Search results for: LED applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6451

Search results for: LED applications

1621 Solubility and Dissolution Enhancement of Poorly Soluble Drugs Using Biosericin

Authors: Namdeo Jadhav, Nitin Salunkhe

Abstract:

Currently, sericin is being treated as waste of sericulture industry, especially at reeling process. Looking at prospective physicochemical properties, an attempt has been made to explore pharmaceutical applications of sericin waste in fabrication of medicated solid dispersions. Solid dispersions (SDs) of poorly soluble drugs (Lornoxicam, Meloxicam & Felodipine) were prepared by spray drying, solvent evaporation, ball milling and physical kneading in mass ratio of drug: sericin (1:0.5, 1:1, 1:1.5, 1:2, 1:2.5 and 1:3 w/w) and were investigated by solubility, ATR-FTIR, XRD and DSC, micromeritics and tablettability, surface morphology and in-vitro dissolution. It has been observed that sericin improves solubility of drugs by 8 to 10 times compared to pure drugs. The presence of hydrogen bonding between drugs and sericin was confirmed from the ATR-FTIR spectra. Amongst these methods, spray dried (1:2 w/w) SDs showed fully amorphous state representing molecularly distributed drug as confirmed from XRD and DSC study. Spray dried meloxicam SDs showed better compressibility and compactibility. The microphotograph of spray dried batches of lornoxicam (SDLX) and meloxicam SDs (SDMX) showed bowl shaped, and bowl plus spherical particles respectively, while spray dried felodipine SDs (SDFL) showed spherical shape. The SDLX, SDMX and SDFL (1:2 w/w) displayed better dissolution performance than other methods. Conclusively, hydrophilic matrix of sericin can be used to deliver poor water soluble drugs and its aerodynamic shape may show a great potential for various drug deliveries. If established as pharmaceutical excipient, sericin holds a potential to revolutionise economics of pharmaceutical industry, and sericulture farming, especially of Asian countries.

Keywords: biosericin, poorly soluble drugs, solid dispersion, solubility and dissolution improvement

Procedia PDF Downloads 259
1620 A Compact Extended Laser Diode Cavity Centered at 780 nm for Use in High-Resolution Laser Spectroscopy

Authors: J. Alvarez, J. Pimienta, R. Sarmiento

Abstract:

Diode lasers working in free mode present different shifting and broadening determined by external factors such as temperature, current or mechanical vibrations, and they are not more useful in applications such as spectroscopy, metrology, and cooling of atoms, among others. Different configurations can reduce the spectral width of a laser; one of the most effective is to extend the optical resonator of the laser diode and use optical feedback either with the help of a partially reflective mirror or with a diffraction grating; this latter configuration is not only allowed to reduce the spectral width of the laser line but also to coarsely adjust its working wavelength, within a wide range typically ~ 10nm by slightly varying the angle of the diffraction grating. Two settings are commonly used for this purpose, the Littrow configuration and the Littmann Metcalf. In this paper, we present the design, construction, and characterization of a compact extended laser cavity in Littrow configuration. The designed cavity is compact and was machined on an aluminum block using computer numerical control (CNC); it has a mass of only 380 g. The design was tested on laser diodes with different wavelengths, 650nm, 780nm, and 795 nm, but can be equally efficient at other wavelengths. This report details the results obtained from the extended cavity working at a wavelength of 780 nm, with an output power of around 35mW and a line width of less than 1Mhz. The cavity was used to observe the spectrum of the corresponding Rubidium D2 line. By modulating the current and with the help of phase detection techniques, a dispersion signal with an excellent signal-to-noise ratio was generated that allowed the stabilization of the laser to a transition of the hyperfine structure of Rubidium with an integral proportional controller (PI) circuit made with precision operational amplifiers.

Keywords: Littrow, Littman-Metcalf, line width, laser stabilization, hyperfine structure

Procedia PDF Downloads 232
1619 Electrical Machine Winding Temperature Estimation Using Stateful Long Short-Term Memory Networks (LSTM) and Truncated Backpropagation Through Time (TBPTT)

Authors: Yujiang Wu

Abstract:

As electrical machine (e-machine) power density re-querulents become more stringent in vehicle electrification, mounting a temperature sensor for e-machine stator windings becomes increasingly difficult. This can lead to higher manufacturing costs, complicated harnesses, and reduced reliability. In this paper, we propose a deep-learning method for predicting electric machine winding temperature, which can either replace the sensor entirely or serve as a backup to the existing sensor. We compare the performance of our method, the stateful long short-term memory networks (LSTM) with truncated backpropagation through time (TBTT), with that of linear regression, as well as stateless LSTM with/without residual connection. Our results demonstrate the strength of combining stateful LSTM and TBTT in tackling nonlinear time series prediction problems with long sequence lengths. Additionally, in industrial applications, high-temperature region prediction accuracy is more important because winding temperature sensing is typically used for derating machine power when the temperature is high. To evaluate the performance of our algorithm, we developed a temperature-stratified MSE. We propose a simple but effective data preprocessing trick to improve the high-temperature region prediction accuracy. Our experimental results demonstrate the effectiveness of our proposed method in accurately predicting winding temperature, particularly in high-temperature regions, while also reducing manufacturing costs and improving reliability.

Keywords: deep learning, electrical machine, functional safety, long short-term memory networks (LSTM), thermal management, time series prediction

Procedia PDF Downloads 107
1618 Keratin Fiber Fabrication from Biowaste for Biomedical Application

Authors: Ashmita Mukherjee, Yogesh Harishchandra Kabutare, Suritra Bandyopadhyay, Paulomi Ghosh

Abstract:

Uncontrolled bleeding in the battlefield and the operation rooms can lead to serious injuries, trauma and even be lethal. Keratin was reported to be a haemostatic material which rapidly activates thrombin followed by activation of fibrinogen leading to the formation of insoluble fibrin. Also platelets, the main initiator of haemostasis are reported to adhere to keratin. However, the major limitation of pure keratin as a biomaterial is its poor physical property and corresponding low mechanical strength. To overcome this problem, keratin was cross-linked with alginate to increase its mechanical stability. In our study, Keratin extracted from feather waste showed yield of 80.5% and protein content of 8.05 ± 0.43 mg/mL (n=3). FTIR and CD spectroscopy confirmed the presence of the essential functional groups and preservation of the secondary structures of keratin. The keratin was then cross-linked with alginate to make a dope. The dope was used to draw fibers of desired diameters in a suitable coagulation bath using a customized wet spinning setup. The resultant morphology of keratin fibers was observed under a brightfield microscope. The FT-IR analysis implied that there was a presence of both keratin and alginate peaks in the fibers. The cross-linking was confirmed in the keratin alginate fibers by a shift of the amide A and amide B peaks towards the right and disappearance of the peak for N-H stretching (1534.68 cm-1). Blood was drawn in citrate vacutainers for whole blood clotting test and blood clotting kinetics, which showed that the keratin fibers could accelerate blood coagulation compared to that of alginate fibers and tissue culture plate. Additionally, cross-linked keratin-alginate fiber was found to have lower haemolytic potential compared to alginate fiber. Thus, keratin cross-linked fibers can have potential applications to combat unrestrained bleeding.

Keywords: biomaterial, biowaste, fiber, keratin

Procedia PDF Downloads 198
1617 Estimation of Greenhouse Gas (GHG) Reductions from Solar Cell Technology Using Bottom-up Approach and Scenario Analysis in South Korea

Authors: Jaehyung Jung, Kiman Kim, Heesang Eum

Abstract:

Solar cell is one of the main technologies to reduce greenhouse gas (GHG). Thereby, accurate estimation of greenhouse gas reduction by solar cell technology is crucial to consider strategic applications of the solar cell. The bottom-up approach using operating data such as operation time and efficiency is one of the methodologies to improve the accuracy of the estimation. In this study, alternative GHG reductions from solar cell technology were estimated by a bottom-up approach to indirect emission source (scope 2) in Korea, 2015. In addition, the scenario-based analysis was conducted to assess the effect of technological change with respect to efficiency improvement and rate of operation. In order to estimate GHG reductions from solar cell activities in operating condition levels, methodologies were derived from 2006 IPCC guidelines for national greenhouse gas inventories and guidelines for local government greenhouse inventories published in Korea, 2016. Indirect emission factors for electricity were obtained from Korea Power Exchange (KPX) in 2011. As a result, the annual alternative GHG reductions were estimated as 21,504 tonCO2eq, and the annual average value was 1,536 tonCO2eq per each solar cell technology. Those results of estimation showed to be 91% levels versus design of capacity. Estimation of individual greenhouse gases (GHGs) showed that the largest gas was carbon dioxide (CO2), of which up to 99% of the total individual greenhouse gases. The annual average GHG reductions from solar cell per year and unit installed capacity (MW) were estimated as 556 tonCO2eq/yr•MW. Scenario analysis of efficiency improvement by 5%, 10%, 15% increased as much as approximately 30, 61, 91%, respectively, and rate of operation as 100% increased 4% of the annual GHG reductions.

Keywords: bottom-up approach, greenhouse gas (GHG), reduction, scenario, solar cell

Procedia PDF Downloads 223
1616 Platform Integration for High-Throughput Functional Screening Applications

Authors: Karolis Leonavičius, Dalius Kučiauskas, Dangiras Lukošius, Arnoldas Jasiūnas, Kostas Zdanys, Rokas Stanislovas, Emilis Gegevičius, Žana Kapustina, Juozas Nainys

Abstract:

Screening throughput is a common bottleneck in many research areas, including functional genomics, drug discovery, and directed evolution. High-throughput screening techniques can be classified into two main categories: (i) affinity-based screening and (ii) functional screening. The first one relies on binding assays that provide information about the affinity of a test molecule for a target binding site. Binding assays are relatively easy to establish; however, they reveal no functional activity. In contrast, functional assays show an effect triggered by the interaction of a ligand at a target binding site. Functional assays might be based on a broad range of readouts, such as cell proliferation, reporter gene expression, downstream signaling, and other effects that are a consequence of ligand binding. Screening of large cell or gene libraries based on direct activity rather than binding affinity is now a preferred strategy in many areas of research as functional assays more closely resemble the context where entities of interest are anticipated to act. Droplet sorting is the basis of high-throughput functional biological screening, yet its applicability is limited due to the technical complexity of integrating high-performance droplet analysis and manipulation systems. As a solution, the Droplet Genomics Styx platform enables custom droplet sorting workflows, which are necessary for the development of early-stage or complex biological therapeutics or industrially important biocatalysts. The poster will focus on the technical design considerations of Styx in the context of its application spectra.

Keywords: functional screening, droplet microfluidics, droplet sorting, dielectrophoresis

Procedia PDF Downloads 139
1615 DFT Insights into CO₂ Capture Mechanisms and Kinetics in Diamine-Appended Grafted Mg₂ (dobpdc) Metal- Organic Frameworks

Authors: Mao-Sheng Su, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Climate change is widely recognized as a global crisis, with anthropogenic CO₂ emissions from fossil fuel combustion and industrial processes being major contributors. To address this challenge, carbon capture and sequestration (CCS) technology has emerged as a key strategy for selectively capturing CO₂ from flue gas streams. Among the various solid adsorbents, metal–organic frameworks (MOFs) are notable for their extensive surface area and controllable pore chemistry. The porous MOF structure is comprised of metal ions or clusters coordinated to organic linker compounds. In particular, the pore parameters of MOFs are readily tunable, making them promising materials for CO₂ capture applications. Among these, amine-functionalized MOFs have demonstrated exceptional CO₂ capture abilities because their high uptake capacity and selectivity. In this study, we have investigated the CO₂ capture abilities and adsorption mechanisms of the diamine-appended framework N-Ethylethylenediamine-Mg₂(4,4’-dioxidobiphenyl-3,3’-dicarboxylate) (e-2-Mg₂(dobpdc)) using density functional theory (DFT) calculations. Previous studies have suggested that CO₂ can be captured via both outer- and inner-amine binding sites. Our findings reveal that CO₂ adsorption at the outer amine site is kinetically more favorable compared to the inner amine site, with a lower energy barrier of 1.34 eV for CO₂ physisorption to chemisorption compared to the inner amine, which has an activation barrier of 1.60 eV. Furthermore, we find that CO₂ adsorption is significantly enhanced in an alkaline environment, as deprotonation of the diamine molecule reduces the energy barrier to 0.24 eV. This theoretical study provides detailed insights into CO₂ adsorption in diamine-appended e-2-Mg₂(dobpdc) MOF, offering a deeper understanding of CO₂ capture mechanisms and valuable information for the advancement of effective CO₂ sequestration technologies.

Keywords: DFT, MOFs, CO₂ capture, catalyst

Procedia PDF Downloads 45
1614 Challenges of Translation Knowledge for Pediatric Rehabilitation Technology

Authors: Patrice L. Weiss, Barbara Mazer, Tal Krasovsky, Naomi Gefen

Abstract:

Knowledge translation (KT) involves the process of applying the most promising research findings to practical settings, ensuring that new technological discoveries enhance healthcare accessibility, effectiveness, and accountability. This perspective paper aims to discuss and provide examples of how the KT process can be implemented during a time of rapid advancement in rehabilitation technologies, which have the potential to greatly influence pediatric healthcare. The analysis is grounded in a comprehensive systematic review of literature, where key studies from the past 34 years were carefully interpreted by four expert researchers in scientific and clinical fields. This review revealed both theoretical and practical insights into the factors that either facilitate or impede the successful implementation of new rehabilitation technologies. By utilizing the Knowledge-to-Action cycle, which encompasses the knowledge creation funnel and the action cycle, we demonstrated its application in integrating advanced technologies into clinical practice and guiding healthcare policy adjustments. We highlighted three successful technology applications: powered mobility, head support systems, and telerehabilitation. Moreover, we investigated emerging technologies, such as brain-computer interfaces and robotic assistive devices, which face challenges related to cost, durability, and usability. Recommendations include prioritizing early and ongoing design collaborations, transitioning from research to practical implementation, and determining the optimal timing for clinical adoption of new technologies. In conclusion, this paper informs, justifies, and strengthens the knowledge translation process, ensuring it remains relevant, rigorous, and significantly contributes to pediatric rehabilitation and other clinical fields.

Keywords: knowledge translation, rehabilitation technology, pediatrics, barriers, facilitators, stakeholders

Procedia PDF Downloads 38
1613 Kenaf MDF Panels with Soy Based Adhesive. The Influence of Preparation Parameters on Physciomechanical Properties

Authors: Imtiaz Ali, Krishnan Jayaraman, Debes Bhattacharyya

Abstract:

Soybean concentrate is abundant material and renewable product that is recently been explored as an alternative to conventional formaldehyde based resins in wood based products. The main goal of this study is to evaluate the technical feasibility of manufacturing environment friendly MDF panels from renewable resources. The panels are made by using kenaf bast fibers (KB) as wood substitute and soy based adhesive as bonding material. Second order response surface regression models are used to understand the effects and interactions of resin content (RC) and pressing time (PT) on the mechanical and water soaking properties of kenaf panels. The mechanical and water soaking properties are significantly improved as the RC increased and reached at the highest level at maximum resin loading (12%). The effect of pressing time is significant in the first phase when the pressing time increased from 4 to 6 min; however the effect was not as significant when pressing time further increased to 8 min. The second order regression equations further confirm that the variation in process parameters has strong relationship with the physciomechanical properties. The MDF panels the minimum requirements of internal bond strength, modulus of rupture and modulus of elasticity as recommended by US wood MDF standard specifications for G110, G120, G130 and G140 grade MDF panels. However, the thickness swelling results are considerably poorer than the recommended values of general purpose standard requirements. This deficiency can be counterbalanced by the advantage of being formaldehyde free panels made from renewable sources and by making them suitable alternative for less humid environment applications.

Keywords: kenaf, Medium density fibreboard, soy adhesive, mechanical properties, water soaking properties

Procedia PDF Downloads 382
1612 Development and Characterisation of Nonwoven Fabrics for Apparel Applications

Authors: Muhammad Cheema, Tahir Shah, Subhash Anand

Abstract:

The cost of making apparel fabrics for garment manufacturing is very high because of their conventional manufacturing processes and new methods/processes are being constantly developed for making fabrics by unconventional methods. With the advancements in technology and the availability of the innovative fibres, durable nonwoven fabrics by using the hydroentanglement process that can compete with the woven fabrics in terms of their aesthetic and tensile properties are being developed. In the work reported here, the hydroentangled nonwoven fabrics were developed through a hybrid nonwoven manufacturing processes by using fibrillated Tencel® and bi-component (sheath/core) polyethylene/polyester (PE/PET) fibres, in which the initial nonwoven fabrics were prepared by the needle-punching method followed by hydroentanglement process carried out at optimal pressures of 50 to 250bars. The prepared fabrics were characterized according to the British Standards (BS 3356:1990, BS 9237:1995, BS 13934-1:1999) and the attained results were compared with those for a standard plain-weave cotton, polyester woven fabric and commercially available nonwoven fabric (Evolon®). The developed hydroentangled fabrics showed better drape properties owing to their flexural rigidity of 252 mg.cm in the machine direction, while the corresponding commercial hydroentangled fabric displayed a value of 1340 mg.cm in the machine direction. The tensile strength of the developed hydroentangled fabrics showed an approximately 200% increase than the commercial hydroentangled fabrics. Similarly, the developed hydroentangled fabrics showed higher properties in term of air permeability, such as the developed hydroentangled fabric exhibited 448 mm/sec and Evolon fabric exhibited 69 mm/sec at 100 Pa pressure. Thus for apparel fabrics, the work combining the existing methods of nonwoven production, provides additional benefits in terms of cost, time and also helps in reducing the carbon footprint for the apparel fabric manufacture.

Keywords: hydroentanglement, nonwoven apparel, durable nonwoven, wearable nonwoven

Procedia PDF Downloads 273
1611 Selection of a Potential Starter Culture for Milk Fermentation

Authors: Stephen Olusanmi Akintayo, Ilesanmi Fadahunsi

Abstract:

The ability of Lactic acid bacteria (LAB) to grow and survive in milk is being exploited in industrial and biotechnological applications. Although considerable studies have been reported on the fermentation of milk, however, not so much work has been documented on the selection of LAB strains from milk of the Nigerian local cattle breeds for their starter culture potentials. A total of 110 LAB were isolated from raw milk of Sokoto gudali cattle breed. The isolates were screened for their proteolytic activities on skimmed milk media with isolates A07, F06 and A01 showing the highest zone of clearance of 18.5mm, 18.5mm, and 18.0mm respectively and were selected for the studies of their growth in different constituents of milk. A01, F06, and A07 were identified as Pediococcus acidilactici, Lactococcus raffinolactis, and Leuconostoc mesenteriodes respectively using cultural, biochemical, physiological and molecular characterization techniques. Leuconostoc mesenteriodes showed the highest growth in all the milk components that were used in this study. The three LAB species selected showed a growth range of 6.46 log cfu/ml to 10.91 log cfu/ml in lactose with Leuconostoc mesenteriodes showing the highest growth of 10.91 log cfu/ml while Pediococcus acidilactici recorded the lowest growth of 9.78 log cfu/ml. In medium containing leucine as the only amino acid, the viable counts of Pediococcus acidilactici, Lactococcus raffinolactis and Leuconostoc mesenteriodes in log cfu/ml at zero hour were 6.39, 6.36 and 6.38 respectively which increased to 9.31 log cfu/ml, 9.21 log cfu/ml, 9.92 log cfu/ml respectively after 24 hours. Similarly, in all other substrates (casein, lysine, glutamic acid, aspartic acid, stearic acid and oleic acid ) tested in this study, Leuconostoc mesenteriodes showed the highest growth. It was observed that the highest quantity of lactic acid (15.31mg/ml) was produced by Leuconostoc mesenteriodes. The same trend was also observed in the production of diacetyl and hydrogen peroxide by the three tested microorganisms. Due to its ability to grow maximally in milk components, Leuconostoc mesenteriodes shows potential as starter culture for milk fermentation.

Keywords: Leuconostoc mesenteriodes, lactic acid bacteria, Sokoto gudali, starter culture

Procedia PDF Downloads 238
1610 Cross-Dipole Right-Hand Circularly Polarized UHF/VHF Yagi-Uda Antenna for Satellite Applications

Authors: Shativel S., Chandana B. R., Kavya B. C., Obli B. Vikram, Suganthi J., Nagendra Rao G.

Abstract:

Satellite communication plays a pivotal role in modern global communication networks, serving as a vital link between terrestrial infrastructure and remote regions. The demand for reliable satellite reception systems, especially in UHF (Ultra High Frequency) and VHF (Very High Frequency) bands, has grown significantly over the years. This research paper presents the design and optimization of a high-gain, dual-band crossed Yagi-Uda antenna in CST Studio Suite, specifically tailored for satellite reception. The proposed antenna system incorporates a circularly polarized (Right-Hand Circular Polarization - RHCP) design to reduce Faraday loss. Our aim was to use fewer elements and achieve gain, so the antenna is constructed using 6x2 elements arranged in cross dipole and supported with a boom. We have achieved 10.67dBi at 146MHz and 9.28dBi at 437.5MHz.The process includes parameter optimization and fine-tuning of the Yagi-Uda array’s elements, such as the length and spacing of directors and reflectors, to achieve high gain and desirable radiation patterns. Furthermore, the optimization process considers the requirements for UHF and VHF frequency bands, ensuring broad frequency coverage for satellite reception. The results of this research are anticipated to significantly contribute to the advancement of satellite reception systems, enhancing their capabilities to reliably connect remote and underserved areas to the global communication network. Through innovative antenna design and simulation techniques, this study seeks to provide a foundation for the development of next-generation satellite communication infrastructure.

Keywords: Yagi-Uda antenna, RHCP, gain, UHF antenna, VHF antenna, CST, radiation pattern.

Procedia PDF Downloads 65
1609 Life Cycle Assessment of Rare Earth Metals Production: Hotspot Analysis of Didymium Electrolysis Process

Authors: Sandra H. Fukurozaki, Andre L. N. Silva, Joao B. F. Neto, Fernando J. G. Landgraf

Abstract:

Nowadays, the rare earth (RE) metals play an important role in emerging technologies that are crucial for the decarbonisation of the energy sector. Their unique properties have led to increasing clean energy applications, such as wind turbine generators, and hybrid and electric vehicles. Despite the substantial media coverage that has recently surrounded the mining and processing of rare earth metals, very little quantitative information is available concerning their subsequent life stages, especially related to the metallic production of didymium (Nd-Pr) in fluoride molten salt system. Here we investigate a gate to gate scale life cycle assessment (LCA) of the didymium electrolysis based on three different scenarios of operational conditions. The product system is modeled with SimaPro Analyst 8.0.2 software, and IMPACT 2002+ was applied as an impact assessment tool. In order to develop a life cycle inventories built in software databases, patents, and other published sources together with energy/mass balance were utilized. Analysis indicates that from the 14 midpoint impact categories evaluated, the global warming potential (GWP) is the main contributors to the total environmental burden, ranging from 2.7E2 to 3.2E2 kg CO2eq/kg Nd-Pr. At the damage step assessment, the results suggest that slight changes in materials flows associated with enhancement of current efficiency (between 2.5% and 5%), could lead a reduction up to 12% and 15% of human health and climate change damage, respectively. Additionally, this paper highlights the knowledge gaps and future research efforts needing to understand the environmental impacts of Nd-Pr electrolysis process from the life cycle perspective.

Keywords: didymium electrolysis, environmental impacts, life cycle assessment, rare earth metals

Procedia PDF Downloads 192
1608 A Cloud-Based Mobile Auditing Tools for Muslim-Friendly Hospitality Services

Authors: Mohd Iskandar Illyas Tan, Zuhra Junaida Mohamad Husny, Farawahida Mohd Yusof

Abstract:

The potentials of Muslim-friendly hospitality services bring huge opportunities to operators (hoteliers, tourist guides, and travel agents), especially among the Muslim countries. In order to provide guidelines that facilitate the operations among these operators, standards and manuals have been developing by the authorities. Among the challenges is the applicability and complexity of the standard to be adopted in the real world. Mobile digital technology can be implemented to overcome those challenges. A prototype has been developed to help operators and authorities to assess their readiness in complying with MS2610:2015. This study analyzes the of mobile digital technology characteristics that are suitable for the user in conducting sharia’ compliant hospitality audit. A focus group study was conducted in the state of Penang, Malaysia that involves operators (hoteliers, tourist guide, and travel agents) as well as agencies (Islamic Tourism Center, Penang Islamic Affairs Department, Malaysian Standard) that involved directly in the implementation of the certification. Both groups were given the 3 weeks to test and provide feedback on the usability of the mobile applications in order to conduct an audit on their readiness towards the Muslim-friendly hospitality services standard developed by the Malaysian Standard. The feedbacks were analyzed and the overall results show that three criteria (ease of use, completeness and fast to complete) show the highest responses among both groups for the mobile application. This study provides the evidence that the mobile application development has huge potentials to be implemented by the Muslim-friendly hospitality services operator and agencies.

Keywords: hospitality, innovation, audit, compliance, mobile application

Procedia PDF Downloads 136
1607 The Inherent Flaw in the NBA Playoff Structure

Authors: Larry Turkish

Abstract:

Introduction: The NBA is an example of mediocrity and this will be evident in the following paper. The study examines and evaluates the characteristics of the NBA champions. As divisions and playoff teams increase, there is an increase in the probability that the champion originates from the mediocre category. Since it’s inception in 1947, the league has been mediocre and continues to this day. Why does a professional league allow any team with a less than 50% winning percentage into the playoffs? As long as the finances flow into the league, owners will not change the current algorithm. The objective of this paper is to determine if the regular season has meaning in finding an NBA champion. Statistical Analysis: The data originates from the NBA website. The following variables are part of the statistical analysis: Rank, the rank of a team relative to other teams in the league based on the regular season win-loss record; Winning Percentage of a team based on the regular season; Divisions, the number of divisions within the league and Playoff Teams, the number of playoff teams relative to a particular season. The following statistical applications are applied to the data: Pearson Product-Moment Correlation, Analysis of Variance, Factor and Regression analysis. Conclusion: The results indicate that the divisional structure and number of playoff teams results in a negative effect on the winning percentage of playoff teams. It also prevents teams with higher winning percentages from accessing the playoffs. Recommendations: 1. Teams that have a winning percentage greater than 1 standard deviation from the mean from the regular season will have access to playoffs. (Eliminates mediocre teams.) 2. Eliminate Divisions (Eliminates weaker teams from access to playoffs.) 3. Eliminate Conferences (Eliminates weaker teams from access to the playoffs.) 4. Have a balanced regular season schedule, (Reduces the number of regular season games, creates equilibrium, reduces bias) that will reduce the need for load management.

Keywords: alignment, mediocrity, regression, z-score

Procedia PDF Downloads 133
1606 Effect of Palm Bunch Ash and Neem (Azardirachta indica A. Juss) Leaf Powder on Termite Infestation in Groundnut Field

Authors: K. O. Ogbedeh, C. P. Ekwe, G. O. Ihejirika, S. A. Dialoke, O. P. Onyewuchi, C. P. Anyanwu, I. E. Kalu

Abstract:

As one of the major pests of field crops, termites attack groundnut at all stages of its development, especially during prolonged dry spell. Effect of palm bunch ash and neem(Azardirachta indica A. Juss) leaf powder on termite infestation in groundnut field in Owerri, Nigeria was investigated in this study. The field trial was carried out in 2016 at the Teaching and Research Farm of the Federal University of Technology, Owerri, Nigeria. The experiment was laid out in a 3x3 Factorial fitted into a Randomized Complete Block Design (RCBD) with three replications. The treatments include three rates of palm bunch ash at 0.0 (control), 1.0 and 2.0tons/ha and three rates of neem leaf powder at 0.0(control), 1.0, 2.0 tons/ha respectively. Data were collected on percentage emergence, termite incidence and termite severity. These were subjected to analysis of variance (ANOVA), and means were separated using least significant difference at 5% level of probability. The result shows that there were no significant (P= 0.05) differences in percentage emergence amongst treatment means due to palm bunch ash and neem leaf powder applications. Contrarily, palm bunch ash at 2.0 tons/ha recorded the least termite incidence especially at twelve weeks after planting (12WAP) with a value of 22.20% while control plot maintained highest values at 6WAP (48.70%) and 12WAP (48.30%) respectively. Also palm bunch ash at 2.0tons/ha depressed termite severity more than other treatments especially at 2 and 4 WAP (0.56) respectively. Control plots on the other hand consistently maintained highest termite severity throughout the trial with the highest value at 2 and 12WAP (1.56). Conclusively, palm bunch ash exhibited highest depressive action against termite on groundnut especially at higher application value (2.0tons/ha).

Keywords: groundnut, incidence, neem, palm, severity, termites

Procedia PDF Downloads 234
1605 Multiple-Channel Piezoelectric Actuated Tunable Optical Filter for WDM Application

Authors: Hailu Dessalegn, T. Srinivas

Abstract:

We propose new multiple-channel piezoelectric (PZT) actuated tunable optical filter based on racetrack multi-ring resonators for wavelength de-multiplexing network applications. We design tunable eight-channel wavelength de-multiplexer consisting of eight cascaded PZT actuated tunable multi-ring resonator filter with a channel spacing of 1.6 nm. The filter for each channel is basically structured on a suspended beam, sandwiched with piezoelectric material and built in integrated ring resonators which are placed on the middle of the beam to gain uniform stress and linearly varying longitudinal strain. A reference single mode serially coupled multi stage racetrack ring resonator with the same radii and coupling length is designed with a line width of 0.8974 nm with a flat top pass band at 1dB of 0.5205 nm and free spectral range of about 14.9 nm. In each channel, a small change in the perimeter of the rings is introduced to establish the shift in resonance wavelength as per the defined channel spacing. As a result, when a DC voltage is applied, the beams will elongate, which involves mechanical deformation of the ring resonators that induces a stress and a strain, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift providing the tunability of central wavelength in each channel. Simultaneous wave length shift as high as 45.54 pm/V has been achieved with negligible tunability variation in the eight channel tunable optical filter proportional to the DC voltage applied in the structure, and it is capable of tuning up to 3.45 nm in each channel with a maximum loss difference of 0.22 dB in the tuning range and out of band rejection ratio of 35 dB, with a low channel crosstalk ≤ 30 dB.

Keywords: optical MEMS, piezoelectric (PZT) actuation, tunable optical filter, wavelength de-multiplexer

Procedia PDF Downloads 438
1604 Hybrid Renewable Power Systems

Authors: Salman Al-Alyani

Abstract:

In line with the Kingdom’s Vision 2030, the Saudi Green initiative was announced aimed at reducing carbon emissions by more than 4% of the global contribution. The initiative included plans to generate 50% of its energy from renewables by 2030. The geographical location of Saudi Arabia makes it among the best countries in terms of solar irradiation and has good wind resources in many areas across the Kingdom. Saudi Arabia is a wide country and has many remote locations where it is not economically feasible to connect those loads to the national grid. With the improvement of battery innovation and reduction in cost, different renewable technologies (primarily wind and solar) can be integrated to meet the need for energy in a more effective and cost-effective way. Saudi Arabia is famous for high solar irradiations in which solar power generation can extend up to six (6) hours per day (25% capacity factor) in some locations. However, the net present value (NPV) falls down to negative in some locations due to distance and high installation costs. Wind generation in Saudi Arabia is a promising technology. Hybrid renewable generation will increase the net present value and lower the payback time due to additional energy generated by wind. The infrastructure of the power system can be capitalized to contain solar generation and wind generation feeding the inverter, controller, and load. Storage systems can be added to support the hours that have an absence of wind or solar energy. Also, the smart controller that can help integrate various renewable technologies primarily wind and solar, to meet demand considering load characteristics. It could be scalable for grid or off-grid applications. The objective of this paper is to study the feasibility of introducing a hybrid renewable system in remote locations and the concept for the development of a smart controller.

Keywords: battery storage systems, hybrid power generation, solar energy, wind energy

Procedia PDF Downloads 182
1603 Effect of Biostimulants Application on Quali-Quantitative Characteristics of Cauliflower, Pepper, and Fennel Crops Under Organic and Conventional Fertilization

Authors: E. Tarantino, G. Disciglio, L. Frabboni, A. Libutti, G. Gatta, A. Gagliaridi, A. Tarantino

Abstract:

Nowadays, the main goal for modern horticultural production is the increase of quality. In the recent years, the use of organic fertilizers or bio stimulants, that can be applied in agriculture in order to improve the quanti-qualitative crop yields, has encountered an increasing interest. The bio stimulants are gaining importance also for their possible use in organic and sustainable agriculture, avoiding excessive fertilizer applications. Consecutive experimental trials were carried out in Apulia region (southern Italy) on three herbaceous crops (cauliflower, pepper and fennel), grown in pots, under conventional and organic fertilization, with and without bio stimulants application, to verify the effects of several bio stimulants (Siapton®10L, Micotech L and Lysodin Alga-Fert) on quanti-qualitative yield characteristics. At the harvest, the quanti-qualitative yield characteristics of each crop were determined. All experimental data were subjected to analysis of variance (ANOVA) and, when significant effects were detected, the mean values were compared using Tukey’s test. Results showed great differences of yield characteristics between conventional and organic crops, particularly highlighting a higher yield in the conventional one. Variable results were generally observed when bio stimulants were applied. In this contest no effect were noted on quantitative yield, whereas a light positive effect of bio stimulants on qualitative characteristic, related to the higher dry matter content of cauliflower and the higher soluble solid content of pepper, was observed. Moreover, an evident positive effect of bio stimulants was noted in the fennel due to the lower nitrate content. The latter results are according with most of published literature obtained on other herbaceous crops.

Keywords: biostimulants, cauliflower, pepper, fennel

Procedia PDF Downloads 578
1602 Field Efficacy Evaluation and Synergistic Effect of Two Rodenticides Zinc Phosphide and Brodifacoum against Field Rats of the Pothwar Region, Pakistan

Authors: Nadeem Munawar, David Galbraith, Tariq Mahmood

Abstract:

Rodenticides are often included as part of an integrated pest management approach for managing rodent species since they are relatively quick and inexpensive to apply. The current field study was conducted to evaluate the effectiveness of formulated baits of zinc phosphide (2%) and the second generation anticoagulant brodifacoum (0.005%) against field rats inhabiting a wheat-groundnut cropping system. Burrow baiting was initiated at the early flowering stages of the respective crops, and continued through three growth stages (tillering / peg formation, flowering, and maturity). Three treatments were done at equal time intervals, with the final baiting being about 2 weeks before harvest. Treatment efficacy of the trials was assessed through counts of active rodent burrows before and after treatments at the three growth stages of these crops. The results indicated variable degrees of reduction in burrow activities following the three bait applications. The reductions in rodent activity in wheat were: 88.8% (at tillering), 92%, (at flowering/grain formation), and 95.5% (at maturity). In groundnut, the rodent activities were reduced by 91.8%, 93.5% and 95.8% at sowing, peg formation, and maturity stages, respectively. The estimated mortality at all three growth stages of both wheat and groundnut ranged between 60-85%. We recommend that a field efficacy study should be conducted with zinc phosphide and brodifacoum bait formulations to determine their field performance in the reduction of agricultural damage by rodent pest species. It is a promising alternative approach for use of the most potent second-generation anticoagulant (brodifacoum) in resistance management, particularly with respect to reducing environmental risks and secondary poisoning.

Keywords: brodifacoum, burrow baiting, second-generation anticoagulant, synergistic effect

Procedia PDF Downloads 128
1601 Service Interactions Coordination Using a Declarative Approach: Focuses on Deontic Rule from Semantics of Business Vocabulary and Rules Models

Authors: Nurulhuda A. Manaf, Nor Najihah Zainal Abidin, Nur Amalina Jamaludin

Abstract:

Coordinating service interactions are a vital part of developing distributed applications that are built up as networks of autonomous participants, e.g., software components, web services, online resources, involve a collaboration between a diverse number of participant services on different providers. The complexity in coordinating service interactions reflects how important the techniques and approaches require for designing and coordinating the interaction between participant services to ensure the overall goal of a collaboration between participant services is achieved. The objective of this research is to develop capability of steering a complex service interaction towards a desired outcome. Therefore, an efficient technique for modelling, generating, and verifying the coordination of service interactions is developed. The developed model describes service interactions using service choreographies approach and focusing on a declarative approach, advocating an Object Management Group (OMG) standard, Semantics of Business Vocabulary and Rules (SBVR). This model, namely, SBVR model for service choreographies focuses on a declarative deontic rule expressing both obligation and prohibition, which can be more useful in working with coordinating service interactions. The generated SBVR model is then be formulated and be transformed into Alloy model using Alloy Analyzer for verifying the generated SBVR model. The transformation of SBVR into Alloy allows to automatically generate the corresponding coordination of service interactions (service choreography), hence producing an immediate instance of execution that satisfies the constraints of the specification and verifies whether a specific request can be realised in the given choreography in the generated choreography.

Keywords: service choreography, service coordination, behavioural modelling, complex interactions, declarative specification, verification, model transformation, semantics of business vocabulary and rules, SBVR

Procedia PDF Downloads 157
1600 Land Use Change Detection Using Satellite Images for Najran City, Kingdom of Saudi Arabia (KSA)

Authors: Ismail Elkhrachy

Abstract:

Determination of land use changing is an important component of regional planning for applications ranging from urban fringe change detection to monitoring change detection of land use. This data are very useful for natural resources management.On the other hand, the technologies and methods of change detection also have evolved dramatically during past 20 years. So it has been well recognized that the change detection had become the best methods for researching dynamic change of land use by multi-temporal remotely-sensed data. The objective of this paper is to assess, evaluate and monitor land use change surrounding the area of Najran city, Kingdom of Saudi Arabia (KSA) using Landsat images (June 23, 2009) and ETM+ image(June. 21, 2014). The post-classification change detection technique was applied. At last,two-time subset images of Najran city are compared on a pixel-by-pixel basis using the post-classification comparison method and the from-to change matrix is produced, the land use change information obtained.Three classes were obtained, urban, bare land and agricultural land from unsupervised classification method by using Erdas Imagine and ArcGIS software. Accuracy assessment of classification has been performed before calculating change detection for study area. The obtained accuracy is between 61% to 87% percent for all the classes. Change detection analysis shows that rapid growth in urban area has been increased by 73.2%, the agricultural area has been decreased by 10.5 % and barren area reduced by 7% between 2009 and 2014. The quantitative study indicated that the area of urban class has unchanged by 58.2 km〗^2, gained 70.3 〖km〗^2 and lost 16 〖km〗^2. For bare land class 586.4〖km〗^2 has unchanged, 53.2〖km〗^2 has gained and 101.5〖km〗^2 has lost. While agriculture area class, 20.2〖km〗^2 has unchanged, 31.2〖km〗^2 has gained and 37.2〖km〗^2 has lost.

Keywords: land use, remote sensing, change detection, satellite images, image classification

Procedia PDF Downloads 527
1599 Design and Development of a Lead-Free BiFeO₃-BaTiO₃ Quenched Ceramics for High Piezoelectric Strain Performance

Authors: Muhammad Habib, Lin Tang, Guoliang Xue, Attaur Rahman, Myong-Ho Kim, Soonil Lee, Xuefan Zhou, Yan Zhang, Dou Zhang

Abstract:

Designing a high-performance, lead-free ceramic has become a cutting-edge research topic due to growing concerns about the toxic nature of lead-based materials. In this work, a convenient strategy of compositional design and domain engineering is applied to the lead-fee BiFeO₃-BaTiO₃ ceramics, which provides a flexible polarization-free-energy profile for domain switching. Here, simultaneously enhanced dynamic piezoelectric constant (d33* = 772 pm/V) and a good thermal-stability (d33* = 26% over the temperature of 20-180 ᵒC) are achieved with a high Curie temperature (TC) of 432 ᵒC. This high piezoelectric strain performance is collectively attributed to multiple effects such as thermal quenching, suppression of defect charges by donor doping, chemically induced local structure heterogeneity, and electric field-induced phase transition. Furthermore, the addition of BT content decreased octahedral tilting, reduced anisotropy for domain switching and increased tetragonality (cₜ/aₜ), providing a wider polar length for B-site cation displacement, leading to high piezoelectric strain performance. Atomic-resolution transmission electron microscopy and piezoelectric force microscopy combined with X-ray diffraction results strongly support the origin of high piezoelectricity. The high and temperature-stable piezoelectric strain response of this work is superior to those of other lead-free ceramics. The synergistic approach of composition design and the concept present here for the origin of high strain response provides a paradigm for the development of materials for high-temperature piezoelectric actuator applications.

Keywords: Piezoelectric, BiFeO3-BaTiO3, Quenching, Temperature-insensitive

Procedia PDF Downloads 90
1598 The Effect of Colloidal Metals Nanoparticles on Quarantine Bacterium - Clavibacter michiganensis Ssp. sepedonicus

Authors: Włodzimierz Przewodowski, Agnieszka Przewodowska

Abstract:

Colloidal metal nanoparticles have drawn increasing attention in the field of phytopathology because of their unique properties and possibilities of applications. Their antibacterial activity, no induction of the development of pathogen resistance and the ability to penetrate most of biological barriers make them potentially useful in the fighting against dangerous pathogens. These properties are very important in the case of protection of strategic crops in the world, like potato - fourth crop in the world - which is host to numerous pathogenic microorganisms causing serious diseases, significantly affecting yield and causing the economic losses. One of the most important and difficult to reduce pathogen of potato plant is quarantine bacterium Clavibacter michiganensis ssp. sepedonicus (Cms) responsible for ring rot disease. Control and detection of these pathogens is very complicated. Application of healthy, certified seed material as well as hygiene in potato production and storage are the most efficient ways of preventing of ring rot disease. Currently used disinfectants and pesticides, have many disadvantages, such as toxicity, low efficiency, selectivity, corrosiveness, and the inability to eliminate the pathogens in potato tissue. In this situation, it becomes important to search for new formulations based on components harmful to health, yet efficient, stable during prolonged period of time and a with wide range of biocide activity. Such capabilities are offered by the latest generation of biocidal nanoparticles such as colloidal metals. Therefore the aim of the presented research was to develop newly antibacterial preparation based on colloidal metal nanoparticles and checking their influence on the Cms bacteria. Our preliminary results confirmed high efficacy of the nano-colloids in controlling the this selected pathogen.

Keywords: clavibacter michiganensis ssp. sepedonicus, colloidal metal nanoparticles, phytopathology, bacteria

Procedia PDF Downloads 276
1597 Stress-Controlled Senescence and Development in Arabidopsis thaliana by Root Associated Factor (RAF), a NAC Transcription Regulator

Authors: Iman Kamranfar, Gang-Ping Xue, Salma Balazadeh, Bernd Mueller-Roeber

Abstract:

Adverse environmental conditions such as salinity stress, high temperature and drought limit plant growth and typically lead to precocious tissue degeneration and leaf senescence, a process by which nutrients from photosynthetic organs are recycled for the formation of flowers and seeds to secure reaching the next generation under such harmful conditions. In addition, abiotic stress affects developmental patterns that help the plant to withstand unfavourable environmental conditions. We discovered an NAC (for NAM, ATAF1, 2, and CUC2) transcription factor (TF), called RAF in the following, which plays a central role in abiotic drought stress-triggered senescence and the control of developmental adaptations to stressful environments. RAF is an ABA-responsive TF; RAF overexpressors are hypersensitive to abscisic acid (ABA) and exhibit precocious senescence while knock-out mutants show delayed senescence. To explore the RAF gene regulatory network (GRN), we determined its preferred DNA binding sites by binding site selection assay (BSSA) and performed microarray-based expression profiling using inducible RAF overexpression lines and chromatin immunoprecipitation (ChIP)-PCR. Our studies identified several direct target genes, including those encoding for catabolic enzymes acting during stress-induced senescence. Furthermore, we identified various genes controlling drought stress-related developmental changes. Based on our results, we conclude that RAF functions as a central transcriptional regulator that coordinates developmental programs with stress-related inputs from the environment. To explore the potential agricultural applications of our findings, we are currently extending our studies towards crop species.

Keywords: abiotic stress, Arabidopsis, development, transcription factor

Procedia PDF Downloads 200
1596 Evaluation of Entomopathogenic Fungi Strains for Field Persistence and Its Relationship to in Vitro Heat Tolerance

Authors: Mulue Girmay Gebreslasie

Abstract:

Entomopathogenic fungi are naturally safe and eco-friendly biological agents. Their potential of host specificity and ease handling made them appealing options to substitute synthetic pesticides in pest control programs. However, they are highly delicate and unstable under field conditions. Therefore, the current experiment was held to search out persistent fungal strains by defining the relationship between invitro heat tolerance and field persistence. Current results on leaf and soil persistence assay revealed that strains of Metarhizium species, M. pingshaense (F2685), M. pingshaense (MS2) and M. brunneum (F709) exhibit maximum cumulative CFUs count, relative survival rate and least percent of CFUs reductions showed significant difference at 7 days and 28 days post inoculations (dpi) in hot seasons from sampled soils and leaves and in cold season from soil samples. Whereas relative survival of B. brongniartii (TNO6) found significantly higher in cold weather leaf treatment application as compared to hot season and found as persistent as other fungal strains, while higher deterioration of fungal conidia seen with M. pingshaense (MS2). In the current study, strains of Beauveria brongniartii (TNO6) and Cordyceps javanica (Czy-LP) were relatively vulnerable in field condition with utmost colony forming units (CFUs) reduction and least survival rates. Further, the relationship of the two parameters (heat tolerance and field persistence) was seen with strong linear positive correlations elucidated that heat test could be used in selection of field persistent fungal strains for hot season applications.

Keywords: integrated pest management, biopesticides, Insect pathology and microbial control, entomology

Procedia PDF Downloads 105
1595 A Comparative Study on the Phenolics Composition and Antioxidant Properties of Water Yam Landraces in Kerala, India

Authors: Anumol Jose, Sajana Nazar, M. R. Vishnu, M. Anilkumar

Abstract:

Water yam is an underutilized tropical tuber crop and a rich source of polyphenol compounds and acylated anthocyanins. There is an inverse relationship between the risk of chronic human diseases and the consumption of polyphenolic rich diet. Dioscorea alata is a plant species with several undocumented landraces. In this study, several landraces of water yam with distinct morphological features were collected from all over kerala. Distinct variation in morphological feature among landraces was tuber colour and only those landraces which expressed consistent morphological characters for constitutively two growing seasons were included in the study. Plants were categorized according to the L*a*b* colour attributes of tuber extracts. There were five categories, red, pink, orange, yellow and white. Total phenol, flavanoid and anthocyanin content of the tuber extracts were measured spectroscopically and correlated with antioxidant properties determined by 2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical method and ferric reducing antioxidant power assay. Landraces showed statistically significant difference in all the parameters studied and strong correlation were observed between total phenol and antioxidant activity. Out of the five categories orange coloured tubers showed relatively high phenol and flavanoid content.Colour variations of tuber extracts correlated with anthocyanin quantity and polymeric nature of anthocyanins. This study helps to identify and categorize landraces of D.alata with potential health benefits and commercial applications. Distinct colour characteristics of tuber could be useful in the field of natural colorants. This study also aimed to document and preserve landraces of water yams for further study and research in this area.

Keywords: the antioxidant property, anthocyanins, polyphenols, water yam

Procedia PDF Downloads 133
1594 Model Evaluation of Thermal Effects Created by Cell Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of very high electric fields (~ 100kV/cm or higher) with pulse durations in the nanosecond range has been a recent development. The electric pulses have been used as tools to generate electroporation which has many biomedical applications. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal gradients that drives for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. Different temperatures are assigned to various regions to simulate the appropriate temperature gradients. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. For statistical significance, a total of eight MD simulations are carried out with different starting molecular velocities for each simulation. MD simulation shows no pore is formed in a 10-ns snapshot for a DPPC membrane set at a uniform temperature of 295 K after a 0.4 V/nm electric field is applied. A nano-sized pore is clearly seen in a 10-ns snapshot on the same geometry but with the top and bottom membrane surfaces kept at temperatures of 300 and 295 K, respectively. For the same applied electric field, the formation of nanopores is clearly demonstrated, but only in the presence of a temperature gradient. MD simulation results show enhanced electroporative effects arising from thermal gradients. The study suggests the temperature gradient is a secondary driver, with the electric field being the primary cause for electroporation.

Keywords: nanosecond, electroporation, thermal effects, molecular dynamics

Procedia PDF Downloads 85
1593 Emerging Therapeutic Approach with Dandelion Phytochemicals in Breast Cancer Treatment

Authors: Angel Champion, Sadia Kanwal, Rafat Siddiqui

Abstract:

Harnessing phytochemicals from plant sources presents a novel opportunity to prevent or treat malignant diseases, including breast cancer. Chemotherapy lacks precision in targeting cancerous cells while sparing normal cells, but a phytopharmaceutical approach may offer a solution. Dandelion, a common weed plant, is rich in phytochemicals and provides a safer, more cost-effective alternative with lower toxicity than traditional pharmaceuticals for conditions such as breast cancer. In this study, an in-vitro experiment will be conducted using the ethanol extract of Dandelion on triple-negative MDA-231 breast cancer cell lines. The polyphenolic analysis revealed that the Dandelion extract, particularly from the root and leaf (both cut and sifted), had the most potent antioxidant properties and exhibited the most potent antioxidation activity from the powdered leaf extract. The extract exhibits prospective promising effects for inducing cell proliferation and apoptosis in breast cancer cells, highlighting its potential for targeted therapeutic interventions. Standardizing methods for Dandelion use is crucial for future clinical applications in cancer treatment. Combining plant-derived compounds with cancer nanotechnology holds the potential for effective strategies in battling malignant diseases. Utilizing liposomes as carriers for phytoconstituent anti-cancer agents offers improved solubility, bioavailability, immunoregulatory effects, advancing anticancer immune function, and reducing toxicity. This integrated approach of natural products and nanotechnology has significant potential to revolutionize healthcare globally, especially in underserved communities where herbal medicine is prevalent.

Keywords: apoptosis, antioxidant activity, cancer nanotechnology, phytopharmaceutical

Procedia PDF Downloads 57
1592 Optimization for Guide RNA and CRISPR/Cas9 System Nanoparticle Mediated Delivery into Plant Cell for Genome Editing

Authors: Andrey V. Khromov, Antonida V. Makhotenko, Ekaterina A. Snigir, Svetlana S. Makarova, Natalia O. Kalinina, Valentin V. Makarov, Mikhail E. Taliansky

Abstract:

Due to its simplicity, CRISPR/Cas9 has become widely used and capable of inducing mutations in the genes of organisms of various kingdoms. The aim of this work was to develop applications for the efficient modification of DNA coding sequences of phytoene desaturase (PDS), coilin and vacuolar invertase (Solanum tuberosum) genes, and to develop a new nanoparticles carrier efficient technology to deliver the CRISPR/Cas9 system for editing the plant genome. For each of the genes - coilin, PDS and vacuolar invertase, five single RNA guide (sgRNAs) were synthesized. To determine the most suitable nanoplatform, two types of NP platforms were used: magnetic NPs (MNPS) and gold NPs (AuNPs). To test the penetration efficiency, they were functionalized with fluorescent agents - BSA * FITS and GFP, as well as labeled Cy3 small-sized RNA. To measure the efficiency, a fluorescence and confocal microscopy were used. It was shown that the best of these options were AuNP - both in the case of proteins and in the case of RNA. The next step was to check the possibility of delivering components of the CRISPR/Cas9 system to plant cells for editing target genes. AuNPs were functionalized with a ribonucleoprotein complex consisting of Cas9 and corresponding to target genes sgRNAs, and they were biolistically bombarded to axillary buds and apical meristems of potato plants. After the treatment by the best NP carrier, potato meristems were grown to adult plants. DNA isolated from this plants was sent to a preliminary fragment of the analysis to screen out the non-transformed samples, and then to the NGS. The present work was carried out with the financial support from the Russian Science Foundation (grant No. 16-16-04019).

Keywords: biobombardment, coilin, CRISPR/Cas9, nanoparticles, NPs, PDS, sgRNA, vacuolar invertase

Procedia PDF Downloads 321