high rise building for different column shape configurations like Circular, Square, Rectangular and Rectangular with 90-degree Rotation and rectangular shape plan. In all these column shapes the areas of columns are kept same to study the effect on design of concrete area is same. Modelling of 20-storeys R.C.C. framed building is done on the ETABS software for analysis. Post analysis of the structure, maximum bending moments, shear forces and maximum longitudinal reinforcement are computed and compared for three different story structures to identify the effectiveness of geometry of column.Keywords: high-rise building, column geometry, building modelling, ETABS analysis, building design, structural analysis, structural optimization
Procedia PDF Downloads 812943 Research on the Updating Strategy of Public Space in Small Towns in Zhejiang Province under the Background of New-Style Urbanization
Abstract:
Small towns are the most basic administrative institutions in our country, which are connected with cities and rural areas. Small towns play an important role in promoting local urban and rural economic development, providing the main public services and maintaining social stability in social governance. With the vigorous development of small towns and the transformation of industrial structure, the changes of social structure, spatial structure, and lifestyle are lagging behind, causing that the spatial form and landscape style do not belong to both cities and rural areas, and seriously affecting the quality of people’s life space and environment. The rural economy in Zhejiang Province has started, the society and the population are also developing in relative stability. In September 2016, Zhejiang Province set out the 'Technical Guidelines for Comprehensive Environmental Remediation of Small Towns in Zhejiang Province,' so as to comprehensively implement the small town comprehensive environmental remediation with the main content of strengthening the plan and design leading, regulating environmental sanitation, urban order and town appearance. In November 2016, Huzhou City started the comprehensive environmental improvement of small towns, strived to use three years to significantly improve the 115 small towns, as well as to create a number of high quality, distinctive and beautiful towns with features of 'clean and livable, rational layout, industrial development, poetry and painting style'. This paper takes Meixi Town, Zhangwu Town and Sanchuan Village in Huzhou City as the empirical cases, analyzes the small town public space by applying the relative theory of actor-network and space syntax. This paper also analyzes the spatial composition in actor and social structure elements, as well as explores the relationship of actor’s spatial practice and public open space by combining with actor-network theory. This paper introduces the relevant theories and methods of spatial syntax, carries out research analysis and design planning analysis of small town spaces from the perspective of quantitative analysis. And then, this paper proposes the effective updating strategy for the existing problems in public space. Through the planning and design in the building level, the dissonant factors produced by various spatial combination of factors and between landscape design and urban texture during small town development will be solved, inhabitant quality of life will be promoted, and town development vitality will be increased.Keywords: small towns, urbanization, public space, updating
Procedia PDF Downloads 2282942 Adaptive Data Approximations Codec (ADAC) for AI/ML-based Cyber-Physical Systems
Authors: Yong-Kyu Jung
Abstract:
The fast growth in information technology has led to de-mands to access/process data. CPSs heavily depend on the time of hardware/software operations and communication over the network (i.e., real-time/parallel operations in CPSs (e.g., autonomous vehicles). Since data processing is an im-portant means to overcome the issue confronting data management, reducing the gap between the technological-growth and the data-complexity and channel-bandwidth. An adaptive perpetual data approximation method is intro-duced to manage the actual entropy of the digital spectrum. An ADAC implemented as an accelerator and/or apps for servers/smart-connected devices adaptively rescales digital contents (avg.62.8%), data processing/access time/energy, encryption/decryption overheads in AI/ML applications (facial ID/recognition).Keywords: adaptive codec, AI, ML, HPC, cyber-physical, cybersecurity
Procedia PDF Downloads 792941 Optimizing Resource Allocation and Indoor Location Using Bluetooth Low Energy
Authors: Néstor Álvarez-Díaz, Pino Caballero-Gil, Héctor Reboso-Morales, Francisco Martín-Fernández
Abstract:
The recent tendency of "Internet of Things" (IoT) has developed in the last years, causing the emergence of innovative communication methods among multiple devices. The appearance of Bluetooth Low Energy (BLE) has allowed a push to IoT in relation to smartphones. In this moment, a set of new applications related to several topics like entertainment and advertisement has begun to be developed but not much has been done till now to take advantage of the potential that these technologies can offer on many business areas and in everyday tasks. In the present work, the application of BLE technology and smartphones is proposed on some business areas related to the optimization of resource allocation in huge facilities like airports. An indoor location system has been developed through triangulation methods with the use of BLE beacons. The described system can be used to locate all employees inside the building in such a way that any task can be automatically assigned to a group of employees. It should be noted that this system cannot only be used to link needs with employees according to distances, but it also takes into account other factors like occupation level or category. In addition, it has been endowed with a security system to manage business and personnel sensitive data. The efficiency of communications is another essential characteristic that has been taken into account in this work.Keywords: bluetooth low energy, indoor location, resource assignment, smartphones
Procedia PDF Downloads 3952940 The Management Information System for Convenience Stores: Case Study in 7 Eleven Shop in Bangkok
Authors: Supattra Kanchanopast
Abstract:
The purpose of this research is to develop and design a management information system for 7 eleven shop in Bangkok. The system was designed and developed to meet users’ requirements via the internet network by use of application software such as My SQL for database management, Apache HTTP Server for Web Server and PHP Hypertext Preprocessor for an interface between web server, database and users. The system was designed into two subsystems as the main system, or system for head office, and the branch system for branch shops. These consisted of three parts which are classified by user management as shop management, inventory management and Point of Sale (POS) management. The implementation of the MIS for the mini-mart shop, can lessen the amount of paperwork and reduce repeating tasks so it may decrease the capital of the business and support an extension of branches in the future as well.Keywords: convenience store, the management information system, inventory management, 7 eleven shop
Procedia PDF Downloads 4832939 Possibility Theory Based Multi-Attribute Decision-Making: Application in Facility Location-Selection Problem under Uncertain and Extreme Environment
Authors: Bezhan Ghvaberidze
Abstract:
A fuzzy multi-objective facility location-selection problem (FLSP) under uncertain and extreme environments based on possibility theory is developed. The model’s uncertain parameters in the q-rung orthopair fuzzy values are presented and transformed in the Dempster-Shaper’s belief structure environment. An objective function – distribution centers’ selection ranking index as an extension of Dempster’s extremal expectations under discrimination q-rung orthopair fuzzy information is constructed. Experts evaluate each humanitarian aid from distribution centers (HADC) against each of the uncertain factors. HADCs location problem is reduced to the bicriteria problem of partitioning the set of customers by the set of centers: (1) – Minimization of transportation costs; (2) – Maximization of centers’ selection ranking indexes. Partitioning type constraints are also constructed. For an illustration of the obtained results, a numerical example is created from the facility location-selection problem.Keywords: FLSP, multi-objective combinatorial optimization problem, evidence theory, HADC, q-rung orthopair fuzzy set, possibility theory
Procedia PDF Downloads 1192938 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments
Authors: Skyler Kim
Abstract:
An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning
Procedia PDF Downloads 1872937 The Use of Nano-Crystalline Starch in Probiotic Yogurt and Its Effects on the Physicochemical and Biological Properties
Authors: Ali Seirafi
Abstract:
The purpose of this study was to investigate the effect and application of starch nanocrystals on physicochemical and microbial properties in the industrial production of probiotic yogurt. In this study, probiotic yoghurt was manufactured by industrial method with the optimization and control of the technological factors affecting the probabilistic biomass, using probiotic bacteria Lactobacillus acidophilus and Bifidobacterium bifidum with commonly used yogurt primers. Afterwards, the effects of different levels of fat (1.3%, 2.5 and 4%), as well as the effects of various perbiotic compounds include starch nanocrystals (0.5%, 1 and 1.5%), galactolegalosaccharide (0.5% 1 and 1.5%) and fructooligosaccharide (0.5%, 1 and 1.5%) were evaluated. In addition, the effect of packaging (polyethylene and glass) was studied, while the effect of pH changes and final acidity were studied at each stage. In this research, all experiments were performed in 3 replications and the results were analyzed in a completely randomized design with SAS version 9.1 software. The results of this study showed that the addition of starch nanocrystal compounds as well as the use of glass packaging had the most positive effects on the survival of Lactobacillus acidophilus bacteria and the addition of nano-crystals and the increase in the cooling rate of the product, had the most positive effects on the survival of bacteria Bifidobacterium bifidum.Keywords: Bifidobacterium bifidum, Lactobacillus acidophilus, prebiotics, probiotic yogurt
Procedia PDF Downloads 1602936 Decomposition of the Customer-Server Interaction in Grocery Shops
Authors: Andreas Ahrens, Ojaras Purvinis, Jelena Zascerinska
Abstract:
A successful shopping experience without overcrowded shops and long waiting times undoubtedly leads to the release of happiness hormones and is generally considered the goal of any optimization. Factors influencing the shopping experience can be divided into internal and external ones. External factors are related, e. g. to the arrival of the customers to the shop, whereas internal are linked with the service process itself when checking out (waiting in the queue to the cash register and the scanning of the goods as well as the payment process itself) or any other non-expected delay when changing the status from a visitor to a buyer by choosing goods or items. This paper divides the customer-server interaction into five phases starting with the customer's arrival at the shop, the selection of goods, the buyer waiting in the queue to the cash register, the payment process, and ending with the customer or buyer's departure. Our simulation results show how five phases are intertwined and influence the overall shopping experience. Parameters for measuring the shopping experience are estimated based on the burstiness level in each of the five phases of the customer-server interaction.Keywords: customers’ burstiness, cash register, customers’ wait-ing time, gap distribution function
Procedia PDF Downloads 1482935 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series
Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold
Abstract:
To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network
Procedia PDF Downloads 1402934 ANN Modeling for Cadmium Biosorption from Potable Water Using a Packed-Bed Column Process
Authors: Dariush Jafari, Seyed Ali Jafari
Abstract:
The recommended limit for cadmium concentration in potable water is less than 0.005 mg/L. A continuous biosorption process using indigenous red seaweed, Gracilaria corticata, was performed to remove cadmium from the potable water. The process was conducted under fixed conditions and the breakthrough curves were achieved for three consecutive sorption-desorption cycles. A modeling based on Artificial Neural Network (ANN) was employed to fit the experimental breakthrough data. In addition, a simplified semi empirical model, Thomas, was employed for this purpose. It was found that ANN well described the experimental data (R2>0.99) while the Thomas prediction were a bit less successful with R2>0.97. The adjusted design parameters using the nonlinear form of Thomas model was in a good agreement with the experimentally obtained ones. The results approve the capability of ANN to predict the cadmium concentration in potable water.Keywords: ANN, biosorption, cadmium, packed-bed, potable water
Procedia PDF Downloads 4312933 Optimization of Surface Roughness by Taguchi’s Method for Turning Process
Authors: Ashish Ankus Yerunkar, Ravi Terkar
Abstract:
Study aimed at evaluating the best process environment which could simultaneously satisfy requirements of both quality as well as productivity with special emphasis on reduction of cutting tool flank wear, because reduction in flank wear ensures increase in tool life. The predicted optimal setting ensured minimization of surface roughness. Purpose of this paper is focused on the analysis of optimum cutting conditions to get lowest surface roughness in turning SCM 440 alloy steel by Taguchi method. Design for the experiment was done using Taguchi method and 18 experiments were designed by this process and experiments conducted. The results are analyzed using ANOVA method. Taguchi method has depicted that the depth of cut has significant role to play in producing lower surface roughness followed by feed. The Cutting speed has lesser role on surface roughness from the tests. The vibrations of the machine tool, tool chattering are the other factors which may contribute poor surface roughness to the results and such factors ignored for analyses. The inferences by this method will be useful to other researches for similar type of study and may be vital for further research on tool vibrations, cutting forces etc.Keywords: surface roughness (ra), machining, dry turning, taguchi method, turning process, anova method, mahr perthometer
Procedia PDF Downloads 3672932 Aerobic Bioprocess Control Using Artificial Intelligence Techniques
Authors: M. Caramihai, Irina Severin
Abstract:
This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control.Keywords: bioprocess, intelligent control, neural nets, fuzzy structure, hybrid techniques
Procedia PDF Downloads 4222931 Mathematical Modeling and Algorithms for the Capacitated Facility Location and Allocation Problem with Emission Restriction
Authors: Sagar Hedaoo, Fazle Baki, Ahmed Azab
Abstract:
In supply chain management, network design for scalable manufacturing facilities is an emerging field of research. Facility location allocation assigns facilities to customers to optimize the overall cost of the supply chain. To further optimize the costs, capacities of these facilities can be changed in accordance with customer demands. A mathematical model is formulated to fully express the problem at hand and to solve small-to-mid range instances. A dedicated constraint has been developed to restrict emissions in line with the Kyoto protocol. This problem is NP-Hard; hence, a simulated annealing metaheuristic has been developed to solve larger instances. A case study on the USA-Canada cross border crossing is used.Keywords: emission, mixed integer linear programming, metaheuristic, simulated annealing
Procedia PDF Downloads 3092930 Pollutant Dispersion in Coastal Waters
Authors: Sonia Ben Hamza, Sabra Habli, Nejla Mahjoub Saïd, Hervé Bournot, Georges Le Palec
Abstract:
This paper spots light on the effect of a point source pollution on streams, stemming out from intentional release caused by unconscious facts. The consequences of such contamination on ecosystems are very serious. Accordingly, effective tools are highly demanded in this respect, which enable us to come across an accurate progress of pollutant and anticipate different measures to be applied in order to limit the degradation of the environmental surrounding. In this context, we are eager to model a pollutant dispersion of a free surface flow which is ejected by an outfall sewer of an urban sewerage network in coastal water taking into account the influence of climatic parameters on the spread of pollutant. Numerical results showed that pollutant dispersion is merely due to the presence of vortices and turbulence. Hence, it was realized that the pollutant spread in seawater is strongly correlated with climatic conditions in this region.Keywords: coastal waters, numerical simulation, pollutant dispersion, turbulent flows
Procedia PDF Downloads 5142929 Operational Excellence Performance in Pharmaceutical Quality Control Labs: An Empirical Investigation of the Effectiveness and Efficiency Relation
Authors: Stephan Koehler, Thomas Friedli
Abstract:
Performance measurement has evolved over time from a unidimensional short-term efficiency focused approach into a balanced multidimensional approach. Today, integrated performance measurement frameworks are often used to avoid local optimization and to encourage continuous improvement of an organization. In literature, the multidimensional characteristic of performance measurement is often described by competitive priorities. At the same time, on the highest abstraction level an effectiveness and efficiency dimension of performance measurement can be distinguished. This paper aims at a better understanding of the composition of effectiveness and efficiency and their relation in pharmaceutical quality control labs. The research comprises a lab-specific operationalization of effectiveness and efficiency and examines how the two dimensions are interlinked. The basis for the analysis represents a database of the University of St. Gallen including a divers set of 40 different pharmaceutical quality control labs. The research provides empirical evidence that labs with a high effectiveness also accompany a high efficiency. Lab effectiveness explains 29.5 % of the variance in lab efficiency. In addition, labs with an above median operational excellence performance have a statistically significantly higher lab effectiveness and lab efficiency compared to the below median performing labs.Keywords: empirical study, operational excellence, performance measurement, pharmaceutical quality control lab
Procedia PDF Downloads 1612928 Black-Box-Base Generic Perturbation Generation Method under Salient Graphs
Authors: Dingyang Hu, Dan Liu
Abstract:
DNN (Deep Neural Network) deep learning models are widely used in classification, prediction, and other task scenarios. To address the difficulties of generic adversarial perturbation generation for deep learning models under black-box conditions, a generic adversarial ingestion generation method based on a saliency map (CJsp) is proposed to obtain salient image regions by counting the factors that influence the input features of an image on the output results. This method can be understood as a saliency map attack algorithm to obtain false classification results by reducing the weights of salient feature points. Experiments also demonstrate that this method can obtain a high success rate of migration attacks and is a batch adversarial sample generation method.Keywords: adversarial sample, gradient, probability, black box
Procedia PDF Downloads 1042927 Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access
Authors: T. Wanyama, B. Far
Abstract:
Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system.Keywords: community water usage, fuzzy logic, irrigation, multi-agent system
Procedia PDF Downloads 2982926 Optimal Design Solution in "The Small Module" Within the Possibilities of Ecology, Environmental Science/Engineering, and Economics
Authors: Hassan Wajid
Abstract:
We will commend accommodating an environmentally friendly architectural proposal that is extremely common/usual but whose features will make it a sustainable space. In this experiment, the natural and artificial built space is being proposed in such a way that deals with Environmental, Ecological, and Economic Criteria under different climatic conditions. Moreover, the criteria against ecology-environment-economics reflect in the different modules which are being experimented with and analyzed by multiple research groups. The ecological, environmental, and economic services are provided used as units of production side by side, resulting in local job creation and saving resources, for instance, conservation of rainwater, soil formation or protection, less energy consumption to achieve Net Zero, and a stable climate as a whole. The synthesized results from the collected data suggest several aspects to consider when designing buildings for beginning the design process under the supervision of instructors/directors who are responsible for developing curricula and sustainable goals. Hence, the results of the research and the suggestions will benefit the sustainable design through multiple results, heat analysis of different small modules, and comparisons. As a result, it is depleted as the resources are either consumed or the pollution contaminates the resources.Keywords: optimization, ecology, environment, sustainable solution
Procedia PDF Downloads 732925 Incorporation of Coarse Rubber Aggregates in the Formulation of Self-Compacting Concrete: Optimization and Characterization
Authors: Zaoiai Said, Makani Abdelkadir, Tafraoui Ahmed
Abstract:
Concrete material suffers from a relatively low tensile strength and deformation capacity is limited. Such defects of the concrete are very fragile and sensitive to shrinkage cracking materials. The Self- Compacting Concrete (SCC) are highly fluid concretes whose implementation without vibration. This material replaces traditional vibrated concrete mainly seen techno-economic interest it presents. The SCC has several advantages which are at the origin of their development crunching. The research is therefore to conduct a comparison in terms of rheological and mechanical performance between different formulations to find the optimal dosage for rubber granulates. Through this research, we demonstrated that it is possible to make different settings SCC composition having good rheological and mechanical properties. This study also showed that the substitution of natural coarse aggregates (NA) by coarse rubber aggregates (RA) in the composition of the SCC, contributes to a slight variation of workability in the fresh state parameters still remaining in the field of SCC required by the AFGC recommendations. The experimental results show that the compressive strengths of SCC decreased slightly by substituting NA by RA. Finally, the decrease in free shrinkage is proportional to the percentage of RA incorporated into the composition of concrete. This reduction is mainly due to the improvement of the deformability of these materials.Keywords: self-compacting concrete, coarse rubber aggregate, rheological characterization, mechanical performance, shrinkage
Procedia PDF Downloads 2872924 Least Squares Solution for Linear Quadratic Gaussian Problem with Stochastic Approximation Approach
Authors: Sie Long Kek, Wah June Leong, Kok Lay Teo
Abstract:
Linear quadratic Gaussian model is a standard mathematical model for the stochastic optimal control problem. The combination of the linear quadratic estimation and the linear quadratic regulator allows the state estimation and the optimal control policy to be designed separately. This is known as the separation principle. In this paper, an efficient computational method is proposed to solve the linear quadratic Gaussian problem. In our approach, the Hamiltonian function is defined, and the necessary conditions are derived. In addition to this, the output error is defined and the least-square optimization problem is introduced. By determining the first-order necessary condition, the gradient of the sum squares of output error is established. On this point of view, the stochastic approximation approach is employed such that the optimal control policy is updated. Within a given tolerance, the iteration procedure would be stopped and the optimal solution of the linear-quadratic Gaussian problem is obtained. For illustration, an example of the linear-quadratic Gaussian problem is studied. The result shows the efficiency of the approach proposed. In conclusion, the applicability of the approach proposed for solving the linear quadratic Gaussian problem is highly demonstrated.Keywords: iteration procedure, least squares solution, linear quadratic Gaussian, output error, stochastic approximation
Procedia PDF Downloads 188