Search results for: Deep learning based segmentation
28415 Use of Artificial Intelligence in Teaching Practices: A Meta-Analysis
Authors: Azmat Farooq Ahmad Khurram, Sadaf Aslam
Abstract:
This meta-analysis systematically examines the use of artificial intelligence (AI) in instructional methods across diverse educational settings through a thorough analysis of empirical research encompassing various disciplines, educational levels, and regions. This study aims to assess the effects of AI integration on teaching methodologies, classroom dynamics, teachers' roles, and student engagement. Various research methods were used to gather data, including literature reviews, surveys, interviews, and focus group discussions. Findings indicate paradigm shifts in teaching and education, identify emerging trends, practices, and the application of artificial intelligence in learning, and provide educators, policymakers, and stakeholders with guidelines and recommendations for effectively integrating AI in educational contexts. The study concludes by suggesting future research directions and practical considerations for maximizing AI's positive influence on pedagogical practices.Keywords: artificial intelligence, teaching practices, meta-analysis, teaching-learning
Procedia PDF Downloads 8328414 Insight into Localized Fertilizer Placement in Major Cereal Crops
Authors: Solomon Yokamo, Dianjun Lu, Xiaoqin Chen, Huoyan Wang
Abstract:
The current ‘high input-high output’ nutrient management model based on homogenous spreading over the entire soil surface remains a key challenge in China’s farming systems, leading to low fertilizer use efficiency and environmental pollution. Localized placement of fertilizer (LPF) to crop root zones has been proposed as a viable approach to boost crop production while protecting environmental pollution. To assess the potential benefits of LPF on three major crops—wheat, rice, and maize—a comprehensive meta-analysis was conducted, encompassing 85 field studies published from 2002-2023. We further validated the practicability and feasibility of one-time root zone N management based on LPF for the three field crops. The meta-analysis revealed that LPF significantly increased the yields of the selected crops (13.62%) and nitrogen recovery efficiency (REN) (33.09%) while reducing cumulative nitrous oxide (N₂O) emission (17.37%) and ammonia (NH₃) volatilization (60.14%) compared to the conventional surface application (CSA). Higher grain yield and REN were achieved with an optimal fertilization depth (FD) of 5-15 cm, moderate N rates, combined NPK application, one-time deep fertilization, and coarse-textured and slightly acidic soils. Field validation experiments showed that localized one-time root zone N management without topdressing increased maize (6.2%), rice (34.6%), and wheat (2.9%) yields while saving N fertilizer (3%) and also increased the net economic benefits (23.71%) compared to CSA. A soil incubation study further proved the potential of LPF to enhance the retention and availability of mineral N in the root zone over an extended period. Thus, LPF could be an important fertilizer management strategy and should be extended to other less-developed and developing regions to win the triple benefit of food security, environmental quality, and economic gains.Keywords: grain yield, LPF, NH₃ volatilization, N₂O emission, N recovery efficiency
Procedia PDF Downloads 2728413 Micro-Rest: Extremely Short Breaks in Post-Learning Interference Support Memory Retention over the Long Term
Authors: R. Marhenke, M. Martini
Abstract:
The distraction of attentional resources after learning hinders long-term memory consolidation compared to several minutes of post-encoding inactivity in form of wakeful resting. We tested whether an 8-minute period of wakeful resting, compared to performing an adapted version of the d2 test of attention after learning, supports memory retention. Participants encoded and immediately recalled a word list followed by either an 8 minute period of wakeful resting (eyes closed, relaxed) or by performing an adapted version of the d2 test of attention (scanning and selecting specific characters while ignoring others). At the end of the experimental session (after 12-24 min) and again after 7 days, participants were required to complete a surprise free recall test of both word lists. Our results showed no significant difference in memory retention between the experimental conditions. However, we found that participants who completed the first lines of the d2 test in less than the given time limit of 20 seconds and thus had short unfilled intervals before switching to the next test line, remembered more words over the 12-24 minute and over the 7 days retention interval than participants who did not complete the first lines. This interaction occurred only for the first test lines, with the highest temporal proximity to the encoding task and not for later test lines. Differences in retention scores between groups (completed first line vs. did not complete) seem to be widely independent of the general performance in the d2 test. Implications and limitations of these exploratory findings are discussed.Keywords: long-term memory, retroactive interference, attention, forgetting
Procedia PDF Downloads 13728412 The Impact of Hosting an On-Site Vocal Concert in Preschool on Music Inspiration and Learning Among Preschoolers
Authors: Meiying Liao, Poya Huang
Abstract:
The aesthetic domain is one of the six major domains in the Taiwanese preschool curriculum, encompassing visual arts, music, and dramatic play. Its primary objective is to cultivate children’s abilities in exploration and awareness, expression and creation, and response and appreciation. The purpose of this study was to explore the effects of hosting a vocal music concert on aesthetic inspiration and learning among preschoolers in a preschool setting. The primary research method employed was a case study focusing on a private preschool in Northern Taiwan that organized a school-wide event featuring two vocalists. The concert repertoires included children’s songs, folk songs, and arias performed in Mandarin, Hakka, English, German, and Italian. In addition to professional performances, preschool teachers actively participated by presenting a children’s song. A total of 5 classes, comprising approximately 150 preschoolers, along with 16 teachers and staff, participated in the event. Data collection methods included observation, interviews, and documents. Results indicated that both teachers and children thoroughly enjoyed the concert, with high levels of acceptance when the program was appropriately designed and hosted. Teachers reported that post-concert discussions with children revealed the latter’s ability to recall people, events, and elements observed during the performance, expressing their impressions of the most memorable segments. The concert effectively achieved the goals of the aesthetic domain, particularly in fostering response and appreciation. It also inspired preschoolers’ interest in music. Many teachers noted an increased desire for performance among preschoolers after exposure to the concert, with children imitating the performers and their expressions. Remarkably, one class extended this experience by incorporating it into the curriculum, autonomously organizing a high-quality concert in the music learning center. Parents also reported that preschoolers enthusiastically shared their concert experiences at home. In conclusion, despite being a single event, the positive responses from preschoolers towards the music performance suggest a meaningful impact. These experiences extended into the curriculum, as firsthand exposure to performances allowed teachers to deepen related topics, fostering a habit of autonomous learning in the designated learning centers.Keywords: concert, early childhood music education, aesthetic education, music develpment
Procedia PDF Downloads 5128411 The Design and Development of Online Infertility Prevention Education in the Frame of Mayer's Multimedia Learning Theory
Authors: B. Baran, S. N. Kaptanoglu, M. Ocal, Y. Kagnici, E. Esen, E. Siyez, D. M. Siyez
Abstract:
Infertility is the fact that couples cannot have children despite 1 year of unprotected sexual life. Infertility can be considered as an important problem affecting not only sexual life but also social and psychological conditions of couples. Learning about information about preventable factors related to infertility during university years plays an important role in preventing a possible infertility case in older ages. The possibility to facilitate access to information with the internet has provided the opportunity to reach a broad audience in the diverse learning environments and educational environment. Moreover, the internet has become a basic resource for the 21st-century learners. Providing information about infertility over the internet will enable more people to reach in a short time. When studies conducted abroad about infertility are examined, interactive websites and online education programs come to the fore. In Turkey, while there is no comprehensive online education program for university students, it seems that existing studies are aimed to make more advertisements for doctors or hospitals. In this study, it was aimed to design and develop online infertility prevention education for university students. Mayer’s Multimedia Learning Theory made up the framework for the online learning environment in this study. The results of the needs analysis collected from the university students in Turkey who were selected with sampling to represent the audience for online learning contributed to the design phase. In this study, an infertility prevention online education environment designed as a 4-week education was developed by explaining the theoretical basis and needs analysis results. As a result; in the development of the online environment, different kind of visual aids that will increase teaching were used in the environment of online education according to Mayer’s principles of extraneous processing (coherence, signaling, spatial contiguity, temporal contiguity, redundancy, expectation principles), essential processing (segmenting, pre-training, modality principles) and generative processing (multimedia, personalization, voice principles). For example, the important points in reproductive systems’ expression were emphasized by visuals in order to draw learners’ attention, and the presentation of the information was also supported by the human voice. In addition, because of the limited knowledge of university students in the subject, the issue of female reproductive and male reproductive systems was taught before preventable factors related to infertility. Furthermore, 3D video and augmented reality application were developed in order to embody female and male reproductive systems. In conclusion, this study aims to develop an interactive Online Infertility Prevention Education in which university students can easily access reliable information and evaluate their own level of knowledge about the subject. It is believed that the study will also guide the researchers who want to develop online education in this area as it contains design-stage decisions of interactive online infertility prevention education for university students.Keywords: infertility, multimedia learning theory, online education, reproductive health
Procedia PDF Downloads 17528410 The Molecular Rationale for Steroid Based Therapy of Leukemia: Diagnostic and Therapeutic Implications
Authors: Eitan Yefenof
Abstract:
Glucocorticoid (GC) hormones, e.g. Dexamethasone and Prednisone, are widely used in the therapy of leukemia and lymphoma owing to their apoptogenic effect on lymphoid cells. However, the emergence of GC resistant cells during therapy is a major cause for treatment failure, urging the need for novel strategies that maintain leukemia sensitivity to the pro-apoptotic activity of GCs. GCs act by binding to the GC receptor (GR), which, in its inactive state, is sequestered in the cytosol by a multi-subunit complex of heat shock proteins. Upon ligand binding, the complex dissociates, allowing GR activation and translocation to the nucleus, where it regulates transcription of multiple genes. We demonstrated that in addition to gene expression, GR also regulates microRNA (miR) expression. Deep-sequencing analysis revealed 14 miRs that are regulated in GC-sensitive but resistant leukemias upon treatment with GC. GC up-regulates miR-103, miR-15~16 and miR-30e/d, while down-regulates miR-17, mir-18a, miR-19a, miR-19b, miR-20a and miR-92a (members of the miR-17∼92a multi-cistron). Upon transfection, miR-103 confers GC apoptotic sensitivity to otherwise GC-resistant cell. Furthermore, knocking down miR-103 expression reduces the GC apoptotic response of sensitive cells. miR-103 abrogates c-Myc expression, an oncogenic transcription factor which is deregulated in many cancers. In addition, miR-103 up-regulates Bim, a pro-apoptotic protein crucial for GC-induced death. Activated glycogen synthase kinase 3 (GSK3) is also crucial for GC-induced apoptosis. GSK3 is active in GC-sensitive but not in GC-resistant cells. We found that GSK3 associates with the GR multi-subunit complex. Upon GC exposure, it dissociates from the GR and interacts with Bim to enable activation of the mitochondrial apoptosis pathway. miR-103 mediated c-Myc ablation is followed by down-regulation of the multi-cistron miR-17~92a, in particular miR-18a and miR-20a. miR-18a targets GR for degradation whereas miR-20a targets Bim degradation. Hence, miR-103 acts, in concert with Bim and GR, as a "tumor suppressor" that leads to reduced proliferation, cell-cycle arrest and cell death. We suggest that miR-103 can provide a diagnostic tool that predicts the sensitivity of leukemia to GC based therapy. Furthermore, exosomal delivery of miR-103 or up-regulation of the endogenous miR-103 could confer apoptotic sensitivity to resistant cells at the outset, thus becoming a useful therapeutic tool combined with GCs.Keywords: apoptosis, leukemia, micro-RNA, steroids
Procedia PDF Downloads 24628409 Day Ahead and Intraday Electricity Demand Forecasting in Himachal Region using Machine Learning
Authors: Milan Joshi, Harsh Agrawal, Pallaw Mishra, Sanand Sule
Abstract:
Predicting electricity usage is a crucial aspect of organizing and controlling sustainable energy systems. The task of forecasting electricity load is intricate and requires a lot of effort due to the combined impact of social, economic, technical, environmental, and cultural factors on power consumption in communities. As a result, it is important to create strong models that can handle the significant non-linear and complex nature of the task. The objective of this study is to create and compare three machine learning techniques for predicting electricity load for both the day ahead and intraday, taking into account various factors such as meteorological data and social events including holidays and festivals. The proposed methods include a LightGBM, FBProphet, combination of FBProphet and LightGBM for day ahead and Motifs( Stumpy) based on Mueens algorithm for similarity search for intraday. We utilize these techniques to predict electricity usage during normal days and social events in the Himachal Region. We then assess their performance by measuring the MSE, RMSE, and MAPE values. The outcomes demonstrate that the combination of FBProphet and LightGBM method is the most accurate for day ahead and Motifs for intraday forecasting of electricity usage, surpassing other models in terms of MAPE, RMSE, and MSE. Moreover, the FBProphet - LightGBM approach proves to be highly effective in forecasting electricity load during social events, exhibiting precise day ahead predictions. In summary, our proposed electricity forecasting techniques display excellent performance in predicting electricity usage during normal days and special events in the Himachal Region.Keywords: feature engineering, FBProphet, LightGBM, MASS, Motifs, MAPE
Procedia PDF Downloads 7528408 Computer Based Model for Collaborative Research as a Panacea for National Development in Third World Countries
Authors: M. A. Rahman, A. O. Enikuomehin
Abstract:
Sharing commitment to reach a common goal in research by harnessing available resources from two or more parties can simply be referred to as collaborative research. Asides from avoiding duplication of research, the benefits often accrued from such research alliances include time economy as well as expenses reduction in completing such studies. Likewise, it provides an avenue to produce a wider horizon of scientific knowledge sequel to gathering of skills, knowledge and resources. In institutions of higher learning and research institutes, it often gives scholars an opportunity to strengthen the teaching and research capacity of their various institutions. Between industries and institutions, collaborative research breeds promising relationship that could be geared towards addressing different research problems such as producing and enhancing industrial-based products and services, including technological transfer. For Nigeria to take advantage of this collaboration, different issues like licensing of technology, intellectual property right, confidentiality, and funding among others, which could arise during this collaborative research programme, are identified in this paper. An important tool required to achieve this height in developing economy is the use of appropriate computer model. The paper highlights the costs of the collaborations and likewise stresses the need for evaluating the effectiveness and efficiency of such collaborative research activities and proposes an appropriate computer model to assist in this regard.Keywords: collaborative research, developing country, computerization, model
Procedia PDF Downloads 33428407 Digital Survey to Detect Factors That Determine Successful Implementation of Cooperative Learning in Physical Education
Authors: Carolin Schulze
Abstract:
Characterized by a positive interdependence of learners, cooperative learning (CL) is one possibility of successfully dealing with the increasing heterogeneity of students. Various positive effects of CL on the mental, physical and social health of students have already been documented. However, this structure is still rarely used in physical education (PE). Moreover, there is a lack of information about factors that determine the successful implementation of CL in PE. Therefore, the objective of the current study was to find out factors that determine the successful implementation of CL in PE using a digital questionnaire that was conducted from November to December 2022. In addition to socio-demographic data (age, gender, teaching experience, and education level), frequency of using CL, implementation strategies (theory-led, student-centred), and positive and negative effects of CL were measured. Furthermore, teachers were asked to rate the success of implementation on a 6-point rating scale (1-very successful to 6-not successful at all). For statistical analysis, multiple linear regression was performed, setting the success of implementation as the dependent variable. A total of 224 teachers (mean age=44.81±10.60 years; 58% male) took part in the current study. Overall, 39% of participants stated that they never use CL in their PE classes. Main reasons against the implementations of CL in PE were no time for preparation (74%) or for implementation (61%) and high heterogeneity of students (55%). When using CL, most of the reported difficulties are related to uncertainties about the correct procedure (54%) and the heterogeneous performance of students (54%). The most frequently mentioned positive effect was increased motivation of students (42%) followed by an improvement of psychological abilities (e.g. self-esteem, self-concept; 36%) and improved class cohesion (31%). Reported negative effects were unpredictability (29%), restlessness (24%), confusion (24%), and conflicts between students (17%). The successful use of CL is related to a theory-based preparation (e.g., heterogeneous formation of groups, use of rules and rituals) and a flexible implementation tailored to the needs and conditions of students (e.g., the possibility of individual work, omission of CL phases). Compared to teachers who solely implemented CL theory-led or student-adapted, teachers who switched from theory-led preparation to student-centred implementation of CL reported more successful implementation (t=5.312; p<.001). Neither frequency of using CL in PE nor the gender, age, the teaching experience, or the education level of the teacher showed a significant connection with the successful use of CL. Corresponding to the results of the current study, it is advisable that teachers gather enough knowledge about CL during their education and to point out the need to adapt the learning structure according to the diversity of their students. In order to analyse implementation strategies of teachers more deeply, qualitative methods and guided interviews with teachers are needed.Keywords: diversity, educational technology, physical education, teaching styles
Procedia PDF Downloads 8328406 Forecasting Market Share of Electric Vehicles in Taiwan Using Conjoint Models and Monte Carlo Simulation
Authors: Li-hsing Shih, Wei-Jen Hsu
Abstract:
Recently, the sale of electrical vehicles (EVs) has increased dramatically due to maturing technology development and decreasing cost. Governments of many countries have made regulations and policies in favor of EVs due to their long-term commitment to net zero carbon emissions. However, due to uncertain factors such as the future price of EVs, forecasting the future market share of EVs is a challenging subject for both the auto industry and local government. This study tries to forecast the market share of EVs using conjoint models and Monte Carlo simulation. The research is conducted in three phases. (1) A conjoint model is established to represent the customer preference structure on purchasing vehicles while five product attributes of both EV and internal combustion engine vehicles (ICEV) are selected. A questionnaire survey is conducted to collect responses from Taiwanese consumers and estimate the part-worth utility functions of all respondents. The resulting part-worth utility functions can be used to estimate the market share, assuming each respondent will purchase the product with the highest total utility. For example, attribute values of an ICEV and a competing EV are given respectively, two total utilities of the two vehicles of a respondent are calculated and then knowing his/her choice. Once the choices of all respondents are known, an estimate of market share can be obtained. (2) Among the attributes, future price is the key attribute that dominates consumers’ choice. This study adopts the assumption of a learning curve to predict the future price of EVs. Based on the learning curve method and past price data of EVs, a regression model is established and the probability distribution function of the price of EVs in 2030 is obtained. (3) Since the future price is a random variable from the results of phase 2, a Monte Carlo simulation is then conducted to simulate the choices of all respondents by using their part-worth utility functions. For instance, using one thousand generated future prices of an EV together with other forecasted attribute values of the EV and an ICEV, one thousand market shares can be obtained with a Monte Carlo simulation. The resulting probability distribution of the market share of EVs provides more information than a fixed number forecast, reflecting the uncertain nature of the future development of EVs. The research results can help the auto industry and local government make more appropriate decisions and future action plans.Keywords: conjoint model, electrical vehicle, learning curve, Monte Carlo simulation
Procedia PDF Downloads 7628405 The Impact of Using Technology Tools on Preparing English Language Learners for the 21st Century
Authors: Ozlem Kaya
Abstract:
21st-century learners are energetic and tech-savvy, and the skills and the knowledge required in this century are complex and challenging. Therefore, teachers need to find new ways to appeal to the needs and interests of their students and meet the demands of the 21st century at the same time. One way to do so in English language learning has been to incorporate various technology tools into classroom practices. Although teachers think these practices are effective and their students enjoy them, students may have different perceptions. To find out what students think about the use of technology tools in terms of developing 21st-century skills and knowledge, this study was conducted at Anadolu University School of Foreign Languages. A questionnaire was administered to 40 students at elementary level. Afterward, semi-structured interviews were held with 8 students to provide deeper insight into their perceptions. The details of the findings of the study will be presented and discussed during the presentation.Keywords: 21st century skills, technology tools, perception, English Language Learning
Procedia PDF Downloads 30028404 Supporting International Student’s Acculturation Through Chatbot Technology: A Proposed Study
Authors: Sylvie Studente
Abstract:
Despite the increase in international students migrating to the UK, the transition from home environment to a host institution abroad can be overwhelming for many students due to acculturative stressors. These stressors are reported to peak within the first six months of transitioning into study abroad which has determinantal impacts for Higher Education Institutions. These impacts include; increased drop-out rates and overall decreases in academic performance. Research suggests that belongingness can negate acculturative stressors through providing opportunities for students to form necessary social connections. In response to this universities have focussed on utilising technology to create learning communities with the most commonly deployed being social media, blogs, and discussion forums. Despite these attempts, the application of technology in supporting international students is still ambiguous. With the reported growing popularity of mobile devices among students and accelerations in learning technology owing to the COVID-19 pandemic, the potential is recognised to address this challenge via the use of chatbot technology. Whilst traditionally, chatbots were deployed as conversational agents in business domains, they have since been applied to the field of education. Within this emerging area of research, a gap exists in addressing the educational value of chatbots over and above the traditional service orientation categorisation. The proposed study seeks to extend upon current understandings by investigating the challenges faced by international students in studying abroad and exploring the potential of chatbots as a solution to assist students’ acculturation. There has been growing interest in the application of chatbot technology to education accelerated by the shift to online learning during the COVID-19 pandemic. Although interest in educational chatbots has surged, there is a lack of consistency in the research area in terms of guidance on the design to support international students in HE. This gap is widened when considering the additional challenge of supporting multicultural international students with diverse. Diversification in education is rising due to increases in migration trends for international study. As global opportunities for education increase, so does the need for multiculturally inclusive learning support.Keywords: chatbots, education, international students, acculturation
Procedia PDF Downloads 4928403 Machine Learning Approach for Automating Electronic Component Error Classification and Detection
Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski
Abstract:
The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.Keywords: augmented reality, machine learning, object recognition, virtual laboratories
Procedia PDF Downloads 14228402 Edge Enhancement Visual Methodology for Fat Amount and Distribution Assessment in Dry-Cured Ham Slices
Authors: Silvia Grassi, Stefano Schiavon, Ernestina Casiraghi, Cristina Alamprese
Abstract:
Dry-cured ham is an uncooked meat product particularly appreciated for its peculiar sensory traits among which lipid component plays a key role in defining quality and, consequently, consumers’ acceptability. Usually, fat content and distribution are chemically determined by expensive, time-consuming, and destructive analyses. Moreover, different sensory techniques are applied to assess product conformity to desired standards. In this context, visual systems are getting a foothold in the meat market envisioning more reliable and time-saving assessment of food quality traits. The present work aims at developing a simple but systematic and objective visual methodology to assess the fat amount of dry-cured ham slices, in terms of total, intermuscular and intramuscular fractions. To the aim, 160 slices from 80 PDO dry-cured hams were evaluated by digital image analysis and Soxhlet extraction. RGB images were captured by a flatbed scanner, converted in grey-scale images, and segmented based on intensity histograms as well as on a multi-stage algorithm aimed at edge enhancement. The latter was performed applying the Canny algorithm, which consists of image noise reduction, calculation of the intensity gradient for each image, spurious response removal, actual thresholding on corrected images, and confirmation of strong edge boundaries. The approach allowed for the automatic calculation of total, intermuscular and intramuscular fat fractions as percentages of the total slice area. Linear regression models were run to estimate the relationships between the image analysis results and the chemical data, thus allowing for the prediction of the total, intermuscular and intramuscular fat content by the dry-cured ham images. The goodness of fit of the obtained models was confirmed in terms of coefficient of determination (R²), hypothesis testing and pattern of residuals. Good regression models have been found being 0.73, 0.82, and 0.73 the R2 values for the total fat, the sum of intermuscular and intramuscular fat and the intermuscular fraction, respectively. In conclusion, the edge enhancement visual procedure brought to a good fat segmentation making the simple visual approach for the quantification of the different fat fractions in dry-cured ham slices sufficiently simple, accurate and precise. The presented image analysis approach steers towards the development of instruments that can overcome destructive, tedious and time-consuming chemical determinations. As future perspectives, the results of the proposed image analysis methodology will be compared with those of sensory tests in order to develop a fast grading method of dry-cured hams based on fat distribution. Therefore, the system will be able not only to predict the actual fat content but it will also reflect the visual appearance of samples as perceived by consumers.Keywords: dry-cured ham, edge detection algorithm, fat content, image analysis
Procedia PDF Downloads 18228401 Modular, Responsive, and Interactive Green Walls - A Case Study
Authors: Flaviu Mihai Frigura-Lliasa, Andreea Anamaria Anghel, Attila Simo
Abstract:
Due to the beauty, usefulness, science, constantly changing, constantly evolving features, and most of the time, mystery it involves, nature-based art is seen as a both modern and timeless direction that has been extensively used in design. The goal of the team's activities was to experiment with ways of fusing the two most common contemporary ways of referring to green installations, that is, either in a pure artistic or in an ecological manner, and creating a living, dynamic, interactive installation capable of both receiving and interpreting external factors, such as natural and human stimuli, that would not only determine some of the mechanism's presets. By consequent, a complex experiment made up of various research and project stages was elaborated in order to transform an idea into an actual interactive green installation within months thanks to the interaction, teamwork, and design processes undertaken throughout the academic years by both university lecturers and some of our students. The outcomes would lead to the development of a dynamic artwork called "Modgrew" as well as the introduction of experiment-based learning at the Timisoara Faculty of Architecture and Urban Planning, as well as at the Faculty of Electrical and Power Engineering, for the green wall automation issues.Keywords: green design, living walls, modular structure, interactive proof of concept
Procedia PDF Downloads 8228400 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Temporal Convolutional Network for Remaining Useful Life Prediction of Lithium Ion Batteries
Authors: Jing Zhao, Dayong Liu, Shihao Wang, Xinghua Zhu, Delong Li
Abstract:
Uhumanned Underwater Vehicles generally operate in the deep sea, which has its own unique working conditions. Lithium-ion power batteries should have the necessary stability and endurance for use as an underwater vehicle’s power source. Therefore, it is essential to accurately forecast how long lithium-ion batteries will last in order to maintain the system’s reliability and safety. In order to model and forecast lithium battery Remaining Useful Life (RUL), this research suggests a model based on Complete Ensemble Empirical Mode Decomposition with Adaptive noise-Temporal Convolutional Net (CEEMDAN-TCN). In this study, two datasets, NASA and CALCE, which have a specific gap in capacity data fluctuation, are used to verify the model and examine the experimental results in order to demonstrate the generalizability of the concept. The experiments demonstrate the network structure’s strong universality and ability to achieve good fitting outcomes on the test set for various battery dataset types. The evaluation metrics reveal that the CEEMDAN-TCN prediction performance of TCN is 25% to 35% better than that of a single neural network, proving that feature expansion and modal decomposition can both enhance the model’s generalizability and be extremely useful in industrial settings.Keywords: lithium-ion battery, remaining useful life, complete EEMD with adaptive noise, temporal convolutional net
Procedia PDF Downloads 16428399 A Supervised Goal Directed Algorithm in Economical Choice Behaviour: An Actor-Critic Approach
Authors: Keyvanl Yahya
Abstract:
This paper aims to find a algorithmic structure that affords to predict and explain economic choice behaviour particularly under uncertainty (random policies) by manipulating the prevalent Actor-Critic learning method that complies with the requirements we have been entrusted ever since the field of neuroeconomics dawned on us. Whilst skimming some basics of neuroeconomics that might be relevant to our discussion, we will try to outline some of the important works which have so far been done to simulate choice making processes. Concerning neurological findings that suggest the existence of two specific functions that are executed through Basal Ganglia all the way down to sub-cortical areas, namely 'rewards' and 'beliefs', we will offer a modified version of actor/critic algorithm to shed a light on the relation between these functions and most importantly resolve what is referred to as a challenge for actor-critic algorithms, that is lack of inheritance or hierarchy which avoids the system being evolved in continuous time tasks whence the convergence might not emerge.Keywords: neuroeconomics, choice behaviour, decision making, reinforcement learning, actor-critic algorithm
Procedia PDF Downloads 39928398 Learning Fashion Construction and Manufacturing Methods from the Past: Cultural History and Genealogy at the Middle Tennessee State University Historic Clothing Collection
Authors: Teresa B. King
Abstract:
In the millennial age, with more students desiring a fashion major yet fewer having sewing and manufacturing knowledge, this increases demand on academicians to adequately educate. While fashion museums have a prominent place for historical preservation, the need for apparel education via working collections of handmade or mass manufactured apparel is lacking in most universities in the United States, especially in the Southern region. Created in 1988, Middle Tennessee State University’s historic clothing collection provides opportunities to study apparel construction methods throughout history, to compare and apply to today’s construction and manufacturing methods, as well as to learn the cyclical nature/importance of historic styles on current and upcoming fashion. In 2019, a class exercise experiment was implemented for which students researched their family genealogy using Ancestry.com, identified the oldest visual media (photographs, etc.) available, and analyzed the garment represented in said media. The student then located a comparable garment in the historic collection and evaluated the construction methods of the ancestor’s time period. A class 'fashion' genealogy tree was created and mounted for public viewing/education. Results of this exercise indicated that student learning increased due to the 'personal/familial connection' as it triggered more interest in historical garments as related to the student’s own personal culture. Students better identified garments regarding the historical time period, fiber content, fabric, and construction methods utilized, thus increasing learning and retention. Students also developed increased learning and recognition of custom construction methods versus current mass manufacturing techniques, which impact today’s fashion industry. A longitudinal effort will continue with the growth of the historic collection and as students continue to utilize the historic clothing collection.Keywords: ancestry, clothing history, fashion history, genealogy, historic fashion museum collection
Procedia PDF Downloads 14028397 Prevention of Student Radicalism in School through Civic Education
Authors: Triyanto
Abstract:
Radicalism poses a real threat to Indonesia's future. The target of radicalism is the youth of Indonesia. This is proven by the majority of terrorists are young people. Radicalization is not only a repressive act but also requires educational action. One of the educational efforts is civic education. This study discusses the prevention of radicalism for students through civic education and its constraints. This is qualitative research. Data were collected through literature studies, observations and in-depth interviews. Data were validated by triangulation. The sample of this research is 30 high school students in Surakarta. Data were analyzed by the interactive model of analysis from Miles & Huberman. The results show that (1) civic education can be a way of preventing student radicalism in schools in the form of cultivating the values of education through learning in the classroom and outside the classroom; (2) The obstacles encountered include the lack of learning facilities, the limited ability of teachers and the low attention of students to the civic education.Keywords: prevention, radicalism, senior high school student, civic education
Procedia PDF Downloads 23628396 Exploration of Competitive Athletes’ Superstition in Taiwan: “Miracle” and “Coincidence”
Authors: Shieh Shiow-Fang
Abstract:
Superstitious thoughts or actions often occur during athletic competitions. Often "superstitious rituals" have a positive impact on the performance of competitive athletes. Athletes affirm the many psychological benefits of religious beliefs mostly in a positive way. Method: By snowball sampling, we recruited 10 experienced competitive athletes as participants. We used in-person and online one-to-one in-depth interviews to collect their experiences about sports superstition. The total interview time was 795 minutes. We analyzed the raw data with the grounded theory processes suggested by Strauss and Corbin (1990). Results: The factors affecting athlete performance are ritual beliefs, taboo awareness, learning norms, and spontaneous attribution behaviors. Conclusion: We concluded that sports superstition reflects several psychological implications. The analysis results of this paper can provide another research perspective for the future study of sports superstition behavior.Keywords: superstition, taboo awarences, competitive athlete, learning norms
Procedia PDF Downloads 8028395 Training 'Green Ambassadors' in the Community-Action Learning Course
Authors: Friman Hen, Banner Ifaa, Shalom-Tuchin Bosmat, Einav Yulia
Abstract:
The action learning course is an academic course which involves academic learning and social activities. The courses deal with processes and social challenges, reveal different ideologies, and develop critical thinking and pragmatic ideas. Students receive course credits and a grade for being part of such courses. Participating students enroll in courses that involve action and activities to engage in the experiential learning process, thereby creating a dialogue and cross-fertilization between being taught in the classroom and experiencing the reality in the real world. A learning experience includes meeting with social organizations, institutions, and state authorities and carrying out practical work with diverse populations. Through experience, students strengthen their academic skills, formulate ethical attitudes toward reality, develop professional and civilian perspectives, and realize how they can influence their surrounding in the present and the hereafter. Under the guidance and supervision of Dr. Hen Friman, H.I.T. has built an innovative course that combines action and activities to increase the awareness and accessibility of the community in an experiential way. The end goal is to create Green Ambassadors—children with a high level of environmental awareness. This course is divided into two parts. The first part, focused on frontal teaching, delivers knowledge from extensive environmental fields to students. These areas include introduction to ecology, the process of electricity generation, air pollution, renewable energy, water economy, waste and recycling, and energy efficiency (first stage). In addition to the professional content in the environment field, students learn the method of effective and experiential teaching to younger learners (4 to 8 years old). With the attainment of knowledge, students are divided into operating groups. The second part of the course shows how the theory becomes practical and concrete. At this stage, students are asked to introduce to the first- and second-graders of ‘Revivim’ School in Holon a lesson of 90 minutes focused on presenting the issues and their importance during the course (second stage). This course is the beginning of a paradigm shift regarding energy usage in the modern society in Israel. The objective of the course is to expand worldwide and train the first and second-graders, and even pre-schoolers, in a wide scope to increase population awareness rate, both in Israel and all over the world, for a green future.Keywords: air pollution, green ambassador, recycling, renewable energy
Procedia PDF Downloads 24528394 Problems in Lifelong Education Course in Information and Communication Technology
Authors: Hisham Md.Suhadi, Faaizah Shahbodin, Jamaluddin Hashim, Nurul Huda Mahsudi, Mahathir Mohd Sarjan
Abstract:
The study is the way to identify the problems that occur in organizing short courses lifelong learning in the information and communication technology (ICT) education which are faced by the lecturer and staff at the Mara Skill Institute and Industrial Training Institute in Pahang, Malaysia. The important aspects of these issues are classified to five which are selecting the courses administrative. Fifty lecturers and staff were selected as a respondent. The sample is selected by using the non-random sampling method purpose sampling. The questionnaire is used as a research instrument and divided into five main parts. All the data that gain from the questionnaire are analyzed by using the SPSS in term of mean, standard deviation and percentage. The findings showed that there are the problems occur in organizing the short course for lifelong learning in ICT education.Keywords: lifelong Education, information and communication technology, short course, ICT education, courses administrative
Procedia PDF Downloads 45828393 Detection of Cyberattacks on the Metaverse Based on First-Order Logic
Authors: Sulaiman Al Amro
Abstract:
There are currently considerable challenges concerning data security and privacy, particularly in relation to modern technologies. This includes the virtual world known as the Metaverse, which consists of a virtual space that integrates various technologies and is therefore susceptible to cyber threats such as malware, phishing, and identity theft. This has led recent studies to propose the development of Metaverse forensic frameworks and the integration of advanced technologies, including machine learning for intrusion detection and security. In this context, the application of first-order logic offers a formal and systematic approach to defining the conditions of cyberattacks, thereby contributing to the development of effective detection mechanisms. In addition, formalizing the rules and patterns of cyber threats has the potential to enhance the overall security posture of the Metaverse and, thus, the integrity and safety of this virtual environment. The current paper focuses on the primary actions employed by avatars for potential attacks, including Interval Temporal Logic (ITL) and behavior-based detection to detect an avatar’s abnormal activities within the Metaverse. The research established that the proposed framework attained an accuracy of 92.307%, resulting in the experimental results demonstrating the efficacy of ITL, including its superior performance in addressing the threats posed by avatars within the Metaverse domain.Keywords: security, privacy, metaverse, cyberattacks, detection, first-order logic
Procedia PDF Downloads 4628392 Internet of Things Networks: Denial of Service Detection in Constrained Application Protocol Using Machine Learning Algorithm
Authors: Adamu Abdullahi, On Francisca, Saidu Isah Rambo, G. N. Obunadike, D. T. Chinyio
Abstract:
The paper discusses the potential threat of Denial of Service (DoS) attacks in the Internet of Things (IoT) networks on constrained application protocols (CoAP). As billions of IoT devices are expected to be connected to the internet in the coming years, the security of these devices is vulnerable to attacks, disrupting their functioning. This research aims to tackle this issue by applying mixed methods of qualitative and quantitative for feature selection, extraction, and cluster algorithms to detect DoS attacks in the Constrained Application Protocol (CoAP) using the Machine Learning Algorithm (MLA). The main objective of the research is to enhance the security scheme for CoAP in the IoT environment by analyzing the nature of DoS attacks and identifying a new set of features for detecting them in the IoT network environment. The aim is to demonstrate the effectiveness of the MLA in detecting DoS attacks and compare it with conventional intrusion detection systems for securing the CoAP in the IoT environment. Findings: The research identifies the appropriate node to detect DoS attacks in the IoT network environment and demonstrates how to detect the attacks through the MLA. The accuracy detection in both classification and network simulation environments shows that the k-means algorithm scored the highest percentage in the training and testing of the evaluation. The network simulation platform also achieved the highest percentage of 99.93% in overall accuracy. This work reviews conventional intrusion detection systems for securing the CoAP in the IoT environment. The DoS security issues associated with the CoAP are discussed.Keywords: algorithm, CoAP, DoS, IoT, machine learning
Procedia PDF Downloads 8528391 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning
Authors: Ali Kazemi
Abstract:
The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis
Procedia PDF Downloads 6328390 Building Community through Discussion Forums in an Online Accelerated MLIS Program: Perspectives of Instructors and Students
Authors: Mary H Moen, Lauren H. Mandel
Abstract:
Creating a sense of community in online learning is important for student engagement and success. The integration of discussion forums within online learning environments presents an opportunity to explore how this computer mediated communications format can cultivate a sense of community among students in accelerated master’s degree programs. This research has two aims, to delve into the ways instructors utilize this communications technology to create community and to understand the feelings and experiences of graduate students participating in these forums in regard to its effectiveness in community building. This study is a two-phase approach encompassing qualitative and quantitative methodologies. The data will be collected at an online accelerated Master of Library and Information Studies program at a public university in the northeast of the United States. Phase 1 is a content analysis of the syllabi from all courses taught in the 2023 calendar year, which explores the format and rules governing discussion forum assignments. Four to six individual interviews of department faculty and part time faculty will also be conducted to illuminate their perceptions of the successes and challenges of their discussion forum activities. Phase 2 will be an online survey administered to students in the program during the 2023 calendar year. Quantitative data will be collected for statistical analysis, and short answer responses will be analyzed for themes. The survey is adapted from the Classroom Community Scale Short-Form (CSS-SF), which measures students' self-reported responses on their feelings of connectedness and learning. The prompts will contextualize the items from their experience in discussion forums during the program. Short answer responses on the challenges and successes of using discussion forums will be analyzed to gauge student perceptions and experiences using this type of communication technology in education. This research study is in progress. The authors anticipate that the findings will provide a comprehensive understanding of the varied approaches instructors use in discussion forums for community-building purposes in an accelerated MLIS program. They predict that the more varied, flexible, and consistent student uses of discussion forums are, the greater the sense of community students will report. Additionally, students’ and instructors’ perceptions and experiences within these forums will shed light on the successes and challenges faced, thereby offering valuable recommendations for enhancing online learning environments. The findings are significant because they can contribute actionable insights for instructors, educational institutions, and curriculum designers aiming to optimize the use of discussion forums in online accelerated graduate programs, ultimately fostering a richer and more engaging learning experience for students.Keywords: accelerated online learning, discussion forums, LIS programs, sense of community, g
Procedia PDF Downloads 9328389 EDM for Prediction of Academic Trends and Patterns
Authors: Trupti Diwan
Abstract:
Predicting student failure at school has changed into a difficult challenge due to both the large number of factors that can affect the reduced performance of students and the imbalanced nature of these kinds of data sets. This paper surveys the two elements needed to make prediction on Students’ Academic Performances which are parameters and methods. This paper also proposes a framework for predicting the performance of engineering students. Genetic programming can be used to predict student failure/success. Ranking algorithm is used to rank students according to their credit points. The framework can be used as a basis for the system implementation & prediction of students’ Academic Performance in Higher Learning Institute.Keywords: classification, educational data mining, student failure, grammar-based genetic programming
Procedia PDF Downloads 42528388 Selecting Answers for Questions with Multiple Answer Choices in Arabic Question Answering Based on Textual Entailment Recognition
Authors: Anes Enakoa, Yawei Liang
Abstract:
Question Answering (QA) system is one of the most important and demanding tasks in the field of Natural Language Processing (NLP). In QA systems, the answer generation task generates a list of candidate answers to the user's question, in which only one answer is correct. Answer selection is one of the main components of the QA, which is concerned with selecting the best answer choice from the candidate answers suggested by the system. However, the selection process can be very challenging especially in Arabic due to its particularities. To address this challenge, an approach is proposed to answer questions with multiple answer choices for Arabic QA systems based on Textual Entailment (TE) recognition. The developed approach employs a Support Vector Machine that considers lexical, semantic and syntactic features in order to recognize the entailment between the generated hypotheses (H) and the text (T). A set of experiments has been conducted for performance evaluation and the overall performance of the proposed method reached an accuracy of 67.5% with C@1 score of 80.46%. The obtained results are promising and demonstrate that the proposed method is effective for TE recognition task.Keywords: information retrieval, machine learning, natural language processing, question answering, textual entailment
Procedia PDF Downloads 14928387 The Impact of Intercultural Communicative Competence on the Academic Achievement of English Language Learners: Students Working in the Sector of Tourism in Jordan (Petra and Jerash) as a Case Study
Authors: Haneen Alrawashdeh, Naciye Kunt
Abstract:
Intercultural communicative competence or (ICC), is an extension of communicative competence that takes into account the intercultural aspect of learning a foreign language. Accordingly, this study aimed at investigating the intercultural interaction impact on English as a foreign language learners' academic achievement of language as a scholastic subject and their motivation towards learning it. To achieve the aim of the study, a qualitative research approach was implemented by means of semi-structured interviews. Interview sessions were conducted with eight teachers of English as well as ten English language learners who work in the tourism industry in a variety of career paths, such as selling antiques and traditional costumes. An analysis of learners' grades of English subjects from 2014 to 2019 academic years was performed by using the Open Education Management Information System Database in Jordan to support the findings of the study. The results illustrated that due to the fact that they work in the tourism sector, students gain skills and knowledge that assist them in better academic achievement in the subject of English by practicing intercultural communication with different nationalities on a daily basis; intercultural communication enhances students speaking skills, lexicon, and fluency; however, despite that their grades showed increasing, from teachers perspectives, intercultural communicative competence reduces their linguistic accuracy and ability to perform English academic writing in academic contexts such as exams.Keywords: intercultural communicative competence, Jordan, language learning motivation, language academic achievement
Procedia PDF Downloads 21428386 Does sustainability disclosure improve analysts’ forecast accuracy Evidence from European banks
Authors: Albert Acheampong, Tamer Elshandidy
Abstract:
We investigate the extent to which sustainability disclosure from the narrative section of European banks’ annual reports improves analyst forecast accuracy. We capture sustainability disclosure using a machine learning approach and use forecast error to proxy analyst forecast accuracy. Our results suggest that sustainability disclosure significantly improves analyst forecast accuracy by reducing the forecast error. In a further analysis, we also find that the induction of Directive 2014/95/European Union (EU) is associated with increased disclosure content, which then reduces forecast error. Collectively, our results suggest that sustainability disclosure improves forecast accuracy, and the induction of the new EU directive strengthens this improvement. These results hold after several further and robustness analyses. Our findings have implications for market participants and policymakers.Keywords: sustainability disclosure, machine learning, analyst forecast accuracy, forecast error, European banks, EU directive
Procedia PDF Downloads 86