Search results for: digital sensor interface
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5210

Search results for: digital sensor interface

320 Analysis of Urban Flooding in Wazirabad Catchment of Kabul City with Help of Geo-SWMM

Authors: Fazli Rahim Shinwari, Ulrich Dittmer

Abstract:

Like many megacities around the world, Kabul is facing severe problems due to the rising frequency of urban flooding. Since 2001, Kabul is experiencing rapid population growth because of the repatriation of refugees and internal migration. Due to unplanned development, green areas inside city and hilly areas within and around the city are converted into new housing towns that had increased runoff. Trenches along the roadside comprise the unplanned drainage network of the city that drains the combined sewer flow. In rainy season overflow occurs, and after streets become dry, the dust particles contaminate the air which is a major cause of air pollution in Kabul city. In this study, a stormwater management model is introduced as a basis for a systematic approach to urban drainage planning in Kabul. For this purpose, Kabul city is delineated into 8 watersheds with the help of one-meter resolution LIDAR DEM. Storm, water management model, is developed for Wazirabad catchment by using available data and literature values. Due to lack of long term metrological data, the model is only run for hourly rainfall data of a rain event that occurred in April 2016. The rain event from 1st to 3rd April with maximum intensity of 3mm/hr caused huge flooding in Wazirabad Catchment of Kabul City. Model-estimated flooding at some points of the catchment as an actual measurement of flooding was not possible; results were compared with information obtained from local people, Kabul Municipality and Capital Region Independent Development Authority. The model helped to identify areas where flooding occurred because of less capacity of drainage system and areas where the main reason for flooding is due to blockage in the drainage canals. The model was used for further analysis to find a sustainable solution to the problem. The option to construct new canals was analyzed, and two new canals were proposed that will reduce the flooding frequency in Wazirabad catchment of Kabul city. By developing the methodology to develop a stormwater management model from digital data and information, the study had fulfilled the primary objective, and similar methodology can be used for other catchments of Kabul city to prepare an emergency and long-term plan for drainage system of Kabul city.

Keywords: urban hydrology, storm water management, modeling, SWMM, GEO-SWMM, GIS, identification of flood vulnerable areas, urban flooding analysis, sustainable urban drainage

Procedia PDF Downloads 130
319 A Service Evaluation Exploring the Effectiveness of a Tier 3 Weight Management Programme Offering Face-To-Face and Remote Dietetic Support

Authors: Rosemary E. Huntriss, Lucy Jones

Abstract:

Obesity and excess weight continue to be significant health problems in England. Traditional weight management programmes offer face-to-face support or group education. Remote care is recognised as a viable means of support; however, its effectiveness has not previously been evaluated in a tier 3 weight management setting. This service evaluation explored the effectiveness of online coaching, telephone support, and face-to-face support as optional management strategies within a tier 3 weight management programme. Outcome data were collected for adults with a BMI ≥ 45 or ≥ 40 with complex comorbidity who were referred to a Tier 3 weight management programme from January 2018 and had been discharged before October 2018. Following an initial 45-minute consultation with a specialist weight management dietitian, patients were offered a choice of follow-up support in the form of online coaching supported by an app (8 x 15 minutes coaching), face-to-face or telephone appointments (4 x 30 minutes). All patients were invited to a final 30-minute face-to-face assessment. The planned intervention time was between 12 and 24 weeks. Patients were offered access to adjunct face-to-face or telephone psychological support. One hundred and thirty-nine patients were referred into the programme from January 2018 and discharged before October 2018. One hundred and twenty-four patients (89%) attended their initial assessment. Out of those who attended their initial assessment, 110 patients (88.0%) completed more than half of the programme and 77 patients (61.6%) completed all sessions. The average length of the completed programme (all sessions) was 17.2 (SD 4.2) weeks. Eighty-five (68.5%) patients were coached online, 28 (22.6%) patients were supported face-to-face support, and 11 (8.9%) chose telephone support. Two patients changed from online coaching to face-to-face support due to personal preference and were included in the face-to-face group for analysis. For those with data available (n=106), average weight loss across the programme was 4.85 (SD 3.49)%; average weight loss was 4.70 (SD 3.19)% for online coaching, 4.83 (SD 4.13)% for face-to-face support, and 6.28 (SD 4.15)% for telephone support. There was no significant difference between weight loss achieved with face-to-face vs. online coaching (4.83 (SD 4.13)% vs 4.70 (SD 3.19) (p=0.87) or face-to-face vs. remote support (online coaching and telephone support combined) (4.83 (SD 4.13)% vs 4.85 (SD 3.30)%) (p=0.98). Remote support has been shown to be as effective as face-to-face support provided by a dietitian in the short-term within a tier 3 weight management setting. The completion rates were high compared with another tier 3 weight management services suggesting that offering remote support as an option may improve completion rates within a weight management service.

Keywords: dietitian, digital health, obesity, weight management

Procedia PDF Downloads 117
318 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel

Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler

Abstract:

Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.

Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process

Procedia PDF Downloads 101
317 The Influence of Human Movement on the Formation of Adaptive Architecture

Authors: Rania Raouf Sedky

Abstract:

Adaptive architecture relates to buildings specifically designed to adapt to their residents and their environments. To design a biologically adaptive system, we can observe how living creatures in nature constantly adapt to different external and internal stimuli to be a great inspiration. The issue is not just how to create a system that is capable of change but also how to find the quality of change and determine the incentive to adapt. The research examines the possibilities of transforming spaces using the human body as an active tool. The research also aims to design and build an effective dynamic structural system that can be applied on an architectural scale and integrate them all into the creation of a new adaptive system that allows us to conceive a new way to design, build and experience architecture in a dynamic manner. The main objective was to address the possibility of a reciprocal transformation between the user and the architectural element so that the architecture can adapt to the user, as the user adapts to architecture. The motivation is the desire to deal with the psychological benefits of an environment that can respond and thus empathize with human emotions through its ability to adapt to the user. Adaptive affiliations of kinematic structures have been discussed in architectural research for more than a decade, and these issues have proven their effectiveness in developing kinematic structures, responsive and adaptive, and their contribution to 'smart architecture'. A wide range of strategies have been used in building complex kinetic and robotic systems mechanisms to achieve convertibility and adaptability in engineering and architecture. One of the main contributions of this research is to explore how the physical environment can change its shape to accommodate different spatial displays based on the movement of the user’s body. The main focus is on the relationship between materials, shape, and interactive control systems. The intention is to develop a scenario where the user can move, and the structure interacts without any physical contact. The soft form of shifting language and interaction control technology will provide new possibilities for enriching human-environmental interactions. How can we imagine a space in which to construct and understand its users through physical gestures, visual expressions, and response accordingly? How can we imagine a space whose interaction depends not only on preprogrammed operations but on real-time feedback from its users? The research also raises some important questions for the future. What would be the appropriate structure to show physical interaction with the dynamic world? This study concludes with a strong belief in the future of responsive motor structures. We imagine that they are developing the current structure and that they will radically change the way spaces are tested. These structures have obvious advantages in terms of energy performance and the ability to adapt to the needs of users. The research highlights the interface between remote sensing and a responsive environment to explore the possibility of an interactive architecture that adapts to and responds to user movements. This study ends with a strong belief in the future of responsive motor structures. We envision that it will improve the current structure and that it will bring a fundamental change to the way in which spaces are tested.

Keywords: adaptive architecture, interactive architecture, responsive architecture, tensegrity

Procedia PDF Downloads 131
316 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context

Authors: Nicole Merkle, Stefan Zander

Abstract:

Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.

Keywords: ambient intelligence, machine learning, semantic web, software agents

Procedia PDF Downloads 260
315 Enhancing Tower Crane Safety: A UAV-based Intelligent Inspection Approach

Authors: Xin Jiao, Xin Zhang, Jian Fan, Zhenwei Cai, Yiming Xu

Abstract:

Tower cranes play a crucial role in the construction industry, facilitating the vertical and horizontal movement of materials and aiding in building construction, especially for high-rise structures. However, tower crane accidents can lead to severe consequences, highlighting the importance of effective safety management and inspection. This paper presents an innovative approach to tower crane inspection utilizing Unmanned Aerial Vehicles (UAVs) and an Intelligent Inspection APP System. The system leverages UAVs equipped with high-definition cameras to conduct efficient and comprehensive inspections, reducing manual labor, inspection time, and risk. By integrating advanced technologies such as Real-Time Kinematic (RTK) positioning and digital image processing, the system enables precise route planning and collection of safety hazards images. A case study conducted on a construction site demonstrates the practicality and effectiveness of the proposed method, showcasing its potential to enhance tower crane safety. On-site testing of UAV intelligent inspections reveals key findings: efficient tower crane hazard inspection within 30 minutes, with a full-identification capability coverage rates of 76.3%, 64.8%, and 76.2% for major, significant, and general hazards respectively and a preliminary-identification capability coverage rates of 18.5%, 27.2%, and 19%, respectively. Notably, UAVs effectively identify various tower crane hazards, except for those requiring auditory detection. The limitations of this study primarily involve two aspects: Firstly, during the initial inspection, manual drone piloting is required for marking tower crane points, followed by automated flight inspections and reuse based on the marked route. Secondly, images captured by the drone necessitate manual identification and review, which can be time-consuming for equipment management personnel, particularly when dealing with a large volume of images. Subsequent research efforts will focus on AI training and recognition of safety hazard images, as well as the automatic generation of inspection reports and corrective management based on recognition results. The ongoing development in this area is currently in progress, and outcomes will be released at an appropriate time.

Keywords: tower crane, inspection, unmanned aerial vehicle (UAV), intelligent inspection app system, safety management

Procedia PDF Downloads 22
314 Assessment of Biofilm Production Capacity of Industrially Important Bacteria under Electroinductive Conditions

Authors: Omolola Ojetayo, Emmanuel Garuba, Obinna Ajunwa, Abiodun A. Onilude

Abstract:

Introduction: Biofilm is a functional community of microorganisms that are associated with a surface or an interface. These adherent cells become embedded within an extracellular matrix composed of polymeric substances, i.e., biofilms refer to biological deposits consisting of both microbes and their extracellular products on biotic and abiotic surfaces. Despite their detrimental effects in medicine, biofilms as natural cell immobilization have found several applications in biotechnology, such as in the treatment of wastewater, bioremediation and biodegradation, desulfurization of gas, and conversion of agro-derived materials into alcohols and organic acids. The means of enhancing immobilized cells have been chemical-inductive, and this affects the medium composition and final product. Physical factors including electrical, magnetic, and electromagnetic flux have shown potential for enhancing biofilms depending on the bacterial species, nature, and intensity of emitted signals, the duration of exposure, and substratum used. However, the concept of cell immobilisation by electrical and magnetic induction is still underexplored. Methods: To assess the effects of physical factors on biofilm formation, six American typed culture collection (Acetobacter aceti ATCC15973, Pseudomonas aeruginosa ATCC9027, Serratia marcescens ATCC14756, Gluconobacter oxydans ATCC19357, Rhodobacter sphaeroides ATCC17023, and Bacillus subtilis ATCC6633) were used. Standard culture techniques for bacterial cells were adopted. Natural autoimmobilisation potentials of test bacteria were carried out by simple biofilms ring formation on tubes, while crystal violet binding assay techniques were adopted in the characterisation of biofilm quantity. Electroinduction of bacterial cells by direct current (DC) application in cell broth, static magnetic field exposure, and electromagnetic flux were carried out, and autoimmobilisation of cells in a biofilm pattern was determined on various substrata tested, including wood, glass, steel, polyvinylchloride (PVC) and polyethylene terephthalate. Biot Savart law was used in quantifying magnetic field intensity, and statistical analyses of data obtained were carried out using the analyses of variance (ANOVA) as well as other statistical tools. Results: Biofilm formation by the selected test bacteria was enhanced by the physical factors applied. Electromagnetic induction had the greatest effect on biofilm formation, with magnetic induction producing the least effect across all substrata used. Microbial cell-cell communication could be a possible means via which physical signals affected the cells in a polarisable manner. Conclusion: The enhancement of biofilm formation by bacteria using physical factors has shown that their inherent capability as a cell immobilization method can be further optimised for industrial applications. A possible relationship between the presence of voltage-dependent channels, mechanosensitive channels, and bacterial biofilms could shed more light on this phenomenon.

Keywords: bacteria, biofilm, cell immobilization, electromagnetic induction, substrata

Procedia PDF Downloads 164
313 Investigation of Resilient Circles in Local Community and Industry: Waju-Traditional Culture in Japan and Modern Technology Application

Authors: R. Ueda

Abstract:

Today global society is seeking resilient partnership in local organizations and individuals, which realizes multi-stakeholders relationship. Although it is proposed by modern global framework of sustainable development, it is conceivable that such affiliation can be found out in the traditional local community in Japan, and that traditional spirit is tacitly sustaining in modern context of disaster mitigation in society and economy. Then this research is aiming to clarify and analyze implication for the global world by actual case studies. Regional and urban resilience is the ability of multi-stakeholders to cooperate flexibly and to adapt in response to changes in the circumstances caused by disasters, but there are various conflicts affecting coordination of disaster relief measures. These conflicts arise not only from a lack of communication and an insufficient network, but also from the difficulty to jointly draw common context from fragmented information. This is because of the weakness of our modern engineering which focuses on maintenance and restoration of individual systems. Here local ‘circles’ holistically includes local community and interacts periodically. Focusing on examples of resilient organizations and wisdom created in communities, what can be seen throughout history is a virtuous cycle where the information and the knowledge are structured, the context to be adapted becomes clear, and an adaptation at a higher level is made possible, by which the collaboration between organizations is deepened and expanded. And the wisdom of a solid and autonomous disaster prevention formed by the historical community called’ Waju’ – an area surrounded by circle embankment to protect the settlement from flood – lives on in government efforts of the coastal industrial island of today. Industrial company there collaborates to create a circle including common evacuation space, road access improvement and infrastructure recovery. These days, people here adopts new interface technology. Large-scale AR- Augmented Reality for more than hundred people is expressing detailed hazard by tsunami and liquefaction. Common experiences of the major disaster space and circle of mutual discussion are enforcing resilience. Collaboration spirit lies in the center of circle. A consistent key point is a virtuous cycle where the information and the knowledge are structured, the context to be adapted becomes clear, and an adaptation at a higher level is made possible, by which the collaboration between organizations is deepened and expanded. This writer believes that both self-governing human organizations and the societal implementation of technical systems are necessary. Infrastructure should be autonomously instituted by associations of companies and other entities in industrial areas for working closely with local governments. To develop advanced disaster prevention and multi-stakeholder collaboration, partnerships among industry, government, academia and citizens are important.

Keywords: industrial recovery, multi-sakeholders, traditional culture, user experience, Waju

Procedia PDF Downloads 93
312 Performance of CALPUFF Dispersion Model for Investigation the Dispersion of the Pollutants Emitted from an Industrial Complex, Daura Refinery, to an Urban Area in Baghdad

Authors: Ramiz M. Shubbar, Dong In Lee, Hatem A. Gzar, Arthur S. Rood

Abstract:

Air pollution is one of the biggest environmental problems in Baghdad, Iraq. The Daura refinery located nearest the center of Baghdad, represents the largest industrial area, which transmits enormous amounts of pollutants, therefore study the gaseous pollutants and particulate matter are very important to the environment and the health of the workers in refinery and the people whom leaving in areas around the refinery. Actually, some studies investigated the studied area before, but it depended on the basic Gaussian equation in a simple computer programs, however, that kind of work at that time is very useful and important, but during the last two decades new largest production units were added to the Daura refinery such as, PU_3 (Power unit_3 (Boiler 11&12)), CDU_1 (Crude Distillation unit_70000 barrel_1), and CDU_2 (Crude Distillation unit_70000 barrel_2). Therefore, it is necessary to use new advanced model to study air pollution at the region for the new current years, and calculation the monthly emission rate of pollutants through actual amounts of fuel which consumed in production unit, this may be lead to accurate concentration values of pollutants and the behavior of dispersion or transport in study area. In this study to the best of author’s knowledge CALPUFF model was used and examined for first time in Iraq. CALPUFF is an advanced non-steady-state meteorological and air quality modeling system, was applied to investigate the pollutants concentration of SO2, NO2, CO, and PM1-10μm, at areas adjacent to Daura refinery which located in the center of Baghdad in Iraq. The CALPUFF modeling system includes three main components: CALMET is a diagnostic 3-dimensional meteorological model, CALPUFF (an air quality dispersion model), CALPOST is a post processing package, and an extensive set of preprocessing programs produced to interface the model to standard routinely available meteorological and geophysical datasets. The targets of this work are modeling and simulation the four pollutants (SO2, NO2, CO, and PM1-10μm) which emitted from Daura refinery within one year. Emission rates of these pollutants were calculated for twelve units includes thirty plants, and 35 stacks by using monthly average of the fuel amount consumption at this production units. Assess the performance of CALPUFF model in this study and detect if it is appropriate and get out predictions of good accuracy compared with available pollutants observation. CALPUFF model was investigated at three stability classes (stable, neutral, and unstable) to indicate the dispersion of the pollutants within deferent meteorological conditions. The simulation of the CALPUFF model showed the deferent kind of dispersion of these pollutants in this region depends on the stability conditions and the environment of the study area, monthly, and annual averages of pollutants were applied to view the dispersion of pollutants in the contour maps. High values of pollutants were noticed in this area, therefore this study recommends to more investigate and analyze of the pollutants, reducing the emission rate of pollutants by using modern techniques and natural gas, increasing the stack height of units, and increasing the exit gas velocity from stacks.

Keywords: CALPUFF, daura refinery, Iraq, pollutants

Procedia PDF Downloads 176
311 Modelling High Strain Rate Tear Open Behavior of a Bilaminate Consisting of Foam and Plastic Skin Considering Tensile Failure and Compression

Authors: Laura Pytel, Georg Baumann, Gregor Gstrein, Corina Klug

Abstract:

Premium cars often coat the instrument panels with a bilaminate consisting of a soft foam and a plastic skin. The coating is torn open during the passenger airbag deployment under high strain rates. Characterizing and simulating the top coat layer is crucial for predicting the attenuation that delays the airbag deployment, effecting the design of the restrain system and to reduce the demand of simulation adjustments through expensive physical component testing.Up to now, bilaminates used within cars either have been modelled by using a two-dimensional shell formulation for the whole coating system as one which misses out the interaction of the two layers or by combining a three-dimensional formulation foam layer with a two-dimensional skin layer but omitting the foam in the significant parts like the expected tear line area and the hinge where high compression is expected. In both cases, the properties of the coating causing the attenuation are not considered. Further, at present, the availability of material information, as there are failure dependencies of the two layers, as well as the strain rate of up to 200 1/s, are insufficient. The velocity of the passenger airbag flap during an airbag shot has been measured with about 11.5 m/s during first ripping; the digital image correlation evaluation showed resulting strain rates of above 1500 1/s. This paper provides a high strain rate material characterization of a bilaminate consisting of a thin polypropylene foam and a thermoplasctic olefins (TPO) skin and the creation of validated material models. With the help of a Split Hopkinson tension bar, strain rates of 1500 1/s were within reach. The experimental data was used to calibrate and validate a more physical modelling approach of the forced ripping of the bilaminate. In the presented model, the three-dimensional foam layer is continuously tied to the two-dimensional skin layer, allowing failure in both layers at any possible position. The simulation results show a higher agreement in terms of the trajectory of the flaps and its velocity during ripping. The resulting attenuation of the airbag deployment measured by the contact force between airbag and flaps increases and serves usable data for dimensioning modules of an airbag system.

Keywords: bilaminate ripping behavior, High strain rate material characterization and modelling, induced material failure, TPO and foam

Procedia PDF Downloads 51
310 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach

Authors: Alvaro Figueira, Bruno Cabral

Abstract:

Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.

Keywords: data mining, e-learning, grade prediction, machine learning, student learning path

Procedia PDF Downloads 103
309 Business Intelligence Dashboard Solutions for Improving Decision Making Process: A Focus on Prostate Cancer

Authors: Mona Isazad Mashinchi, Davood Roshan Sangachin, Francis J. Sullivan, Dietrich Rebholz-Schuhmann

Abstract:

Background: Decision-making processes are nowadays driven by data, data analytics and Business Intelligence (BI). BI as a software platform can provide a wide variety of capabilities such as organization memory, information integration, insight creation and presentation capabilities. Visualizing data through dashboards is one of the BI solutions (for a variety of areas) which helps managers in the decision making processes to expose the most informative information at a glance. In the healthcare domain to date, dashboard presentations are more frequently used to track performance related metrics and less frequently used to monitor those quality parameters which relate directly to patient outcomes. Providing effective and timely care for patients and improving the health outcome are highly dependent on presenting and visualizing data and information. Objective: In this research, the focus is on the presentation capabilities of BI to design a dashboard for prostate cancer (PC) data that allows better decision making for the patients, the hospital and the healthcare system related to a cancer dataset. The aim of this research is to customize a retrospective PC dataset in a dashboard interface to give a better understanding of data in the categories (risk factors, treatment approaches, disease control and side effects) which matter most to patients as well as other stakeholders. By presenting the outcome in the dashboard we address one of the major targets of a value-based health care (VBHC) delivery model which is measuring the value and presenting the outcome to different actors in HC industry (such as patients and doctors) for a better decision making. Method: For visualizing the stored data to users, three interactive dashboards based on the PC dataset have been developed (using the Tableau Software) to provide better views to the risk factors, treatment approaches, and side effects. Results: Many benefits derived from interactive graphs and tables in dashboards which helped to easily visualize and see the patients at risk, better understanding the relationship between patient's status after treatment and their initial status before treatment, or to choose better decision about treatments with fewer side effects regarding patient status and etc. Conclusions: Building a well-designed and informative dashboard is related to three important factors including; the users, goals and the data types. Dashboard's hierarchies, drilling, and graphical features can guide doctors to better navigate through information. The features of the interactive PC dashboard not only let doctors ask specific questions and filter the results based on the key performance indicators (KPI) such as: Gleason Grade, Patient's Age and Status, but may also help patients to better understand different treatment outcomes, such as side effects during the time, and have an active role in their treatment decisions. Currently, we are extending the results to the real-time interactive dashboard that users (either patients and doctors) can easily explore the data by choosing preferred attribute and data to make better near real-time decisions.

Keywords: business intelligence, dashboard, decision making, healthcare, prostate cancer, value-based healthcare

Procedia PDF Downloads 124
308 Assessment of Hydrologic Response of a Naturalized Tropical Coastal Mangrove Ecosystem Due to Land Cover Change in an Urban Watershed

Authors: Bryan Clark B. Hernandez, Eugene C. Herrera, Kazuo Nadaoka

Abstract:

Mangrove forests thriving in intertidal zones in tropical and subtropical regions of the world offer a range of ecosystem services including carbon storage and sequestration. They can regulate the detrimental effects of climate change due to carbon releases two to four times greater than that of mature tropical rainforests. Moreover, they are effective natural defenses against storm surges and tsunamis. However, their proliferation depends significantly on the prevailing hydroperiod at the coast. In the Philippines, these coastal ecosystems have been severely threatened with a 50% decline in areal extent observed from 1918 to 2010. The highest decline occurred in 1950 - 1972 when national policies encouraged the development of fisheries and aquaculture. With the intensive land use conversion upstream, changes in the freshwater-saltwater envelope at the coast may considerably impact mangrove growth conditions. This study investigates a developing urban watershed in Kalibo, Aklan province with a 220-hectare mangrove forest replanted for over 30 years from coastal mudflats. Since then, the mangrove forest was sustainably conserved and declared as protected areas. Hybrid land cover classification technique was used to classify Landsat images for years, 1990, 2010, and 2017. Digital elevation model utilized was Interferometric Synthetic Aperture Radar (IFSAR) with a 5-meter resolution to delineate the watersheds. Using numerical modelling techniques, the hydrologic and hydraulic analysis of the influence of land cover change to flow and sediment dynamics was simulated. While significant land cover change occurred upland, thereby increasing runoff and sediment loads, the mangrove forests abundance adjacent to the coasts for the urban watershed, was somehow sustained. However, significant alteration of the coastline was observed in Kalibo through the years, probably due to the massive land-use conversion upstream and significant replanting of mangroves downstream. Understanding the hydrologic-hydraulic response of these watersheds to change land cover is essential to helping local government and stakeholders facilitate better management of these mangrove ecosystems.

Keywords: coastal mangroves, hydrologic model, land cover change, Philippines

Procedia PDF Downloads 105
307 The Algerian Experience in Developing Higher Education in the Country in Light of Modern Technology: Challenges and Prospects

Authors: Mohammed Messaoudi

Abstract:

The higher education sector in Algeria has witnessed in recent years a remarkable transformation, as it witnessed the integration of institutions within the modern technological environment and harnessing all appropriate mechanisms to raise the level of education and the level of training. Observers and those interested that it is necessary for the Algerian university to enter this field, especially with the efforts that seek to employ modern technology in the sector and encourage investment in this field, in addition to the state’s keenness to move towards building a path to benefit from modern technology, and to encourage energies in light of a reality that carries many Aspirations and challenges by achieving openness to the new digital environment and keeping pace with the ranks of international universities. Higher education is one of the engines of development for societies, as it is a vital field for the transfer of knowledge and scientific expertise, and the university is at the top of the comprehensive educational system for various disciplines in light of the achievement of a multi-dimensional educational system, and amid the integration of three basic axes that establish the sound educational process (teaching, research, relevant outputs efficiency), and according to a clear strategy that monitors the advancement of academic work, and works on developing its future directions to achieve development in this field. The Algerian University is considered one of the service institutions that seeks to find the optimal mechanisms to keep pace with the changes of the times, as it has become necessary for the university to enter the technological space and thus ensure the quality of education in it and achieve the required empowerment by dedicating a structure that matches the requirements of the challenges on which the sector is based, amid unremitting efforts to develop the capabilities. He sought to harness the mechanisms of communication and information technology and achieve transformation at the level of the higher education sector with what is called higher education technology. The conceptual framework of information and communication technology at the level of higher education institutions in Algeria is determined through the factors of organization, factors of higher education institutions, characteristics of the professor, characteristics of students, the outcomes of the educational process, and there is a relentless pursuit to achieve a positive interaction between these axes as they are basic components on which the success and achievement of higher education are based for his goals.

Keywords: Information and communication technology, Algerian university, scientific and cognitive development, challenges

Procedia PDF Downloads 62
306 Depth of Field: Photographs, Narrative and Reflective Learning Resource for Health Professions Educators

Authors: Gabrielle Brand, Christopher Etherton-Beer

Abstract:

The learning landscape of higher education environment is changing, with an increased focus over the past decade on how educators might begin to cultivate reflective skills in health professions students. In addition, changing professional requirements demand that health professionals are adequately prepared to practice in today’s complex Australian health care systems, including responding to changing demographics of population ageing. To counteract a widespread perception of health professions students’ disinterest in caring for older persons, the authors will report on an exploratory, mixed method research study that used photographs, narrative and small group work to enhance medical and nursing students’ reflective learning experience. An innovative photo-elicitation technique and reflective questioning prompts were used to increase engagement, and challenge students to consider new perspectives (around ageing) by constructing shared storylines in small groups. The qualitative themes revealed how photographs, narratives and small group work created learning spaces for reflection whereby students could safely explore their own personal and professional values, beliefs and perspectives around ageing. By providing the space for reflection, the students reported how they found connection and meaning in their own learning through a process of self-exploration that often challenged their assumptions of both older people and themselves as future health professionals. By integrating cognitive and affective elements into the learning process, this research demonstrates the importance of embedding visual methodologies that enhance reflection and transformative learning. The findings highlight the importance of integrating the arts into predominantly empirically driven health professional curricula and can be used as a catalyst for individual and/or collective reflection which can potentially enhance empathy, insight and understanding of the lived experiences of older patients. Based on these findings, the authors have developed ‘Depth of Field: Exploring Ageing’ an innovative, interprofessional, digital reflective learning resource that uses Prezi Inc. software (storytelling tool that presents ideas on a virtual canvas) to enhance students’ reflective capacity in the higher education environment.

Keywords: narrative, photo-elicitation, reflective learning, qualitative research

Procedia PDF Downloads 255
305 Start-Up: The Perception of Brazilian Entrepreneurs about the Start-Up Brasil Program

Authors: Fernando Nobre Cavalcante

Abstract:

In Brazil, and more recently in the city of Fortaleza, there is a new form of entrepreneurship that is focused on the information and communication technology service sector and that draws the attention of young people, investors, governments, authors and media companies: it is known as the start-up movement. Today, it is considered to be a driving force behind the creative economy. Rooted on progressive discourse, the words enterprise and innovation seduce new economic agents motivated by success stories from Silicon Valley in America along with increasing commercial activity for digital goods and services. This article assesses, from a sociological point of view, the new productive wave problematized by the light of Manuel Castells’ informational capitalism. Considering the skeptical as well as the optimistic opinions about the impact of this new entrepreneurial rearrangement, the following question is asked: How Brazilian entrepreneurs evaluate public policy incentives for startups Brazilian Federal Government? The raised hypotheses are based on employability factors as well as cultural, economical, and political matters related to innovation and technology. This study has produced a nationwide quantitative assessment with a special focus on the reality of these Ceará firms; as well as comparative qualitative interviews on Brazilian experiences lived by identified agents. This article outlines the public incentive policy of the federal government, the Start-up Brasil Program, from the perspective of these companies and provides details as to the discipline methods of the new enterprising way born in the United States. The startups are very young companies that are headed towards the economic sustainment of the productive sector services. These companies are dropping the seeds that will produce the re-enchantment of young people and bring them back to participation in political debate; they provide relief and reheats the job market; and they produce a democratization of the entrepreneurial ‘Do-It-Yourself’ culture. They capitalize the pivot of the wall street wolves and of agents being charged for new masks. There are developmental logic’s prophylaxis in the face of dreadful innovation stagnation. The lack of continuity in Brazilian governmental politics and cultural nuances related to entrepreneurship are barring the desired regional success of this ecosystem.

Keywords: creative economy, entrepreneurship, informationalism, innovation, startups, start-up brasil program

Procedia PDF Downloads 345
304 The Foundation Binary-Signals Mechanics and Actual-Information Model of Universe

Authors: Elsadig Naseraddeen Ahmed Mohamed

Abstract:

In contrast to the uncertainty and complementary principle, it will be shown in the present paper that the probability of the simultaneous occupation event of any definite values of coordinates by any definite values of momentum and energy at any definite instance of time can be described by a binary definite function equivalent to the difference between their numbers of occupation and evacuation epochs up to that time and also equivalent to the number of exchanges between those occupation and evacuation epochs up to that times modulus two, these binary definite quantities can be defined at all point in the time’s real-line so it form a binary signal represent a complete mechanical description of physical reality, the time of these exchanges represent the boundary of occupation and evacuation epochs from which we can calculate these binary signals using the fact that the time of universe events actually extends in the positive and negative of time’s real-line in one direction of extension when these number of exchanges increase, so there exists noninvertible transformation matrix can be defined as the matrix multiplication of invertible rotation matrix and noninvertible scaling matrix change the direction and magnitude of exchange event vector respectively, these noninvertible transformation will be called actual transformation in contrast to information transformations by which we can navigate the universe’s events transformed by actual transformations backward and forward in time’s real-line, so these information transformations will be derived as an elements of a group can be associated to their corresponded actual transformations. The actual and information model of the universe will be derived by assuming the existence of time instance zero before and at which there is no coordinate occupied by any definite values of momentum and energy, and then after that time, the universe begin its expanding in spacetime, this assumption makes the need for the existence of Laplace’s demon who at one moment can measure the positions and momentums of all constituent particle of the universe and then use the law of classical mechanics to predict all future and past of universe’s events, superfluous, we only need for the establishment of our analog to digital converters to sense the binary signals that determine the boundaries of occupation and evacuation epochs of the definite values of coordinates relative to its origin by the definite values of momentum and energy as present events of the universe from them we can predict approximately in high precision it's past and future events.

Keywords: binary-signal mechanics, actual-information model of the universe, actual-transformation, information-transformation, uncertainty principle, Laplace's demon

Procedia PDF Downloads 155
303 Groundwater Potential Mapping using Frequency Ratio and Shannon’s Entropy Models in Lesser Himalaya Zone, Nepal

Authors: Yagya Murti Aryal, Bipin Adhikari, Pradeep Gyawali

Abstract:

The Lesser Himalaya zone of Nepal consists of thrusting and folding belts, which play an important role in the sustainable management of groundwater in the Himalayan regions. The study area is located in the Dolakha and Ramechhap Districts of Bagmati Province, Nepal. Geologically, these districts are situated in the Lesser Himalayas and partly encompass the Higher Himalayan rock sequence, which includes low-grade to high-grade metamorphic rocks. Following the Gorkha Earthquake in 2015, numerous springs dried up, and many others are currently experiencing depletion due to the distortion of the natural groundwater flow. The primary objective of this study is to identify potential groundwater areas and determine suitable sites for artificial groundwater recharge. Two distinct statistical approaches were used to develop models: The Frequency Ratio (FR) and Shannon Entropy (SE) methods. The study utilized both primary and secondary datasets and incorporated significant role and controlling factors derived from field works and literature reviews. Field data collection involved spring inventory, soil analysis, lithology assessment, and hydro-geomorphology study. Additionally, slope, aspect, drainage density, and lineament density were extracted from a Digital Elevation Model (DEM) using GIS and transformed into thematic layers. For training and validation, 114 springs were divided into a 70/30 ratio, with an equal number of non-spring pixels. After assigning weights to each class based on the two proposed models, a groundwater potential map was generated using GIS, classifying the area into five levels: very low, low, moderate, high, and very high. The model's outcome reveals that over 41% of the area falls into the low and very low potential categories, while only 30% of the area demonstrates a high probability of groundwater potential. To evaluate model performance, accuracy was assessed using the Area under the Curve (AUC). The success rate AUC values for the FR and SE methods were determined to be 78.73% and 77.09%, respectively. Additionally, the prediction rate AUC values for the FR and SE methods were calculated as 76.31% and 74.08%. The results indicate that the FR model exhibits greater prediction capability compared to the SE model in this case study.

Keywords: groundwater potential mapping, frequency ratio, Shannon’s Entropy, Lesser Himalaya Zone, sustainable groundwater management

Procedia PDF Downloads 51
302 A Comparative Study of Mechanisms Across Different Online Social Learning Types

Authors: Xinyu Wang

Abstract:

Given the rapid development of Internet technology and the mainstream trend of online social media, people are spending increasingly more time online. This digital communication method has altered human social behavior. Concurrently, social learning phenomena occurring frequently on various online platforms have attracted significant attention. Past research has categorized social learning into affective, social learning and cognitive, social learning based on the content of learning. Recent studies have observed both types of social learning occurring in online contexts. However, few studies have simultaneously addressed both types of social learning or explored their underlying mechanisms and differences. This study aims to investigate through three behavioral experiments. Experiment 1 manipulates the content of experimental materials and two forms of feedback, emotional valence, sociability, and repetition, to verify whether individuals can achieve online emotional social learning through reinforcement using two social learning strategies. Results reveal that both social learning strategies can assist individuals in affective and social learning through reinforcement, with feedback-based learning strategies outperforming frequency-dependent strategies. Experiment 2 similarly manipulates the content of experimental materials and two forms of feedback to verify whether individuals can achieve online knowledge and social learning through reinforcement using two social learning strategies. Results show that similar to online affective and social learning, individuals adopt both social learning strategies to achieve cognitive and social learning through reinforcement, with feedback-based learning strategies outperforming frequency-dependent strategies. Experiment 3 simultaneously observes online affective and cognitive social learning by manipulating the content of experimental materials and feedback at different levels of social pressure. Results indicate that online affective and social learning exhibits different learning effects under different levels of social pressure, whereas online cognitive social learning remains unaffected by social pressure, demonstrating more stable learning effects. Additionally, to explore the sustained effects of online social learning and differences in duration among different types of online social learning, all three experiments incorporate two test time points. Results reveal significant differences in pre-post-test scores for online social learning in Experiments 2 and 3, whereas differences are less apparent in Experiment 1. To accurately measure the sustained effects of online social learning, the researchers conducted a mini-meta-analysis of all effect sizes of online social learning duration. Results indicate that although the overall effect size is small, the effect of online social learning weakens over time.

Keywords: online social learning, affective social learning, cognitive social learning, social learning strategies, social reinforcement, social pressure, duration

Procedia PDF Downloads 17
301 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data

Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann

Abstract:

Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.

Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers

Procedia PDF Downloads 182
300 The Quantum Theory of Music and Human Languages

Authors: Mballa Abanda Luc Aurelien Serge, Henda Gnakate Biba, Kuate Guemo Romaric, Akono Rufine Nicole, Zabotom Yaya Fadel Biba, Petfiang Sidonie, Bella Suzane Jenifer

Abstract:

The main hypotheses proposed around the definition of the syllable and of music, of the common origin of music and language, should lead the reader to reflect on the cross-cutting questions raised by the debate on the notion of universals in linguistics and musicology. These are objects of controversy, and there lies its interest: the debate raises questions that are at the heart of theories on language. It is an inventive, original, and innovative research thesis. A contribution to the theoretical, musicological, ethno musicological, and linguistic conceptualization of languages, giving rise to the practice of interlocution between the social and cognitive sciences, the activities of artistic creation, and the question of modeling in the human sciences: mathematics, computer science, translation automation, and artificial intelligence. When you apply this theory to any text of a folksong of a world-tone language, you do not only piece together the exact melody, rhythm, and harmonies of that song as if you knew it in advance but also the exact speaking of this language. The author believes that the issue of the disappearance of tonal languages and their preservation has been structurally resolved, as well as one of the greatest cultural equations related to the composition and creation of tonal, polytonal, and random music. The experimentation confirming the theorization, I designed a semi-digital, semi-analog application that translates the tonal languages of Africa (about 2,100 languages) into blues, jazz, world music, polyphonic music, tonal and anatonal music, and deterministic and random music). To test this application, I use music reading and writing software that allows me to collect the data extracted from my mother tongue, which is already modeled in the musical staves saved in the ethnographic (semiotic) dictionary for automatic translation ( volume 2 of the book). The translation is done (from writing to writing, from writing to speech, and from writing to music). Mode of operation: you type a text on your computer, a structured song (chorus-verse), and you command the machine a melody of blues, jazz, and world music or variety, etc. The software runs, giving you the option to choose harmonies, and then you select your melody.

Keywords: language, music, sciences, quantum entenglement

Procedia PDF Downloads 55
299 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction

Authors: Radul Shishkov, Orlin Davchev

Abstract:

The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.

Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction

Procedia PDF Downloads 30
298 Urban Slum Communities Engage in the Fight Against TB in Karnataka, South India

Authors: N. Rambabu, H. Gururaj, Reynold Washington, Oommen George

Abstract:

Motivation: Under the USAID Strengthening Health Outcomes through Private Sector (SHOPS-TB) initiative, Karnataka Health Promotion Trust (KHPT) with technical support of Abt associates is implementing a TB prevention and care model in Karnataka State, South India. KHPT is the interface agency between the public and private sectors, and providers and the target community facilitating early TB case detection and enhancing treatment compliance through private health care providers (pHCP) engagement in RNTCP. The project coverage is 0.84 million urban poor from 663 slums in 12 districts of Karnataka. Problem Statement: India with the highest burden of global TB (26%) and two million cases annually, accounts for approximately one fifth of the global incidence. WHO estimates 300,000 people die from TB annually in India. India expanded the coverage of Directly Observed Treatment, Short-course chemotherapy (DOTS) to the entire country as early as 2006. However, the performance of RNTCP has not been uniform across states. While the national annual new smear-positive (NSP) case notification rate is 53, it is much lower at 47 in Karnataka. A third of TB patients in India reside in urban slums. Approach: Under SHOPS, KHPT actively engages with communities through key opinion leaders and community structures. Interpersonal communication, by Outreach workers through house-to-house visits and at aggregation points, is the primary method used for communication about TB and its management and to increase demand for sputum examination and DOTS. pHCP are mapped, trained and mentored by KHPT. ORWs also provide patient and family counseling on TB treatment, side effects and adherence, screen close contacts of index patients especially children under 6 years of age and screen co-morbidities including HIV, diabetes and malnutrition and risk factors including alcoholism, tobacco use, occupational hazards making appropriate accompanied or documented referrals. A treatment ‘buddy’ system for the patients involving close friends or family members, ICT-based support, DOTS Prerana (inspiration) groups of TB patients, family members and community, DOTS Mitra (friend) helpline services are also used for care and support services. Results: The intervention educated 39988 slum dwellers, referred 1731 chest symptomatics, tested 1061 patients and initiated 248 patients on anti-TB treatment within three months of intervention through continuous community engagement. Conclusions: The intervention’s potential to increase access to preferred health care providers, reduce patient and health system delays in diagnosis and initiation of treatment, improve health seeking behaviour and enhance compliance of pHCPs to standard treatment protocols is being monitored. Initial results are promising.

Keywords: DOTS, KHPT, health outcomes, public and private sector

Procedia PDF Downloads 299
297 Revolutionizing Healthcare Facility Maintenance: A Groundbreaking AI, BIM, and IoT Integration Framework

Authors: Mina Sadat Orooje, Mohammad Mehdi Latifi, Behnam Fereydooni Eftekhari

Abstract:

The integration of cutting-edge Internet of Things (IoT) technologies with advanced Artificial Intelligence (AI) systems is revolutionizing healthcare facility management. However, the current landscape of hospital building maintenance suffers from slow, repetitive, and disjointed processes, leading to significant financial, resource, and time losses. Additionally, the potential of Building Information Modeling (BIM) in facility maintenance is hindered by a lack of data within digital models of built environments, necessitating a more streamlined data collection process. This paper presents a robust framework that harmonizes AI with BIM-IoT technology to elevate healthcare Facility Maintenance Management (FMM) and address these pressing challenges. The methodology begins with a thorough literature review and requirements analysis, providing insights into existing technological landscapes and associated obstacles. Extensive data collection and analysis efforts follow to deepen understanding of hospital infrastructure and maintenance records. Critical AI algorithms are identified to address predictive maintenance, anomaly detection, and optimization needs alongside integration strategies for BIM and IoT technologies, enabling real-time data collection and analysis. The framework outlines protocols for data processing, analysis, and decision-making. A prototype implementation is executed to showcase the framework's functionality, followed by a rigorous validation process to evaluate its efficacy and gather user feedback. Refinement and optimization steps are then undertaken based on evaluation outcomes. Emphasis is placed on the scalability of the framework in real-world scenarios and its potential applications across diverse healthcare facility contexts. Finally, the findings are meticulously documented and shared within the healthcare and facility management communities. This framework aims to significantly boost maintenance efficiency, cut costs, provide decision support, enable real-time monitoring, offer data-driven insights, and ultimately enhance patient safety and satisfaction. By tackling current challenges in healthcare facility maintenance management it paves the way for the adoption of smarter and more efficient maintenance practices in healthcare facilities.

Keywords: artificial intelligence, building information modeling, healthcare facility maintenance, internet of things integration, maintenance efficiency

Procedia PDF Downloads 31
296 Climate Indices: A Key Element for Climate Change Adaptation and Ecosystem Forecasting - A Case Study for Alberta, Canada

Authors: Stefan W. Kienzle

Abstract:

The increasing number of occurrences of extreme weather and climate events have significant impacts on society and are the cause of continued and increasing loss of human and animal lives, loss or damage to property (houses, cars), and associated stresses to the public in coping with a changing climate. A climate index breaks down daily climate time series into meaningful derivatives, such as the annual number of frost days. Climate indices allow for the spatially consistent analysis of a wide range of climate-dependent variables, which enables the quantification and mapping of historical and future climate change across regions. As trends of phenomena such as the length of the growing season change differently in different hydro-climatological regions, mapping needs to be carried out at a high spatial resolution, such as the 10km by 10km Canadian Climate Grid, which has interpolated daily values from 1950 to 2017 for minimum and maximum temperature and precipitation. Climate indices form the basis for the analysis and comparison of means, extremes, trends, the quantification of changes, and their respective confidence levels. A total of 39 temperature indices and 16 precipitation indices were computed for the period 1951 to 2017 for the Province of Alberta. Temperature indices include the annual number of days with temperatures above or below certain threshold temperatures (0, +-10, +-20, +25, +30ºC), frost days, and timing of frost days, freeze-thaw days, growing or degree days, and energy demands for air conditioning and heating. Precipitation indices include daily and accumulated 3- and 5-day extremes, days with precipitation, period of days without precipitation, and snow and potential evapotranspiration. The rank-based nonparametric Mann-Kendall statistical test was used to determine the existence and significant levels of all associated trends. The slope of the trends was determined using the non-parametric Sen’s slope test. The Google mapping interface was developed to create the website albertaclimaterecords.com, from which beach of the 55 climate indices can be queried for any of the 6833 grid cells that make up Alberta. In addition to the climate indices, climate normals were calculated and mapped for four historical 30-year periods and one future period (1951-1980, 1961-1990, 1971-2000, 1981-2017, 2041-2070). While winters have warmed since the 1950s by between 4 - 5°C in the South and 6 - 7°C in the North, summers are showing the weakest warming during the same period, ranging from about 0.5 - 1.5°C. New agricultural opportunities exist in central regions where the number of heat units and growing degree days are increasing, and the number of frost days is decreasing. While the number of days below -20ºC has about halved across Alberta, the growing season has expanded by between two and five weeks since the 1950s. Interestingly, both the number of days with heat waves and cold spells have doubled to four-folded during the same period. This research demonstrates the enormous potential of using climate indices at the best regional spatial resolution possible to enable society to understand historical and future climate changes of their region.

Keywords: climate change, climate indices, habitat risk, regional, mapping, extremes

Procedia PDF Downloads 73
295 Mechanical Characterization and CNC Rotary Ultrasonic Grinding of Crystal Glass

Authors: Ricardo Torcato, Helder Morais

Abstract:

The manufacture of crystal glass parts is based on obtaining the rough geometry by blowing and/or injection, generally followed by a set of manual finishing operations using cutting and grinding tools. The forming techniques used do not allow the obtainment, with repeatability, of parts with complex shapes and the finishing operations use intensive specialized labor resulting in high cycle times and production costs. This work aims to explore the digital manufacture of crystal glass parts by investigating new subtractive techniques for the automated, flexible finishing of these parts. Finishing operations are essential to respond to customer demands in terms of crystal feel and shine. It is intended to investigate the applicability of different computerized finishing technologies, namely milling and grinding in a CNC machining center with or without ultrasonic assistance, to crystal processing. Research in the field of grinding hard and brittle materials, despite not being extensive, has increased in recent years, and scientific knowledge about the machinability of crystal glass is still very limited. However, it can be said that the unique properties of glass, such as high hardness and very low toughness, make any glass machining technology a very challenging process. This work will measure the performance improvement brought about by the use of ultrasound compared to conventional crystal grinding. This presentation is focused on the mechanical characterization and analysis of the cutting forces in CNC machining of superior crystal glass (Pb ≥ 30%). For the mechanical characterization, the Vickers hardness test provides an estimate of the material hardness (Hv) and the fracture toughness based on cracks that appear in the indentation. Mechanical impulse excitation test estimates the Young’s Modulus, shear modulus and Poisson ratio of the material. For the cutting forces, it a dynamometer was used to measure the forces in the face grinding process. The tests were made based on the Taguchi method to correlate the input parameters (feed rate, tool rotation speed and depth of cut) with the output parameters (surface roughness and cutting forces) to optimize the process (better roughness using the cutting forces that do not compromise the material structure and the tool life) using ANOVA. This study was conducted for conventional grinding and for the ultrasonic grinding process with the same cutting tools. It was possible to determine the optimum cutting parameters for minimum cutting forces and for minimum surface roughness in both grinding processes. Ultrasonic-assisted grinding provides a better surface roughness than conventional grinding.

Keywords: CNC machining, crystal glass, cutting forces, hardness

Procedia PDF Downloads 132
294 The Significance of Picture Mining in the Fashion and Design as a New Research Method

Authors: Katsue Edo, Yu Hiroi

Abstract:

T Increasing attention has been paid to using pictures and photographs in research since the beginning of the 21th century in social sciences. Meanwhile we have been studying the usefulness of Picture mining, which is one of the new ways for a these picture using researches. Picture Mining is an explorative research analysis method that takes useful information from pictures, photographs and static or moving images. It is often compared with the methods of text mining. The Picture Mining concept includes observational research in the broad sense, because it also aims to analyze moving images (Ochihara and Edo 2013). In the recent literature, studies and reports using pictures are increasing due to the environmental changes. These are identified as technological and social changes (Edo et.al. 2013). Low price digital cameras and i-phones, high information transmission speed, low costs for information transferring and high performance and resolution of the cameras of mobile phones have changed the photographing behavior of people. Consequently, there is less resistance in taking and processing photographs for most of the people in the developing countries. In these studies, this method of collecting data from respondents is often called as ‘participant-generated photography’ or ‘respondent-generated visual imagery’, which focuses on the collection of data and its analysis (Pauwels 2011, Snyder 2012). But there are few systematical and conceptual studies that supports it significance of these methods. We have discussed in the recent years to conceptualize these picture using research methods and formalize theoretical findings (Edo et. al. 2014). We have identified the most efficient fields of Picture mining in the following areas inductively and in case studies; 1) Research in Consumer and Customer Lifestyles. 2) New Product Development. 3) Research in Fashion and Design. Though we have found that it will be useful in these fields and areas, we must verify these assumptions. In this study we will focus on the field of fashion and design, to determine whether picture mining methods are really reliable in this area. In order to do so we have conducted an empirical research of the respondents’ attitudes and behavior concerning pictures and photographs. We compared the attitudes and behavior of pictures toward fashion to meals, and found out that taking pictures of fashion is not as easy as taking meals and food. Respondents do not often take pictures of fashion and upload their pictures online, such as Facebook and Instagram, compared to meals and food because of the difficulty of taking them. We concluded that we should be more careful in analyzing pictures in the fashion area for there still might be some kind of bias existing even if the environment of pictures have drastically changed in these years.

Keywords: empirical research, fashion and design, Picture Mining, qualitative research

Procedia PDF Downloads 341
293 Possibilities to Evaluate the Climatic and Meteorological Potential for Viticulture in Poland: The Case Study of the Jagiellonian University Vineyard

Authors: Oskar Sekowski

Abstract:

Current global warming causes changes in the traditional zones of viticulture worldwide. During 20th century, the average global air temperature increased by 0.89˚C. The models of climate change indicate that viticulture, currently concentrating in narrow geographic niches, may move towards the poles, to higher geographic latitudes. Global warming may cause changes in traditional viticulture regions. Therefore, there is a need to estimate the climatic conditions and climate change in areas that are not traditionally associated with viticulture, e.g., Poland. The primary objective of this paper is to prepare methodology to evaluate the climatic and meteorological potential for viticulture in Poland based on a case study. Moreover, the additional aim is to evaluate the climatic potential of a mesoregion where a university vineyard is located. The daily data of temperature, precipitation, insolation, and wind speed (1988-2018) from the meteorological station located in Łazy, southern Poland, was used to evaluate 15 climatological parameters and indices connected with viticulture. The next steps of the methodology are based on Geographic Information System methods. The topographical factors such as a slope gradient and slope exposure were created using Digital Elevation Models. The spatial distribution of climatological elements was interpolated by ordinary kriging. The values of each factor and indices were also ranked and classified. The viticultural potential was determined by integrating two suitability maps, i.e., the topographical and climatic ones, and by calculating the average for each pixel. Data analysis shows significant changes in heat accumulation indices that are driven by increases in maximum temperature, mostly increasing number of days with Tmax > 30˚C. The climatic conditions of this mesoregion are sufficient for vitis vinifera viticulture. The values of indicators and insolation are similar to those in the known wine regions located on similar geographical latitudes in Europe. The smallest threat to viticulture in study area is the occurrence of hail and the highest occurrence of frost in the winter. This research provides the basis for evaluating general suitability and climatologic potential for viticulture in Poland. To characterize the climatic potential for viticulture, it is necessary to assess the suitability of all climatological and topographical factors that can influence viticulture. The methodology used in this case study shows places where there is a possibility to create vineyards. It may also be helpful for wine-makers to select grape varieties.

Keywords: climatologic potential, climatic classification, Poland, viticulture

Procedia PDF Downloads 81
292 Bioleaching of Metals Contained in Spent Catalysts by Acidithiobacillus thiooxidans DSM 26636

Authors: Andrea M. Rivas-Castillo, Marlenne Gómez-Ramirez, Isela Rodríguez-Pozos, Norma G. Rojas-Avelizapa

Abstract:

Spent catalysts are considered as hazardous residues of major concern, mainly due to the simultaneous presence of several metals in elevated concentrations. Although hydrometallurgical, pyrometallurgical and chelating agent methods are available to remove and recover some metals contained in spent catalysts; these procedures generate potentially hazardous wastes and the emission of harmful gases. Thus, biotechnological treatments are currently gaining importance to avoid the negative impacts of chemical technologies. To this end, diverse microorganisms have been used to assess the removal of metals from spent catalysts, comprising bacteria, archaea and fungi, whose resistance and metal uptake capabilities differ depending on the microorganism tested. Acidophilic sulfur oxidizing bacteria have been used to investigate the biotreatment and extraction of valuable metals from spent catalysts, namely Acidithiobacillus thiooxidans and Acidithiobacillus ferroxidans, as they present the ability to produce leaching agents such as sulfuric acid and sulfur oxidation intermediates. In the present work, the ability of A. thiooxidans DSM 26636 for the bioleaching of metals contained in five different spent catalysts was assessed by growing the culture in modified Starkey mineral medium (with elemental sulfur at 1%, w/v), and 1% (w/v) pulp density of each residue for up to 21 days at 30 °C and 150 rpm. Sulfur-oxidizing activity was periodically evaluated by determining sulfate concentration in the supernatants according to the NMX-k-436-1977 method. The production of sulfuric acid was assessed in the supernatants as well, by a titration procedure using NaOH 0.5 M with bromothymol blue as acid-base indicator, and by measuring pH using a digital potentiometer. On the other hand, Inductively Coupled Plasma - Optical Emission Spectrometry was used to analyze metal removal from the five different spent catalysts by A. thiooxidans DSM 26636. Results obtained show that, as could be expected, sulfuric acid production is directly related to the diminish of pH, and also to highest metal removal efficiencies. It was observed that Al and Fe are recurrently removed from refinery spent catalysts regardless of their origin and previous usage, although these removals may vary from 9.5 ± 2.2 to 439 ± 3.9 mg/kg for Al, and from 7.13 ± 0.31 to 368.4 ± 47.8 mg/kg for Fe, depending on the spent catalyst proven. Besides, bioleaching of metals like Mg, Ni, and Si was also obtained from automotive spent catalysts, which removals were of up to 66 ± 2.2, 6.2±0.07, and 100±2.4, respectively. Hence, the data presented here exhibit the potential of A. thiooxidans DSM 26636 for the simultaneous bioleaching of metals contained in spent catalysts from diverse provenance.

Keywords: bioleaching, metal removal, spent catalysts, Acidithiobacillus thiooxidans

Procedia PDF Downloads 115
291 Exploration of Building Information Modelling Software to Develop Modular Coordination Design Tool for Architects

Authors: Muhammad Khairi bin Sulaiman

Abstract:

The utilization of Building Information Modelling (BIM) in the construction industry has provided an opportunity for designers in the Architecture, Engineering and Construction (AEC) industry to proceed from the conventional method of using manual drafting to a way that creates alternative designs quickly, produces more accurate, reliable and consistent outputs. By using BIM Software, designers can create digital content that manipulates the use of data using the parametric model of BIM. With BIM software, more alternative designs can be created quickly and design problems can be explored further to produce a better design faster than conventional design methods. Generally, BIM is used as a documentation mechanism and has not been fully explored and utilised its capabilities as a design tool. Relative to the current issue, Modular Coordination (MC) design as a sustainable design practice is encouraged since MC design will reduce material wastage through standard dimensioning, pre-fabrication, repetitive, modular construction and components. However, MC design involves a complex process of rules and dimensions. Therefore, a tool is needed to make this process easier. Since the parameters in BIM can easily be manipulated to follow MC rules and dimensioning, thus, the integration of BIM software with MC design is proposed for architects during the design stage. With this tool, there will be an improvement in acceptance and practice in the application of MC design effectively. Consequently, this study will analyse and explore the function and customization of BIM objects and the capability of BIM software to expedite the application of MC design during the design stage for architects. With this application, architects will be able to create building models and locate objects within reference modular grids that adhere to MC rules and dimensions. The parametric modeling capabilities of BIM will also act as a visual tool that will further enhance the automation of the 3-Dimensional space planning modeling process. (Method) The study will first analyze and explore the parametric modeling capabilities of rule-based BIM objects, which eventually customize a reference grid within the rules and dimensioning of MC. Eventually, the approach will further enhance the architect's overall design process and enable architects to automate complex modeling, which was nearly impossible before. A prototype using a residential quarter will be modeled. A set of reference grids guided by specific MC rules and dimensions will be used to develop a variety of space planning and configuration. With the use of the design, the tool will expedite the design process and encourage the use of MC Design in the construction industry.

Keywords: building information modeling, modular coordination, space planning, customization, BIM application, MC space planning

Procedia PDF Downloads 62