Search results for: electron transport chain
1150 Dynamic Network Approach to Air Traffic Management
Authors: Catia S. A. Sima, K. Bousson
Abstract:
Congestion in the Terminal Maneuvering Areas (TMAs) of larger airports impacts all aspects of air traffic flow, not only at national level but may also induce arrival delays at international level. Hence, there is a need to monitor appropriately the air traffic flow in TMAs so that efficient decisions may be taken to manage their occupancy rates. It would be desirable to physically increase the existing airspace to accommodate all existing demands, but this question is entirely utopian and, given this possibility, several studies and analyses have been developed over the past decades to meet the challenges that have arisen due to the dizzying expansion of the aeronautical industry. The main objective of the present paper is to propose concepts to manage and reduce the degree of uncertainty in the air traffic operations, maximizing the interest of all involved, ensuring a balance between demand and supply, and developing and/or adapting resources that enable a rapid and effective adaptation of measures to the current context and the consequent changes perceived in the aeronautical industry. A central task is to emphasize the increase in air traffic flow management capacity to the present day, taking into account not only a wide range of methodologies but also equipment and/or tools already available in the aeronautical industry. The efficient use of these resources is crucial as the human capacity for work is limited and the actors involved in all processes related to air traffic flow management are increasingly overloaded and, as a result, operational safety could be compromised. The methodology used to answer and/or develop the issues listed above is based on the advantages promoted by the application of Markov Chain principles that enable the construction of a simplified model of a dynamic network that describes the air traffic flow behavior anticipating their changes and eventual measures that could better address the impact of increased demand. Through this model, the proposed concepts are shown to have potentials to optimize the air traffic flow management combined with the operation of the existing resources at each moment and the circumstances found in each TMA, using historical data from the air traffic operations and specificities found in the aeronautical industry, namely in the Portuguese context.Keywords: air traffic flow, terminal maneuvering area, TMA, air traffic management, ATM, Markov chains
Procedia PDF Downloads 1331149 Field Emission Scanning Microscope Image Analysis for Porosity Characterization of Autoclaved Aerated Concrete
Authors: Venuka Kuruwita Arachchige Don, Mohamed Shaheen, Chris Goodier
Abstract:
Aerated autoclaved concrete (AAC) is known for its lightweight, easy handling, high thermal insulation, and extremely porous structure. Investigation of pore behavior in AAC is crucial for characterizing the material, standardizing design and production techniques, enhancing the mechanical, durability, and thermal performance, studying the effectiveness of protective measures, and analyzing the effects of weather conditions. The significant details of pores are complicated to observe with acknowledged accuracy. The High-resolution Field Emission Scanning Electron Microscope (FESEM) image analysis is a promising technique for investigating the pore behavior and density of AAC, which is adopted in this study. Mercury intrusion porosimeter and gas pycnometer were employed to characterize porosity distribution and density parameters. The analysis considered three different densities of AAC blocks and three layers in the altitude direction within each block. A set of understandings was presented to extract and analyze the details of pore shape, pore size, pore connectivity, and pore percentages from FESEM images of AAC. Average pore behavior outcomes per unit area were presented. Comparison of porosity distribution and density parameters revealed significant variations. FESEM imaging offered unparalleled insights into porosity behavior, surpassing the capabilities of other techniques. The analysis conducted from a multi-staged approach provides porosity percentage occupied by various pore categories, total porosity, variation of pore distribution compared to AAC densities and layers, number of two-dimensional and three-dimensional pores, variation of apparent and matrix densities concerning pore behaviors, variation of pore behavior with respect to aluminum content, and relationship among shape, diameter, connectivity, and percentage in each pore classification.Keywords: autoclaved aerated concrete, density, imaging technique, microstructure, porosity behavior
Procedia PDF Downloads 691148 Design of Nanoreinforced Polyacrylamide-Based Hybrid Hydrogels for Bone Tissue Engineering
Authors: Anuj Kumar, Kummara M. Rao, Sung S. Han
Abstract:
Bone tissue engineering has emerged as a potentially alternative method for localized bone defects or diseases, congenital deformation, and surgical reconstruction. The designing and the fabrication of the ideal scaffold is a great challenge, in restoring of the damaged bone tissues via cell attachment, proliferation, and differentiation under three-dimensional (3D) biological micro-/nano-environment. In this case, hydrogel system composed of high hydrophilic 3D polymeric-network that is able to mimic some of the functional physical and chemical properties of the extracellular matrix (ECM) and possibly may provide a suitable 3D micro-/nano-environment (i.e., resemblance of native bone tissues). Thus, this proposed hydrogel system is highly permeable and facilitates the transport of the nutrients and metabolites. However, the use of hydrogels in bone tissue engineering is limited because of their low mechanical properties (toughness and stiffness) that continue to posing challenges in designing and fabrication of tough and stiff hydrogels along with improved bioactive properties. For this purpose, in our lab, polyacrylamide-based hybrid hydrogels were synthesized by involving sodium alginate, cellulose nanocrystals and silica-based glass using one-step free-radical polymerization. The results showed good in vitro apatite-forming ability (biomineralization) and improved mechanical properties (under compression in the form of strength and stiffness in both wet and dry conditions), and in vitro osteoblastic (MC3T3-E1 cells) cytocompatibility. For in vitro cytocompatibility assessment, both qualitative (attachment and spreading of cells using FESEM) and quantitative (cell viability and proliferation using MTT assay) analyses were performed. The obtained hybrid hydrogels may potentially be used in bone tissue engineering applications after establishment of in vivo characterization.Keywords: bone tissue engineering, cellulose nanocrystals, hydrogels, polyacrylamide, sodium alginate
Procedia PDF Downloads 1511147 Development and Validation of a Coronary Heart Disease Risk Score in Indian Type 2 Diabetes Mellitus Patients
Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad
Abstract:
Diabetes in India is growing at an alarming rate and the complications caused by it need to be controlled. Coronary heart disease (CHD) is one of the complications that will be discussed for prediction in this study. India has the second most number of diabetes patients in the world. To the best of our knowledge, there is no CHD risk score for Indian type 2 diabetes patients. Any form of CHD has been taken as the event of interest. A sample of 750 was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of CHD. Predictive risk scores of CHD events are designed by cox proportional hazard regression. Model calibration and discrimination is assessed from Hosmer Lemeshow and area under receiver operating characteristic (ROC) curve. Overfitting and underfitting of the model is checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Youden’s index is used to choose the optimal cut off point from the scores. Five year probability of CHD is predicted by both survival function and Markov chain two state model and the better technique is concluded. The risk scores for CHD developed can be calculated by doctors and patients for self-control of diabetes. Furthermore, the five-year probabilities can be implemented as well to forecast and maintain the condition of patients.Keywords: coronary heart disease, cox proportional hazard regression, ROC curve, type 2 diabetes Mellitus
Procedia PDF Downloads 2191146 On the Internal Structure of the ‘Enigmatic Electrons’
Authors: Natarajan Tirupattur Srinivasan
Abstract:
Quantum mechanics( QM) and (special) relativity (SR) have indeed revolutionized the very thinking of physicists, and the spectacular successes achieved over a century due to these two theories are mind-boggling. However, there is still a strong disquiet among some physicists. While the mathematical structure of these two theories has been established beyond any doubt, their physical interpretations are still being contested by many. Even after a hundred years of their existence, we cannot answer a very simple question, “What is an electron”? Physicists are struggling even now to come to grips with the different interpretations of quantum mechanics with all their ramifications. However, it is indeed strange that the (special) relativity theory of Einstein enjoys many orders of magnitude of “acceptance”, though both theories have their own stocks of weirdness in the results, like time dilation, mass increase with velocity, the collapse of the wave function, quantum jump, tunnelling, etc. Here, in this paper, it would be shown that by postulating an intrinsic internal motion to these enigmatic electrons, one can build a fairly consistent picture of reality, revealing a very simple picture of nature. This is also evidenced by Schrodinger’s ‘Zitterbewegung’ motion, about which so much has been written. This leads to a helical trajectory of electrons when they move in a laboratory frame. It will be shown that the helix is a three-dimensional wave having all the characteristics of our familiar 2D wave. Again, the helix, being a geodesic on an imaginary cylinder, supports ‘quantization’, and its representation is just the complex exponentials matching with the wave function of quantum mechanics. By postulating the instantaneous velocity of the electrons to be always ‘c’, the velocity of light, the entire relativity comes alive, and we can interpret the ‘time dilation’, ‘mass increase with velocity’, etc., in a very simple way. Thus, this model unifies both QM and SR without the need for a counterintuitive postulate of Einstein about the constancy of the velocity of light for all inertial observers. After all, if the motion of an inertial frame cannot affect the velocity of light, the converse that this constant also cannot affect the events in the frame must be true. But entire relativity is about how ‘c’ affects time, length, mass, etc., in different frames.Keywords: quantum reconstruction, special theory of relativity, quantum mechanics, zitterbewegung, complex wave function, helix, geodesic, Schrodinger’s wave equations
Procedia PDF Downloads 731145 Investigating the Steam Generation Potential of Lithium Bromide Based CuO Nanofluid under Simulated Solar Flux
Authors: Tamseela Habib, Muhammad Amjad, Muhammad Edokali, Masome Moeni, Olivia Pickup, Ali Hassanpour
Abstract:
Nanofluid-assisted steam generation is rapidly attracting attention amongst the scientific community since it can be applied in a wide range of industrial processes. Because of its high absorption rate of solar energy, nanoparticle-based solar steam generation could be a major contributor to many applications, including water desalination, sterilization and power generation. Lithium bromide-based iron oxide nanofluids have been previously studied in steam generation, which showed promising results. However, the efficiency of the system could be improved if a more heat-conductive nanofluid system could be utilised. In the current paper, we report on an experimental investigation of the photothermal conversion properties of functionalised Copper oxide (CuO) nanoparticles used in Lithium Bromide salt solutions. CuO binary nanofluid was prepared by chemical functionalization with polyethyleneimine (PEI). Long-term stability evaluation of prepared binary nanofluid was done by a high-speed centrifuge analyser which showed a 0.06 Instability index suggesting low agglomeration and sedimentation tendencies. This stability is also supported by the measurements from dynamic light scattering (DLS), transmission electron microscope (TEM), and ultraviolet-visible (UV-Vis) spectrophotometer. The fluid rheology is also characterised, which suggests the system exhibits a Newtonian fluid behavior. The photothermal conversion efficiency of different concentrations of CuO was experimentally investigated under a solar simulator. Experimental results reveal that the binary nanofluid in this study can remarkably increase the solar energy trapping efficiency and evaporation rate as compared to conventional fluids due to localized solar energy harvesting by the surface of the nanofluid. It was found that 0.1wt% CuO NP is the optimum nanofluid concentration for enhanced sensible and latent heat efficiencies.Keywords: nanofluids, vapor absorption refrigeration system, steam generation, high salinity
Procedia PDF Downloads 841144 Spectral Response Measurements and Materials Analysis of Ageing Solar Photovoltaic Modules
Authors: T. H. Huang, C. Y. Gao, C. H. Lin, J. L. Kwo, Y. K. Tseng
Abstract:
The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. In this study, the accelerated aging of different light sources was combined with spectral response measurements to understand the effect of light sources on aging tests. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with full-spectrum and UVC light sources for accelerated aging, as well as a control group without aging. The full-spectrum aging was performed by irradiating the solar cell with a xenon lamp like the solar spectrum for two weeks, while the accelerated aging was performed by irradiating the solar cell with a UVC lamp for two weeks. The samples were first visually observed, and infrared thermal images were taken, and then the electrical (IV) and Spectral Responsivity (SR) data were obtained by measuring the spectral response of the samples, followed by Scanning Electron Microscopy (SEM), Raman spectroscopy (Raman), and X-ray Diffraction (XRD) analysis. The results of electrical (IV) and Spectral Responsivity (SR) and material analyses were used to compare the differences between packaged and unpackaged solar cells with full spectral aging, accelerated UVC aging, and unaged solar cells. The main objective of this study is to compare the difference in the aging of packaged and unpackaged solar cells by irradiating different light sources. We determined by infrared thermal imaging that both full-spectrum aging and UVC accelerated aging increase the defects of solar cells, and IV measurements demonstrated that the conversion efficiency of solar cells decreases after full-spectrum aging and UVC accelerated aging. SEM observed some scorch marks on both unpackaged UVC accelerated aging solar cells and unpackaged full-spectrum aging solar cells. Raman spectroscopy examines the Si intensity of solar cells, and XRD confirms the crystallinity of solar cells by the intensity of Si and Ag winding peaks.Keywords: solar cell, aging, spectral response measurement
Procedia PDF Downloads 1031143 Magnetohemodynamic of Blood Flow Having Impact of Radiative Flux Due to Infrared Magnetic Hyperthermia: Spectral Relaxation Approach
Authors: Ebenezer O. Ige, Funmilayo H. Oyelami, Joshua Olutayo-Irheren, Joseph T. Okunlola
Abstract:
Hyperthermia therapy is an adjuvant procedure during which perfused body tissues is subjected to elevated range of temperature in bid to achieve improved drug potency and efficacy of cancer treatment. While a selected class of hyperthermia techniques is shouldered on the thermal radiations derived from single-sourced electro-radiation measures, there are deliberations on conjugating dual radiation field sources in an attempt to improve the delivery of therapy procedure. This paper numerically explores the thermal effectiveness of combined infrared hyperemia having nanoparticle recirculation in the vicinity of imposed magnetic field on subcutaneous strata of a model lesion as ablation scheme. An elaborate Spectral relaxation method (SRM) was formulated to handle equation of coupled momentum and thermal equilibrium in the blood-perfused tissue domain of a spongy fibrous tissue. Thermal diffusion regimes in the presence of external magnetic field imposition were described leveraging on the renowned Roseland diffusion approximation to delineate the impact of radiative flux within the computational domain. The contribution of tissue sponginess was examined using mechanics of pore-scale porosity over a selected of clinical informed scenarios. Our observations showed for a substantial depth of spongy lesion, magnetic field architecture constitute the control regimes of hemodynamics in the blood-tissue interface while facilitating thermal transport across the depth of the model lesion. This parameter-indicator could be utilized to control the dispensing of hyperthermia treatment in intravenous perfused tissue.Keywords: spectra relaxation scheme, thermal equilibrium, Roseland diffusion approximation, hyperthermia therapy
Procedia PDF Downloads 1181142 Simulation: A Tool for Stabilization of Welding Processes in Lean Production Concepts
Authors: Ola Jon Mork, Lars Andre Giske, Emil Bjørlykhaug
Abstract:
Stabilization of critical processes in order to have the right quality of the products, more efficient production and smoother flow is a key issue in lean production. This paper presents how simulation of key welding processes can stabilize complicated welding processes in small scale production, and how simulation can impact the entire production concept seen from the perspective of lean production. First, a field study was made to learn the production processes in the factory, and subsequently the field study was transformed into a value stream map to get insight into each operation, the quality issues, operation times, lead times and flow of materials. Valuable practical knowledge of how the welding operations were done by operators, appropriate tools and jigs, and type of robots that could be used, was collected. All available information was then implemented into a simulation environment for further elaboration and development. Three researchers, the management of the company and skilled operators at the work floor where working on the project over a period of eight months, and a detailed description of the process was made by the researchers. The simulation showed that simulation could solve a number of technical challenges, the robot program can be tuned in off line mode, and the design and testing of the robot cell could be made in the simulator. Further on the design of the product could be optimized for robot welding and the jigs could be designed and tested in simulation environment. This means that a key issue of lean production can be solved; the welding operation will work with almost 100% performance when it is put into real production. Stabilizing of one key process is critical to gain control of the entire value chain, then a Takt Time can be established and the focus can be directed towards the next process in the production which should be stabilized. Results show that industrial parameters like welding time, welding cost and welding quality can be defined on the simulation stage. Further on, this gives valuable information for calculation of the factories business performance, like manufacturing volume and manufacturing efficiency. Industrial impact from simulation is more efficient implementation of lean manufacturing, since the welding process can be stabilized. More research should be done to gain more knowledge about simulation as a tool for implementation of lean, especially where there complex processes.Keywords: simulation, lean, stabilization, welding process
Procedia PDF Downloads 3211141 Parametric Approach for Reserve Liability Estimate in Mortgage Insurance
Authors: Rajinder Singh, Ram Valluru
Abstract:
Chain Ladder (CL) method, Expected Loss Ratio (ELR) method and Bornhuetter-Ferguson (BF) method, in addition to more complex transition-rate modeling, are commonly used actuarial reserving methods in general insurance. There is limited published research about their relative performance in the context of Mortgage Insurance (MI). In our experience, these traditional techniques pose unique challenges and do not provide stable claim estimates for medium to longer term liabilities. The relative strengths and weaknesses among various alternative approaches revolve around: stability in the recent loss development pattern, sufficiency and reliability of loss development data, and agreement/disagreement between reported losses to date and ultimate loss estimate. CL method results in volatile reserve estimates, especially for accident periods with little development experience. The ELR method breaks down especially when ultimate loss ratios are not stable and predictable. While the BF method provides a good tradeoff between the loss development approach (CL) and ELR, the approach generates claim development and ultimate reserves that are disconnected from the ever-to-date (ETD) development experience for some accident years that have more development experience. Further, BF is based on subjective a priori assumption. The fundamental shortcoming of these methods is their inability to model exogenous factors, like the economy, which impact various cohorts at the same chronological time but at staggered points along their life-time development. This paper proposes an alternative approach of parametrizing the loss development curve and using logistic regression to generate the ultimate loss estimate for each homogeneous group (accident year or delinquency period). The methodology was tested on an actual MI claim development dataset where various cohorts followed a sigmoidal trend, but levels varied substantially depending upon the economic and operational conditions during the development period spanning over many years. The proposed approach provides the ability to indirectly incorporate such exogenous factors and produce more stable loss forecasts for reserving purposes as compared to the traditional CL and BF methods.Keywords: actuarial loss reserving techniques, logistic regression, parametric function, volatility
Procedia PDF Downloads 1311140 Economic Development Impacts of Connected and Automated Vehicles (CAV)
Authors: Rimon Rafiah
Abstract:
This paper will present a combination of two seemingly unrelated models, which are the one for estimating economic development impacts as a result of transportation investment and the other for increasing CAV penetration in order to reduce congestion. Measuring economic development impacts resulting from transportation investments is becoming more recognized around the world. Examples include the UK’s Wider Economic Benefits (WEB) model, Economic Impact Assessments in the USA, various input-output models, and additional models around the world. The economic impact model is based on WEB and is based on the following premise: investments in transportation will reduce the cost of personal travel, enabling firms to be more competitive, creating additional throughput (the same road allows more people to travel), and reducing the cost of travel of workers to a new workplace. This reduction in travel costs was estimated in out-of-pocket terms in a given localized area and was then translated into additional employment based on regional labor supply elasticity. This additional employment was conservatively assumed to be at minimum wage levels, translated into GDP terms, and from there into direct taxation (i.e., an increase in tax taken by the government). The CAV model is based on economic principles such as CAV usage, supply, and demand. Usage of CAVs can increase capacity using a variety of means – increased automation (known as Level I thru Level IV) and also by increased penetration and usage, which has been predicted to go up to 50% by 2030 according to several forecasts, with possible full conversion by 2045-2050. Several countries have passed policies and/or legislation on sales of gasoline-powered vehicles (none) starting in 2030 and later. Supply was measured via increased capacity on given infrastructure as a function of both CAV penetration and implemented technologies. The CAV model, as implemented in the USA, has shown significant savings in travel time and also in vehicle operating costs, which can be translated into economic development impacts in terms of job creation, GDP growth and salaries as well. The models have policy implications as well and can be adapted for use in Japan as well.Keywords: CAV, economic development, WEB, transport economics
Procedia PDF Downloads 741139 Bimetallic MOFs Based Membrane for the Removal of Heavy Metal Ions from the Industrial Wastewater
Authors: Muhammad Umar Mushtaq, Muhammad Bilal Khan Niazi, Nouman Ahmad, Dooa Arif
Abstract:
Apart from organic dyes, heavy metals such as Pb, Ni, Cr, and Cu are present in textile effluent and pose a threat to humans and the environment. Many studies on removing heavy metallic ions from textile wastewater have been conducted in recent decades using metal-organic frameworks (MOFs). In this study new polyether sulfone ultrafiltration membrane, modified with Cu/Co and Cu/Zn-based bimetal-organic frameworks (MOFs), was produced. Phase inversion was used to produce the membrane, and atomic force microscopy (AFM), scanning electron microscopy (SEM) were used to characterize it. The bimetallic MOFs-based membrane structure is complex and can be comprehended using characterization techniques. The bimetallic MOF-based filtration membranes are designed to selectively adsorb specific contaminants while allowing the passage of water molecules, improving the ultrafiltration efficiency. MOFs' adsorption capacity and selectivity are enhanced by functionalizing them with particular chemical groups or incorporating them into composite membranes with other materials, such as polymers. The morphology and performance of the bimetallic MOF-based membrane were investigated regarding pure water flux and metal ion rejection. The advantages of developed bimetallic MOFs based membranes for wastewater treatment include enhanced adsorption capacity because of the presence of two metals in their structure, which provides additional binding sites for contaminants, leading to a higher adsorption capacity and more efficient removal of pollutants from wastewater. Based on the experimental findings, bimetallic MOF-based membranes are more capable of rejecting metal ions from industrial wastewater than conventional membranes that have already been developed. Furthermore, the difficulties associated with operational parameters, including pressure gradients and velocity profiles, are simulated using Ansys Fluent software. The simulation results obtained for the operating parameters are in complete agreement with the experimental results.Keywords: bimetallic MOFs, heavy metal ions, industrial wastewater treatment, ultrafiltration.
Procedia PDF Downloads 901138 Optimization of Marine Waste Collection Considering Dynamic Transport and Ship’s Wake Impact
Authors: Guillaume Richard, Sarra Zaied
Abstract:
Marine waste quantities increase more and more, 5 million tons of plastic waste enter the ocean every year. Their spatiotemporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment, as well as the size and location of the waste. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. In this context, diverse studies have been dedicated to describing waste behavior in order to identify its accumulation in ocean areas. None of the existing tools which track objects at sea had the objective of tracking down a slick of waste. Moreover, the applications related to marine waste are in the minority compared to rescue applications or oil slicks tracking applications. These approaches are able to accurately simulate an object's behavior over time but not during the collection mission of a waste sheet. This paper presents numerical modeling of a boat’s wake impact on the floating marine waste behavior during a collection mission. The aim is to predict the trajectory of a marine waste slick to optimize its collection using meteorological data of ocean currents, wind, and possibly waves. We have made the choice to use Ocean Parcels which is a Python library suitable for trajectoring particles in the ocean. The modeling results showed the important role of advection and diffusion processes in the spatiotemporal distribution of floating plastic litter. The performance of the proposed method was evaluated on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). The results of the evaluation in Cape of Good Hope (South Africa) prove that the proposed approach can effectively predict the position and velocity of marine litter during collection, which allowed for optimizing time and more than $90\%$ of the amount of collected waste.Keywords: marine litter, advection-diffusion equation, sea current, numerical model
Procedia PDF Downloads 871137 Association of 105A/C IL-18 Gene Single Nucleotide Polymorphism with House Dust Mite Allergy in an Atopic Filipino Population
Authors: Eisha Vienna M. Fernandez, Cristan Q. Cabanilla, Hiyasmin Lim, John Donnie A. Ramos
Abstract:
Allergy is a multifactorial disease affecting a significant proportion of the population. It is developed through the interaction of allergens and the presence of certain polymorphisms in various susceptibility genes. In this study, the correlation of the 105A/C single nucleotide polymorphism (SNP) of the IL-18 gene and house dust mite-specific IgE among Filipino allergic and non-allergic population was investigated. Atopic status was defined by serum total IgE concentration of ≥100 IU/mL, while house dust mite allergy was defined by specific IgE value ≥ +1SD of IgE of nonatopic participants. Two hundred twenty match-paired Filipino cases and controls aged 6-60 were the subjects of this investigation. The level of total IgE and Specific IgE were measured using Enzyme-Linked Immunosorbent Assay (ELISA) while Polymerase Chain Reaction – Restriction Fragment Length Polymorphism (PCR-RFLP) analysis was used in the SNP detection. Sensitization profiles of the allergic patients revealed that 97.3% were sensitized to Blomia tropicalis, 40.0% to Dermatophagoides farinae, and 29.1% to Dermatophagoides pteronyssinus. Multiple sensitization to HDMs was also observed among the 47.27% of the atopic participants. Any of the allergy classes of the atopic triad were exhibited by the cases (allergic asthma: 48.18%; allergic rhinitis: 62.73%; atopic dermatitis: 19.09%), and two or all of these atopic states are concurrently occurring in 26.36% of the cases. A greater proportion of the atopic participants with allergic asthma and allergic rhinitis were sensitized to D. farinae, and D. pteronyssinus, while more of those with atopic dermatitis were sensitized to D. pteronyssinus than D. farinae. Results show that there is overrepresentation of the allele “A” of the 105A/C IL-18 gene SNP in both cases and control groups of the population. The genotype that predominate the population is the heterozygous “AC”, followed by the homozygous wild “AA”, and the homozygous variant “CC” being the least. The study confirmed a positive association between serum specific IgE against B. tropicalis and D. pteronyssinus and the allele “C” (Bt P=0.021, Dp P=0.027) and “AC” (Bt P=0.003, Dp P=0.026) genotype. Findings also revealed that the genotypes “AA” (OR:1.217; 95% CI: 0.701-2.113) and “CC” (OR, 3.5; 95% CI: 0.727-16.849) increase the risk of developing allergy. This indicates that the 105A/C IL-18 gene SNP is a candidate genetic marker for HDM allergy among Filipino patients.Keywords: house dust mite allergy, interleukin-18 (IL-18), single nucleotide polymorphism,
Procedia PDF Downloads 4591136 Preparation and in vivo Assessment of Nystatin-Loaded Solid Lipid Nanoparticles for Topical Delivery against Cutaneous Candidiasis
Authors: Rawia M. Khalil, Ahmed A. Abd El Rahman, Mahfouz A. Kassem, Mohamed S. El Ridi, Mona M. Abou Samra, Ghada E. A. Awad, Soheir S. Mansy
Abstract:
Solid lipid nanoparticles (SLNs) have gained great attention for the topical treatment of skin associated fungal infection as they facilitate the skin penetration of loaded drugs. Our work deals with the preparation of nystatin loaded solid lipid nanoparticles (NystSLNs) using the hot homogenization and ultrasonication method. The prepared NystSLNs were characterized in terms of entrapment efficiency, particle size, zeta potential, transmission electron microscopy, differential scanning calorimetry, rheological behavior and in vitro drug release. A stability study for 6 months was performed. A microbiological study was conducted in male rats infected with Candida albicans, by counting the colonies and examining the histopathological changes induced on the skin of infected rats. The results showed that SLNs dispersions are spherical in shape with particle size ranging from 83.26±11.33 to 955.04±1.09 nm. The entrapment efficiencies are ranging from 19.73±1.21 to 72.46±0.66% with zeta potential ranging from -18.9 to -38.8 mV and shear-thinning rheological Behavior. The stability studies done for 6 months showed that nystatin (Nyst) is a good candidate for topical SLN formulations. A least number of colony forming unit/ ml (cfu/ml) was recorded for the selected NystSLN compared to the drug solution and the commercial Nystatin® cream present in the market. It can be fulfilled from this work that SLNs provide a good skin targeting effect and may represent promising carrier for topical delivery of Nyst offering the sustained release and maintaining the localized effect, resulting in an effective treatment of cutaneous fungal infection.Keywords: candida infections, hot homogenization, nystatin, solid lipid nanoparticles, stability, topical delivery
Procedia PDF Downloads 3931135 Advanced Study on Hydrogen Evolution Reaction based on Nickel sulfide Catalyst
Authors: Kishor Kumar Sadasivuni, Mizaj Shabil Sha, Assim Alajali, Godlaveeti Sreenivasa Kumar, Aboubakr M. Abdullah, Bijandra Kumar, Mithra Geetha
Abstract:
A potential pathway for efficient hydrogen production from water splitting electrolysis involves catalysis or electrocatalysis, which plays a crucial role in energy conversion and storage. Hydrogen generated by electrocatalytic water splitting requires active, stable, and low-cost catalysts or electrocatalysts to be developed for practical applications. In this study, we evaluated combination of 2D materials of NiS nanoparticle catalysts for hydrogen evolution reactions. The photocatalytic H₂ production rate of this nanoparticle is high and exceeds that obtained on components alone. Nanoparticles serve as electron collectors and transporters, which explains this improvement. Moreover, a current density was recorded at reduced working potential by 0.393 mA. Calculations based on density functional theory indicate that the nanoparticle's hydrogen evolution reaction catalytic activity is caused by strong interaction between its components at the interface. The samples were analyzed by XPS and morphologically by FESEM for the best outcome, depending on their structural shapes. Use XPS and morphologically by FESEM for the best results. This nanocomposite demonstrated higher electro-catalytic activity, and a low tafel slope of 60 mV/dec. Additionally, despite 1000 cycles into a durability test, the electrocatalyst still displays excellent stability with minimal current loss. The produced catalyst has shown considerable potential for use in the evolution of hydrogen due to its robust synthesis. According to these findings, the combination of 2D materials of nickel sulfide sample functions as good electocatalyst for H₂ evolution. Additionally, the research being done in this fascinating field will surely push nickel sulfide-based technology closer to becoming an industrial reality and revolutionize existing energy issues in a sustainable and clean manner.Keywords: electrochemical hydrogenation, nickel sulfide, electrocatalysts, energy conversion, catalyst
Procedia PDF Downloads 1241134 Cryptolepis sanguinolenta - A Medicinal Plant Used in the Treatment of Malaria, Cultivate It or Lose It
Authors: J. Naalamle Amissah, Dorcas Osei‐Safo, C. M. Asare, Benjamin Missah‐Assihene, Eric. Y. Danquah, Ivan Addae‐Mensah
Abstract:
Medicinal plants serve as a reservoir of active ingredients for the treatment of common ailments such as cancer, malaria and diabetes. With the recent wave of health consciousness and reliance on plant based medicines, the demand for medicinal plants has increased considerably. This surge in medicinal plant use has raised great concern amongst key players (herbalist, collectors, conservationist and researchers) along the value chain about the sustainability of the raw material. The over reliance on wild crafting as a means to obtain the raw material spells doom for several of Africa’s native medicinal plant species. In this study domestication protocols for the cultivation of Cryptolepis sanguinolenta (CS), a medicinal plant used in the treatment of malaria were developed. Initial surveys were conducted, using questionnaires comprising of open and close ended questions, to gather information that would inform the domestication and cultivation of the species. A field study was then conducted to determine the plant’s cropping cycle and the effect of staking and plant age on the active ingredient (cryptolepine) concentration in its roots. Results of the survey confirmed the demand for the raw material and threw more light on the harvesting methods and intensity of CS collection from the wild. Cryptolepine concentration was found to be highest (~1.84 mg/100 mg of root material) at 289 days after planting (DAP) which coincided with the peak of root dry weight (52.8 g), signifying the best time for root harvest. Staking was found to be important for seed production. The first 105 DAP were characterized by low yields of root dry weight (13.5 g), followed by a period of rapid growth in which the root dry weight increased almost linearly until 289 DAP. Although dry matter partitioned to the vines increased towards the end of the experimental period (60%), dry matter partitioned to the roots remained fairly constant (30%) throughout the experimental period. Cryptolepine was found to increase as the plant aged and the practice of staking CS promoted pod formation. A suitable cropping cycle for the cultivation of CS was also developed.Keywords: domestication, staking, conservation, wild harvesting
Procedia PDF Downloads 3851133 Experimental Study Analysis of Flow over Pickup Truck’s Cargo Area Using Bed Covers
Authors: Jonathan Rodriguez, Dominga Guerrero, Surupa Shaw
Abstract:
Automobiles are modeled in various forms, and they interact with air when in motion. Aerodynamics is the study of such interactions where solid bodies affect the way air moves around them. The shape of solid bodies can impact the ease at which they move against the flow of air; due to which any additional freightage, or loads, impact its aerodynamics. It is important to transport people and cargo safely. Despite the various safety measures, there are a large number of vehicle-related accidents. This study precisely explores the effects an automobile experiences, with added cargo and covers. The addition of these items changes the original vehicle shape and the approved design for safe driving. This paper showcases the effects of the changed vehicle shape and design via experimental testing conducted on a physical 1:27 scale and CAD model of an F-150 pickup truck, the most common pickup truck in the United States, with differently shaped loads and weight traveling at a constant speed. The additional freightage produces unwanted drag or lift resulting in lower fuel efficiencies and unsafe driving conditions. This study employs an adjustable external shell on the F-150 pickup truck to create a controlled aerodynamic geometry to combat the detrimental effects of additional freightage. The results utilize colored powder [ which acts as a visual medium for the interaction of air with the vehicle], to highlight the impact of the additional freight on the automobile’s external shell. This will be done along with simulation models using Altair CFD software of twelve cases regarding the effects of an added load onto an F-150 pickup truck. This paper is an attempt toward standardizing the geometric design of the external shell, given the uniqueness of every load and its placement on the vehicle; while providing real-time data to be compared to simulation results from the existing literature.Keywords: aerodynamics, CFD, freightage, pickup cover
Procedia PDF Downloads 1681132 A Study on the Urban Design Path of Historical Block in the Ancient City of Suzhou, China
Abstract:
In recent years, with the gradual change of Chinese urban development mode from 'incremental development' to 'stock-based renewal', the urban design method of ‘grand scene’ in the past could only cope with the planning and construction of incremental spaces such as new towns and new districts, while the problems involved in the renewal of the stock lands such as historic blocks of ancient cities are more complex. 'Simplified' large-scale demolition and construction may lead to the damage of the ancient city's texture and the overall cultural atmosphere; thus it is necessary to re-explore the urban design path of historical blocks in the conservation context of the ancient city. Through the study of the cultural context of the ancient city of Suzhou in China and the interpretation of its current characteristics, this paper explores the methods and paths for the renewal of historical and cultural blocks in the ancient city. It takes No. 12 and No. 13 historical blocks in the ancient city of Suzhou as examples, coordinating the spatial layout and the landscape and shaping the regional characteristics to improve the quality of the ancient city's life. This paper analyses the idea of conservation and regeneration from the aspects of culture, life, business form, and transport. Guided by the planning concept of ‘block repair and cultural infiltration’, it puts forward the urban design path of ‘conservation priority, activation and utilization, organic renewal and strengthening guidance’, with a view to continuing the cultural context and stimulating the vitality of ancient city, so as to realize the integration of history, modernity, space and culture. As a rare research on urban design in the scope of Suzhou ancient city, the paper expects to explore the concepts and methods of urban design for the historic blocks on the basis of the conservation of the history, space, and culture and provides a reference for other similar types of urban construction.Keywords: historical block, Suzhou ancient city, stock-based renewal, urban design
Procedia PDF Downloads 1441131 Understanding the Information in Principal Component Analysis of Raman Spectroscopic Data during Healing of Subcritical Calvarial Defects
Authors: Rafay Ahmed, Condon Lau
Abstract:
Bone healing is a complex and sequential process involving changes at the molecular level. Raman spectroscopy is a promising technique to study bone mineral and matrix environments simultaneously. In this study, subcritical calvarial defects are used to study bone composition during healing without discomposing the fracture. The model allowed to monitor the natural healing of bone avoiding mechanical harm to the callus. Calvarial defects were created using 1mm burr drill in the parietal bones of Sprague-Dawley rats (n=8) that served in vivo defects. After 7 days, their skulls were harvested after euthanizing. One additional defect per sample was created on the opposite parietal bone using same calvarial defect procedure to serve as control defect. Raman spectroscopy (785 nm) was established to investigate bone parameters of three different skull surfaces; in vivo defects, control defects and normal surface. Principal component analysis (PCA) was utilized for the data analysis and interpretation of Raman spectra and helped in the classification of groups. PCA was able to distinguish in vivo defects from normal surface and control defects. PC1 shows that the major variation at 958 cm⁻¹, which corresponds to ʋ1 phosphate mineral band. PC2 shows the major variation at 1448 cm⁻¹ which is the characteristic band of CH2 deformation and corresponds to collagens. Raman parameters, namely, mineral to matrix ratio and crystallinity was found significantly decreased in the in vivo defects compared to surface and controls. Scanning electron microscope and optical microscope images show the formation of newly generated matrix by means of bony bridges of collagens. Optical profiler shows that surface roughness increased by 30% from controls to in vivo defects after 7 days. These results agree with Raman assessment parameters and confirm the new collagen formation during healing.Keywords: Raman spectroscopy, principal component analysis, calvarial defects, tissue characterization
Procedia PDF Downloads 2231130 Structural, Vibrational, Magnetic, and Electronic Properties of La₂MMnO₆ Double Perovskites with M = Ni, Co, and Zn
Authors: Hamza Ouachtouk, Amine Harbi, Said Azerblou, Youssef Naimi, El Mostafa Tace
Abstract:
This study delves into the structural, vibrational, magnetic, and electronic properties of La₂MMnO₆ double perovskites, where M denotes Ni, Co, and Zn. Recognized for their versatile ionic configurations within the A and B sub-lattices, double perovskite oxides have attracted considerable interest due to their extensive array of physical properties, which include multiferroic behavior, colossal magnetoresistance, and ferroelectric/piezoelectric functionalities. These materials are pivotal for energy-related technologies like solid oxide fuel cells and water-splitting catalysis, attributed to their superior oxygen ion transport and storage capabilities. This research places particular emphasis on La₂NiMnO₆ and La₂CoMnO₆, known for their distinct magnetic, electric, and multiferroic properties, and extends the investigation to La₂ZnMnO₆, synthesized via high-temperature solid-state chemistry. This addition aims to ascertain the impact of zinc substitution on these properties. Structural analysis through X-ray diffraction has confirmed a monoclinic structure within the P2₁/n space group. Comprehensive vibrational studies utilizing infrared and Raman spectroscopy, alongside additional XRD assessments, provide a detailed examination of the dynamic and electronic behaviors of these compounds. The results underscore the significant role of chemical composition in modulating their functional properties. Comparatively, this study highlights that zinc substitution notably alters the electronic and magnetic responses, which could enhance the applicability of these materials in advanced energy technologies. This expanded analysis not only reinforces our understanding of La₂MMnO₆'s physical characteristics but also highlights its potential applications in the next generation of energy solutions.Keywords: double perovskites, structural analysis, vibrational spectroscopy, magnetic properties, electronic properties, high-temperature solid-state chemistry, La₂MMnO₆, monoclinic structure, x-ray diffraction
Procedia PDF Downloads 551129 Risk Assessment of Trace Element Pollution in Gymea Bay, NSW, Australia
Authors: Yasir M. Alyazichi, Brian G. Jones, Errol McLean, Hamd N. Altalyan, Ali K. M. Al-Nasrawi
Abstract:
The main purpose of this study is to assess the sediment quality and potential ecological risk in marine sediments in Gymea Bay located in south Sydney, Australia. A total of 32 surface sediment samples were collected from the bay. Current track trajectories and velocities have also been measured in the bay. The resultant trace elements were compared with the adverse biological effect values Effect Range Low (ERL) and Effect Range Median (ERM) classifications. The results indicate that the average values of chromium, arsenic, copper, zinc, and lead in surface sediments all reveal low pollution levels and are below ERL and ERM values. The highest concentrations of trace elements were found close to discharge points and in the inner bay, and were linked with high percentages of clay minerals, pyrite and organic matter, which can play a significant role in trapping and accumulating these elements. The lowest concentrations of trace elements were found to be on the shoreline of the bay, which contained high percentages of sand fractions. It is postulated that the fine particles and trace elements are disturbed by currents and tides, then transported and deposited in deeper areas. The current track velocities recorded in Gymea Bay had the capability to transport fine particles and trace element pollution within the bay. As a result, hydrodynamic measurements were able to provide useful information and to help explain the distribution of sedimentary particles and geochemical properties. This may lead to knowledge transfer to other bay systems, including those in remote areas. These activities can be conducted at a low cost, and are therefore also transferrable to developing countries. The advent of portable instruments to measure trace elements in the field has also contributed to the development of these lower cost and easily applied methodologies available for use in remote locations and low-cost economies.Keywords: current track velocities, gymea bay, surface sediments, trace elements
Procedia PDF Downloads 2451128 Self-Assembled Laser-Activated Plasmonic Substrates for High-Throughput, High-Efficiency Intracellular Delivery
Authors: Marinna Madrid, Nabiha Saklayen, Marinus Huber, Nicolas Vogel, Christos Boutopoulos, Michel Meunier, Eric Mazur
Abstract:
Delivering material into cells is important for a diverse range of biological applications, including gene therapy, cellular engineering and imaging. We present a plasmonic substrate for delivering membrane-impermeable material into cells at high throughput and high efficiency while maintaining cell viability. The substrate fabrication is based on an affordable and fast colloidal self-assembly process. When illuminated with a femtosecond laser, the light interacts with the electrons at the surface of the metal substrate, creating localized surface plasmons that form bubbles via energy dissipation in the surrounding medium. These bubbles come into close contact with the cell membrane to form transient pores and enable entry of membrane-impermeable material via diffusion. We use fluorescence microscopy and flow cytometry to verify delivery of membrane-impermeable material into HeLa CCL-2 cells. We show delivery efficiency and cell viability data for a range of membrane-impermeable cargo, including dyes and biologically relevant material such as siRNA. We estimate the effective pore size by determining delivery efficiency for hard fluorescent spheres with diameters ranging from 20 nm to 2 um. To provide insight to the cell poration mechanism, we relate the poration data to pump-probe measurements of micro- and nano-bubble formation on the plasmonic substrate. Finally, we investigate substrate stability and reusability by using scanning electron microscopy (SEM) to inspect for damage on the substrate after laser treatment. SEM images show no visible damage. Our findings indicate that self-assembled plasmonic substrates are an affordable tool for high-throughput, high-efficiency delivery of material into mammalian cells.Keywords: femtosecond laser, intracellular delivery, plasmonic, self-assembly
Procedia PDF Downloads 5301127 A Method for Solid-Liquid Separation of Cs+ from Radioactive Waste by Using Ionic Liquids and Extractants
Authors: J. W. Choi, S. Y. Cho, H. J. Lee, W. Z. Oh, S. J. Choi
Abstract:
Ionic liquids (ILs), which is alternative to conventional organic solvent, were used for extraction of Cs ions. ILs, as useful environment friendly green solvents, have been recently applied as replacement for traditional volatile organic compounds (VOCs) in liquid/liquid extraction of heavy metal ions as well as organic and inorganic species and pollutants. Thus, Ionic liquids were used for extraction of Cs ions from the liquid radioactive waste. In most cases, Cs ions present in radioactive wastes in very low concentration, approximately less than 1ppm. Therefore, unlike established extraction system the required amount of ILs as extractant is comparatively very small. This extraction method involves cation exchange mechanism in which Cs ion transfers to the organic phase and binds to one crown ether by chelation in exchange of single ILs cation, IL_cation+, transfer to the aqueous phase. In this extraction system showed solid-liquid separation in which the Ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonly)imide (C2mimTf2N) and the crown ether Dicyclohexano-18-crown-6 (DCH18C6) both were used here in very little amount as solvent and as extractant, respectively. 30 mM of CsNO3 was used as simulated waste solution cesium ions. Generally, in liquid-liquid extraction, the molar ratio of CE:Cs+:ILs was 1:5~10:>100, while our applied molar ratio of CE:Cs+:ILs was 1:2:1~10. The quantity of CE and Cs ions were fixed to 0.6 and 1.2 mmol, respectively. The phenomenon of precipitation showed two kinds of separation: solid-liquid separation in the ratio of 1:2:1 and 1:2:2; solid-liquid-liquid separation (3 phase) in the ratio of 1:2:5 and 1:2:10. In the last system, 3 phases were precipitate-ionic liquids-aqueous. The precipitate was verified to consist of Cs+, DCH18C6, Tf2N- based on the cation exchange mechanism. We analyzed precipitate using scanning electron microscopy with X-ray microanalysis (SEM-EDS), an elemental analyser, Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The experimental results showed an easy extraction method and confirmed the composition of solid precipitate. We also obtained information that complex formation ratio of Cs+ to DCH18C6 is 0.88:1 regardless of C2mimTf2N quantities.Keywords: extraction, precipitation, solid-liquid seperation, ionic liquid, precipitate
Procedia PDF Downloads 4221126 Modification of Titanium Surfaces with Micro/Nanospheres for Local Antibiotic Release
Authors: Burcu Doymus, Fatma N. Kok, Sakip Onder
Abstract:
Titanium and titanium-based materials are commonly used to replace or regenerate the injured or lost tissues because of accidents or illnesses. Hospital infections and strong bond formation at the implant-tissue interface are directly affecting the success of the implantation as weak bonding with the native tissue and hospital infections lead to revision surgery. The purpose of the presented study is to modify the surface of the titanium substrates with nano/microspheres for local drug delivery and to prevent hospital infections. Firstly, titanium surfaces were silanized with APTES (3-Triethoxysilylpropylamine) following the negatively charged oxide layer formation. Then characterization studies using Scanning Electron Microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were done on the modified surfaces. Secondly, microspheres/nanospheres were prepared with chitosan that is a natural polymer and having valuable properties such as non-toxicity, high biocompatibility, low allergen city and biodegradability for biomedical applications. Antibiotic (ciprofloxacin) loaded micro/nanospheres have been fabricated using emulsion cross-linking method and have been immobilized onto the titanium surfaces with different immobilization techniques such as covalent bond and entrapment. Optimization studies on size and drug loading capacities of micro/nanospheres were conducted before the immobilization process. Light microscopy and SEM were used to visualize and measure the size of the produced micro/nanospheres. Loaded and released drug amounts were determined by using UV- spectrophotometer at 278 nm. Finally, SEM analysis and drug release studies on the micro/nanospheres coated Ti surfaces were done. As a conclusion, it was shown that micro/nanospheres were immobilized onto the surfaces successfully and drug release from these surfaces was in a controlled manner. Moreover, the density of the micro/nanospheres after the drug release studies was higher on the surfaces where the entrapment technique was used for immobilization. Acknowledgement: This work is financially supported by The Scientific and Technological Research Council Of Turkey (Project # 217M220)Keywords: chitosan, controlled drug release, nanosphere, nosocomial infections, titanium
Procedia PDF Downloads 1251125 In situ Immobilization of Mercury in a Contaminated Calcareous Soil Using Water Treatment Residual Nanoparticles
Authors: Elsayed A. Elkhatib, Ahmed M. Mahdy, Mohamed L. Moharem, Mohamed O. Mesalem
Abstract:
Mercury (Hg) is one of the most toxic and bio-accumulative heavy metal in the environment. However, cheap and effective in situ remediation technology is lacking. In this study, the effects of water treatment residuals nanoparticles (nWTR) on mobility, fractionation and speciation of mercury in an arid zone soil from Egypt were evaluated. Water treatment residual nanoparticles with high surface area (129 m 2 g-1) were prepared using Fritsch planetary mono mill. Scanning and transmission electron microscopy revealed that the nanoparticles of WTR nanoparticles are spherical in shape, and single particle sizes are in the range of 45 to 96 nm. The x-ray diffraction (XRD) results ascertained that amorphous iron, aluminum (hydr)oxides and silicon oxide dominating all nWTR, with no apparent crystalline iron–Al (hydr)oxides. Addition of nWTR, greatly increased the Hg sorption capacities of studied soils and greatly reduced the cumulative Hg released from the soils. Application of nWTR at 0.10 and 0.30 % rates reduced the released Hg from the soil by 50 and 85 % respectively. The power function and first order kinetics models well described the desorption process from soils and nWTR amended soils as evidenced by high coefficient of determination (R2) and low SE values. Application of nWTR greatly increased the association of Hg with the residual fraction. Meanwhile, application of nWTR at a rate of 0.3% greatly increased the association of Hg with the residual fraction (>93%) and significantly increased the most stable Hg species (Hg(OH)2 amor) which in turn enhanced Hg immobilization in the studied soils. Fourier transmission infrared spectroscopy analysis indicated the involvement of nWTR in the retention of Hg (II) through OH groups which suggest inner-sphere adsorption of Hg ions to surface functional groups on nWTR. These results demonstrated the feasibility of using a low-cost nWTR as best management practice to immobilize excess Hg in contaminated soils.Keywords: release kinetics, Fourier transmission infrared spectroscopy, Hg fractionation, Hg species
Procedia PDF Downloads 2341124 Organic Thin-Film Transistors with High Thermal Stability
Authors: Sibani Bisoyi, Ute Zschieschang, Alexander Hoyer, Hagen Klauk
Abstract:
Abstract— Organic thin-film transistors (TFTs) have great potential to be used for various applications such as flexible displays or sensors. For some of these applications, the TFTs must be able to withstand temperatures in excess of 100 °C, for example to permit the integration with devices or components that require high process temperatures, or to make it possible that the devices can be subjected to the standard sterilization protocols required for biomedical applications. In this work, we have investigated how the thermal stability of low-voltage small-molecule semiconductor dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT) TFTs is affected by the encapsulation of the TFTs and by the ambient in which the thermal stress is performed. We also studied to which extent the thermal stability of the TFTs depends on the channel length. Some of the TFTs were encapsulated with a layer of vacuum-deposited Teflon, while others were left without encapsulation, and the thermal stress was performed either in nitrogen or in air. We found that the encapsulation with Teflon has virtually no effect on the thermal stability of our TFTs. In contrast, the ambient in which the thermal stress is conducted was found to have a measurable effect, but in a surprising way: When the thermal stress is carried out in nitrogen, the mobility drops to 70% of its initial value at a temperature of 160 °C and to close to zero at 170 °C, whereas when the stress is performed in air, the mobility remains at 75% of its initial value up to a temperature of 160 °C and at 60% up to 180 °C. To understand this behavior, we studied the effect of the thermal stress on the semiconductor thin-film morphology by scanning electron microscopy. While the DNTT films remain continuous and conducting when the heating is carried out in air, the semiconductor morphology undergoes a dramatic change, including the formation of large, thick crystals of DNTT and a complete loss of percolation, when the heating is conducted in nitrogen. We also found that when the TFTs are heated to a temperature of 200 °C in air, all TFTs with a channel length greater than 50 µm are destroyed, while TFTs with a channel length of less than 50 µm survive, whereas when the TFTs are heated to the same temperature (200 °C) in nitrogen, only the TFTs with a channel smaller than 8 µm survive. This result is also linked to the thermally induced changes in the semiconductor morphology.Keywords: organic thin-film transistors, encapsulation, thermal stability, thin-film morphology
Procedia PDF Downloads 3491123 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning
Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan
Abstract:
The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass
Procedia PDF Downloads 1161122 Advanced Particle Characterisation of Suspended Sediment in the Danube River Using Automated Imaging and Laser Diffraction
Authors: Flóra Pomázi, Sándor Baranya, Zoltán Szalai
Abstract:
A harmonized monitoring of the suspended sediment transport along such a large river as the world’s most international river, the Danube River, is a rather challenging task. The traditional monitoring method in Hungary is obsolete but using indirect measurement devices and techniques like optical backscatter sensors (OBS), laser diffraction or acoustic backscatter sensors (ABS) could provide a fast and efficient alternative option of direct methods. However, these methods are strongly sensitive to the particle characteristics (i.e. particle shape, particle size and mineral composition). The current method does not provide sufficient information about particle size distribution, mineral analysis is rarely done, and the shape of the suspended sediment particles have not been examined yet. The aims of the study are (1) to determine the particle characterisation of suspended sediment in the Danube River using advanced particle characterisation methods as laser diffraction and automated imaging, and (2) to perform a sensitivity analysis of the indirect methods in order to determine the impact of suspended particle characteristics. The particle size distribution is determined by laser diffraction. The particle shape and mineral composition analysis is done by the Morphologi G3ID image analyser. The investigated indirect measurement devices are the LISST-Portable|XR, the LISST-ABS (Sequoia Inc.) and the Rio Grande 1200 kHz ADCP (Teledyne Marine). The major findings of this study are (1) the statistical shape of the suspended sediment particle - this is the first research in this context, (2) the actualised particle size distribution – that can be compared to historical information, so that the morphological changes can be tracked, (3) the actual mineral composition of the suspended sediment in the Danube River, and (4) the reliability of the tested indirect methods has been increased – based on the results of the sensitivity analysis and the previous findings.Keywords: advanced particle characterisation, automated imaging, indirect methods, laser diffraction, mineral composition, suspended sediment
Procedia PDF Downloads 1461121 Bioethanol Production from Marine Algae Ulva Lactuca and Sargassum Swartzii: Saccharification and Process Optimization
Authors: M. Jerold, V. Sivasubramanian, A. George, B.S. Ashik, S. S. Kumar
Abstract:
Bioethanol is a sustainable biofuel that can be used alternative to fossil fuels. Today, third generation (3G) biofuel is gaining more attention than first and second-generation biofuel. The more lignin content in the lignocellulosic biomass is the major drawback of second generation biofuels. Algae are the renewable feedstock used in the third generation biofuel production. Algae contain a large number of carbohydrates, therefore it can be used for the fermentation by hydrolysis process. There are two groups of Algae, such as micro and macroalgae. In the present investigation, Macroalgae was chosen as raw material for the production of bioethanol. Two marine algae viz. Ulva Lactuca and Sargassum swartzii were used for the experimental studies. The algal biomass was characterized using various analytical techniques like Elemental Analysis, Scanning Electron Microscopy Analysis and Fourier Transform Infrared Spectroscopy to understand the physio-Chemical characteristics. The batch experiment was done to study the hydrolysis and operation parameters such as pH, agitation, fermentation time, inoculum size. The saccharification was done with acid and alkali treatment. The experimental results showed that NaOH treatment was shown to enhance the bioethanol. From the hydrolysis study, it was found that 0.5 M Alkali treatment would serve as optimum concentration for the saccharification of polysaccharide sugar to monomeric sugar. The maximum yield of bioethanol was attained at a fermentation time of 9 days. The inoculum volume of 1mL was found to be lowest for the ethanol fermentation. The agitation studies show that the fermentation was higher during the process. The percentage yield of bioethanol was found to be 22.752% and 14.23 %. The elemental analysis showed that S. swartzii contains a higher carbon source. The results confirmed hydrolysis was not completed to recover the sugar from biomass. The specific gravity of ethanol was found to 0.8047 and 0.808 for Ulva Lactuca and Sargassum swartzii, respectively. The purity of bioethanol also studied and found to be 92.55 %. Therefore, marine algae can be used as a most promising renewable feedstock for the production of bioethanol.Keywords: algae, biomass, bioethaol, biofuel, pretreatment
Procedia PDF Downloads 160