Search results for: L2 vocabulary learning
2573 A Methodology to Virtualize Technical Engineering Laboratories: MastrLAB-VR
Authors: Ivana Scidà, Francesco Alotto, Anna Osello
Abstract:
Due to the importance given today to innovation, the education sector is evolving thanks digital technologies. Virtual Reality (VR) can be a potential teaching tool offering many advantages in the field of training and education, as it allows to acquire theoretical knowledge and practical skills using an immersive experience in less time than the traditional educational process. These assumptions allow to lay the foundations for a new educational environment, involving and stimulating for students. Starting from the objective of strengthening the innovative teaching offer and the learning processes, the case study of the research concerns the digitalization of MastrLAB, High Quality Laboratory (HQL) belonging to the Department of Structural, Building and Geotechnical Engineering (DISEG) of the Polytechnic of Turin, a center specialized in experimental mechanical tests on traditional and innovative building materials and on the structures made with them. The MastrLAB-VR has been developed, a revolutionary innovative training tool designed with the aim of educating the class in total safety on the techniques of use of machinery, thus reducing the dangers arising from the performance of potentially dangerous activities. The virtual laboratory, dedicated to the students of the Building and Civil Engineering Courses of the Polytechnic of Turin, has been projected to simulate in an absolutely realistic way the experimental approach to the structural tests foreseen in their courses of study: from the tensile tests to the relaxation tests, from the steel qualification tests to the resilience tests on elements at environmental conditions or at characterizing temperatures. The research work proposes a methodology for the virtualization of technical laboratories through the application of Building Information Modelling (BIM), starting from the creation of a digital model. The process includes the creation of an independent application, which with Oculus Rift technology will allow the user to explore the environment and interact with objects through the use of joypads. The application has been tested in prototype way on volunteers, obtaining results related to the acquisition of the educational notions exposed in the experience through a virtual quiz with multiple answers, achieving an overall evaluation report. The results have shown that MastrLAB-VR is suitable for both beginners and experts and will be adopted experimentally for other laboratories of the University departments.Keywords: building information modelling, digital learning, education, virtual laboratory, virtual reality
Procedia PDF Downloads 1332572 Neuro-Epigenetic Changes on Diabetes Induced-Synaptic Fidelity in Brain
Authors: Valencia Fernandes, Dharmendra Kumar Khatri, Shashi Bala Singh
Abstract:
Background and Aim: Epigenetics are the inaudible signatures of several pathological processes in the brain. This study understands the influence of DNA methylation, a major epigenetic modification, in the prefrontal cortex and hippocampus of the diabetic brain and its notable effect on the cellular chaperones and synaptic proteins. Method: Chronic high fat diet and STZ-induced diabetic mice were studied for cognitive dysfunction, and global DNA methylation, as well as DNA methyltransferase (DNMT) activity, were assessed. Further, the cellular chaperones and synaptic proteins were examined using DNMT inhibitor, 5-aza-2′-deoxycytidine (5-aza-dC)-via intracerebroventricular injection. Moreover, % methylation of these synaptic proteins were also studied so as to correlate its epigenetic involvement. Computationally, its interaction with the DNMT enzyme were also studied using bioinformatic tools. Histological studies for morphological alterations and neuronal degeneration were also studied. Neurogenesis, a characteristic marker for new learning and memory formation, was also assessed via the BrdU staining. Finally, the most important behavioral studies, including the Morris water maze, Y maze, passive avoidance, and Novel object recognition test, were performed to study its cognitive functions. Results: Altered global DNA methylation and increased levels of DNMTs within the nucleus were confirmed in the cortex and hippocampus of the diseased mice, suggesting hypermethylation at a genetic level. Treatment with AzadC, a global DNA demethylating agent, ameliorated the protein and gene expression of the cellular chaperones and synaptic fidelity. Furthermore, the methylation analysis profile showed hypermethylation of the hsf1 protein, a master regulator for chaperones and thus, confirmed the epigenetic involvement in the diseased brain. Morphological improvements and decreased neurodegeneration, along with enhanced neurogenesis in the treatment group, suggest that epigenetic modulations do participate in learning and memory. This is supported by the improved behavioral test battery seen in the treatment group. Conclusion: DNA methylation could possibly accord in dysregulating the memory-associated proteins at chronic stages in type 2 diabetes. This could suggest a substantial contribution to the underlying pathophysiology of several metabolic syndromes like insulin resistance, obesity and also participate in transitioning this damage centrally, such as cognitive dysfunction.Keywords: epigenetics, cognition, chaperones, DNA methylation
Procedia PDF Downloads 2082571 Peers' Alterity in Inverted Inclusion: A Case Study
Authors: Johanna Sagner, María José Sandoval
Abstract:
At the early stages of adolescence, young people, regardless of a disability or not, start to establish closer friendship ties. Unlike previous developmental phases, these ties are rather reciprocal, more committed, and require more time. Friendship ties during adolescence allow the development of social and personal skills, specifically the skills to start constructing identity. In an inclusive context that incorporates young people with a disability, friendship among peers also takes place. Nonetheless, the relation is shaped, among others, by the alterity construction about the other with disability. Research about peers’ relation between young people with and without disability in an inclusive context has shown that the relation tends to become a helper-helpee relation, where those with a disability are seen as people in need. Prejudices about the others’ condition or distancing from the other because of his/hers disability are common. In this sense, the helper-helpee relation, as a non-reciprocal and protective relation, will not promote friendship between classmates, but a rather asymmetric alterity. Our research is an explorative case study that wants to know how the relation between peers is shaped within a different inclusive program, were also the integrated group has special educational needs. Therefore, we analyze from a qualitative and quantitative approach the data of an inverted inclusive program. This is a unique case of a special public school for visual disability in Germany that includes young people from a mainstream school who had learning difficulties. For the research, we analyze data from interviews, focal interviews and open-ended questions with an interpretative phenomenological analysis approach. The questionnaires include a five point Likert scale, for which we calculate the acceptance rate. The findings show that the alterity relation between pupils is less asymmetrical and represents a rather horizontal alterity. The helper-helpee relation is marked by exchange, since both groups have special educational needs and therefore, those with visual disability and those with learning difficulties help each other indistinctly. Friendship is more present among classmates. The horizontal alterity peers’ relation is influenced by a sort of tie, where none of the groups need more or less help than other groups. Both groups identify that they themselves and the other have special needs. The axiological axe of alterity is not of superiority or inferiority, recognizing each other’s differences and otherness. Another influential factor relates with the amount of time they spend together, since the program does not have a resource room or a teacher who teaches parallel lessons. Two probable causes for that rather equal peer relation might be the constellation of fewer pupils per classroom and the differentiated lessons taught by teachers with a special educational formation.Keywords: alterity, disability, inverted inclusion, peers’ relation
Procedia PDF Downloads 3182570 The Outcome of Using Machine Learning in Medical Imaging
Authors: Adel Edwar Waheeb Louka
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery
Procedia PDF Downloads 762569 Students with Severe Learning Disabilities in Mainstream Classes: A Study of Comprehensions amongst School Staff and Parents Built on Observations and Interviews in a Phenomenological Framework
Authors: Inger Eriksson, Lisbeth Ohlsson, Jeremias Rosenqvist
Abstract:
Ingress: Focus in the study is directed towards phenomena and concepts of segregation, integration, and inclusion of students attending a special school form in Sweden, namely compulsory school for pupils with learning disabilities (in Swedish 'särskola') as an alternative to mainstream compulsory school. Aim: The aim of the study is to examine the school situation for students attending särskola from a historical perspective focussing the 1980s, 1990s and the 21st century, from an integration perspective, and from a perspective of power. Procedure: Five sub-studies are reported, where integration and inclusion are looked into by observation studies and interviews with school leaders, teachers, special and remedial teachers, psychologists, coordinators, and parents in the special schools/särskola. In brief, the study about special school students attending mainstream classes from 1998 takes its point of departure in the idea that all knowledge development takes place in a social context. A special interest is taken in the school’s role for integration generally, and the role of special education particularly and on whose conditions the integration is taking place – the special school students' or the other students,' or may be equally, in the class. Pedagogical and social conditions for so called individually integrated special school students in elementary school classes were studied in eleven classes. Results: The findings are interpreted in a power perspective supported by Foucault and relationally by Vygotsky. The main part of the data consists of extensive descriptions of the eleven cases, here called integration situations. Conclusions: In summary, this study suggests that the possibilities for a special school student to get into the class community and fellowship and thereby be integrated with the class are to a high degree dependant on to what extent the student can take part in the pedagogical processes. The pedagogical situation for the special school student is affected not only by the class teacher and the support and measures undertaken but also by the other students in the class as they, in turn, are affected by how the special school student is acting. This mutual impact, which constitutes the integration process in itself, might result in a true integration if the special school student attains the status of being accepted on his/her own terms not only being cared for or cherished by some classmates. A special school student who is not accepted even on the terms of the class will often experience severe problems in the contacts with classmates and the school situation might thus be a mere placement.Keywords: integration/inclusion, mainstream school, power, special school students
Procedia PDF Downloads 2532568 Educational Innovation and ICT: Before and during 21st Century
Authors: Carlos Monge López, Patricia Gómez Hernández
Abstract:
Educational innovation is a quality factor of teaching-learning processes and institutional accreditation. There is an increasing of these change processes, especially after 2000. However, the publications about this topic are more associated with ICTs in currently century. The main aim of the study was to determine the tendency of educational innovations around ICTs. The used method was mixed research design (content analysis, review of scientific literature and descriptive, comparative and correlation study) with 649 papers. In summary, the results indicated that, progressively, the educational innovation is associated with ICTs, in comparison with this type of change processes without ICTs. In conclusion, although this tendency, scientific literature must divulgate more kinds of pedagogical innovation with the aim of deepening in other new resources.Keywords: descriptive study, knowledge society, pedagogical innovation, technologies
Procedia PDF Downloads 4892567 Introducing Principles of Land Surveying by Assigning a Practical Project
Authors: Introducing Principles of Land Surveying by Assigning a Practical Project
Abstract:
A practical project is used in an engineering surveying course to expose sophomore and junior civil engineering students to several important issues related to the use of basic principles of land surveying. The project, which is the design of a two-lane rural highway to connect between two arbitrary points, requires students to draw the profile of the proposed highway along with the existing ground level. Areas of all cross-sections are then computed to enable quantity computations between them. Lastly, Mass-Haul Diagram is drawn with all important parts and features shown on it for clarity. At the beginning, students faced challenges getting started on the project. They had to spend time and effort thinking of the best way to proceed and how the work would flow. It was even more challenging when they had to visualize images of cut, fill and mixed cross sections in three dimensions before they can draw them to complete the necessary computations. These difficulties were then somewhat overcome with the help of the instructor and thorough discussions among team members and/or between different teams. The method of assessment used in this study was a well-prepared-end-of-semester questionnaire distributed to students after the completion of the project and the final exam. The survey contained a wide spectrum of questions from students' learning experience when this course development was implemented to students' satisfaction of the class instructions provided to them and the instructor's competency in presenting the material and helping with the project. It also covered the adequacy of the project to show a sample of a real-life civil engineering application and if there is any excitement added by implementing this idea. At the end of the questionnaire, students had the chance to provide their constructive comments and suggestions for future improvements of the land surveying course. Outcomes will be presented graphically and in a tabular format. Graphs provide visual explanation of the results and tables, on the other hand, summarize numerical values for each student along with some descriptive statistics, such as the mean, standard deviation, and coefficient of variation for each student and each question as well. In addition to gaining experience in teamwork, communications, and customer relations, students felt the benefit of assigning such a project. They noticed the beauty of the practical side of civil engineering work and how theories are utilized in real-life engineering applications. It was even recommended by students that such a project be exercised every time this course is offered so future students can have the same learning opportunity they had.Keywords: land surveying, highway project, assessment, evaluation, descriptive statistics
Procedia PDF Downloads 2342566 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network
Authors: Gulfam Haider, sana danish
Abstract:
Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent
Procedia PDF Downloads 1332565 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging
Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen
Abstract:
Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques
Procedia PDF Downloads 1032564 The Effect of Mood and Creativity on Product Creativity: Using LEGO as a Hands-On Activity
Authors: Kaewmart Pongakkasira
Abstract:
This study examines whether construction of LEGO reflects affective states and creativity as the clue to develop effective learning resources for classrooms. For this purpose, participants are instructed to complete a hands-on activity by using LEGO. Prior to the experiment, participants’ affective states and creativity are measured by the Positive and Negative Affect Schedule (PANAS) and the Alternate Uses Task (AUT), respectively. Then, subjects are asked to freely combine LEGO as unusual as possible versus constraint LEGO combination and named the LEGO products. Creativity of the LEGO products is scored for originality and abstractness of titles. It is hypothesized that individuals’ mood and creativity may affect product creativity. If so, there might be correlation among the three parameters.Keywords: affective states, creativity, hands-on activity, LEGO
Procedia PDF Downloads 3752563 EDM for Prediction of Academic Trends and Patterns
Authors: Trupti Diwan
Abstract:
Predicting student failure at school has changed into a difficult challenge due to both the large number of factors that can affect the reduced performance of students and the imbalanced nature of these kinds of data sets. This paper surveys the two elements needed to make prediction on Students’ Academic Performances which are parameters and methods. This paper also proposes a framework for predicting the performance of engineering students. Genetic programming can be used to predict student failure/success. Ranking algorithm is used to rank students according to their credit points. The framework can be used as a basis for the system implementation & prediction of students’ Academic Performance in Higher Learning Institute.Keywords: classification, educational data mining, student failure, grammar-based genetic programming
Procedia PDF Downloads 4242562 The Status of English Learning in the Israeli Academy
Authors: Ronit German, Alexandra Beytenbrat
Abstract:
Although English seems to be prevalent in every sphere of Israeli daily life, not many Israeli students have a sufficient level of writing and speaking in English which is necessary for academic studies. The inadequate level of English among Israeli students is because the sole focus is on teaching reading comprehension, and the need to adapt to the trends of the professional worldwide demands triggered a reform that requires implementing Common European Framework of Reference (CEFR) and English as a Medium of Instruction (EMI) courses in the Israeli academic institutions. However, it will be argued that this reform is challenging to implement. The fact that modern Hebrew is a revived language, and that English is L3 for more than 30% of the population, the diverse social and cultural students’ background, and psychological factors stand in the way of the new reform.Keywords: CEFR, cultural diversity, EMI courses, English in Israel, reform
Procedia PDF Downloads 2222561 Application of Machine Learning Techniques in Forest Cover-Type Prediction
Authors: Saba Ebrahimi, Hedieh Ashrafi
Abstract:
Predicting the cover type of forests is a challenge for natural resource managers. In this project, we aim to perform a comprehensive comparative study of two well-known classification methods, support vector machine (SVM) and decision tree (DT). The comparison is first performed among different types of each classifier, and then the best of each classifier will be compared by considering different evaluation metrics. The effect of boosting and bagging for decision trees is also explored. Furthermore, the effect of principal component analysis (PCA) and feature selection is also investigated. During the project, the forest cover-type dataset from the remote sensing and GIS program is used in all computations.Keywords: classification methods, support vector machine, decision tree, forest cover-type dataset
Procedia PDF Downloads 2202560 A Literature Review on Successful Implementation of Online Education in Higher Education Institutions
Authors: Desiree Wieser
Abstract:
Online education can be one way to differentiate for higher education institutions (HEI). Nevertheless, it is often not that clear how to successfully implement online education and what it actually means. Literature reveals that it is often linked to student success and satisfaction. However, while researchers succeeded in identifying the determinants impacting on student success and satisfaction, they often ignored expectations. In fact, learning success and satisfaction alone often fall short to explain if and why online education has been implemented successfully and why students perceive the study experience as positive or negative. The present study reveals that considering expectations can contribute to a better understanding of the overall study experience.Keywords: expectations, online education, student satisfaction, student success
Procedia PDF Downloads 3212559 The Impact of COVID-19 Measures on Children with Disabilities and Their Families in the Kingdom of Saudi Arabia
Authors: Faris Algahtani
Abstract:
The COVID 19 pandemic and associated public health measures have disrupted the lives of peoplearound the world, including children. There is little knowledge about how pandemic measures have affected children in the Kingdom of Saudi Arabia (KSA). The aim and objectives of this qualitative study was to learn about the outcomes and impacts of the pandemic on children ages 0-8 in KSA. The study was based on 40 in-depth interviews that were conducted with experts in health, social protection, education, and early learning, children with special needs, and economics, including decision makers as well as specialists in service provision. The interviews were recorded and translated from Arabic to English into summary notes. The narrative was coded and analyzed following a thematic analysis.Keywords: disabilities, COVID-19, families, children
Procedia PDF Downloads 2172558 Recessionary Tales: An Investigation into How Children with Intellectual Disability, and Their Families Experience the Current Economic Downturn
Authors: S. Flynn
Abstract:
This paper offers a focused commentary on the impact of the current economic downturn on children with ID (intellectual disability), and their families, in the Republic of Ireland. It will examine the practical challenges, serious concerns, and trends in the field of disability with specific regard to the impact of the economic downturn in the Irish context. This includes the impact of cutbacks to services and supports, and the erosion of possibilities for life progression for children with ID as evident within the existing body of research. This focused commentary on core and seminal literature, policy and research will then be used to provide a discussion on what are the core points of learning for policy makers, researchers, practitioners and society as whole.Keywords: children, disability, economic, recession
Procedia PDF Downloads 3132557 The Interplay of Communication and Critical Thinking in the Mathematics Classroom
Authors: Sharon K. O'Kelley
Abstract:
At the heart of mathematics education is the concept of communication which many teachers envision as the influential dialogue they conduct with their students. However, communication in the mathematics classroom operates in different forms at different levels, both externally and internally. Specifically, it can be a central component in the building of critical thinking skills that requires students not only to know how to communicate their solutions to others but that they also be able to navigate their own thought processes in search of those solutions. This paper provides a review of research on the role of communication in the building of critical thinking skills in mathematics with a focus on the problem-solving process and the implications this interplay has for the teaching and learning of mathematics.Keywords: communication in mathematics, critical thinking skills, mathematics education, problem-solving process
Procedia PDF Downloads 922556 Contemporary Issues in Teacher Education in Nigeria
Authors: Salisu Abdu Bagga
Abstract:
This paper attempts to discuss contemporary issues in teacher education and address challenges therein within the context of the Nigeria society. Teacher education is an educational programme aimed at producing the right crop of people (teachers) who will teach at various levels of schooling i.e. primary, secondary and tertiary. The programme targets to inculcate desirable knowledge, skills, attitudes, values and competencies in teachers with the prime motive of keeping them fully abreast with contemporary challenges such as overcrowded classrooms, inadequate instructional materials, ineffective teaching methodology in the teaching industry in Nigeria. Nigeria needs competent, skilful, knowledgeable and innovative classroom teachers for better teaching and learning.Keywords: teacher education, contemporary issues, competencies, higher education
Procedia PDF Downloads 4712555 Remote Wireless Communications Lab in Real Time
Authors: El Miloudi Djelloul
Abstract:
Technology nowadays enables the remote access to laboratory equipment and instruments via Internet. This is especially useful in engineering education, where students can conduct laboratory experiment remotely. Such remote laboratory access can enable student to use expensive laboratory equipment, which is not usually available to students. In this paper, we present a method of creating a Web-based Remote Laboratory Experimentation in the master degree course “Wireless Communications Systems” which is part of “ICS (Information and Communication Systems)” and “Investment Management in Telecommunications” curriculums. This is done within the RIPLECS Project and the NI2011 FF005 Research Project “Implementation of Project-Based Learning in an Interdisciplinary Master Program”.Keywords: remote access, remote laboratory, wireless telecommunications, external antenna-switching controller board (EASCB)
Procedia PDF Downloads 5182554 Education for Social Justice: University Teachers’ Conceptions and Practice: A Comparative Study
Authors: Digby Warren, Jiri Kropac
Abstract:
While aspirations of social justice are often articulated by universities as a “feel good” mantra, what is meant by education for social justice deserves deeper consideration. Based on in-depth interviews with academics (voluntary participants in this research) in different disciplines and institutions in the UK, Czech Republic, and other EU countries, this comparative study presents thematic findings regarding lecturers’ conceptions of education for social justice -what it is, why it is important, why they are personally committed to it, how it connects with their own values- and their practice of it- how it is implemented through curriculum content, teaching and learning activities, and assessment tasks. It concludes by presenting an analysis of the challenges, constraints, and enabling factors in practising social justice education in different subject, institutional and national contexts.Keywords: higher education, social justice, inclusivity, diversity
Procedia PDF Downloads 1302553 Using Lesson-Based Discussion to Improve Teaching Quality: A Case of Chinese Mathematics Teachers
Authors: Jian Wang
Abstract:
Teachers’ lesson-based discussions presume central to their effective learning to teach. Whether and to what extent such discussions offer opportunities for teachers to learn to teach effectively is worth a careful empirical examination. This study examines this assumption by drawing on lesson-based discussions and relevant curriculum materials from Chinese teachers in three urban schools. Their lesson-based discussions consistently focused on pedagogical content knowledge and offered specific and reasoned suggestions for teachers to refine their teaching practices. The mandated curriculum and their working language-mediated their lesson-based discussions.Keywords: Chinese teachers, curriculum materials, lesson discussion, mathematics instruction
Procedia PDF Downloads 822552 In-situ Mental Health Simulation with Airline Pilot Observation of Human Factors
Authors: Mumtaz Mooncey, Alexander Jolly, Megan Fisher, Kerry Robinson, Robert Lloyd, Dave Fielding
Abstract:
Introduction: The integration of the WingFactors in-situ simulation programme has transformed the education landscape at the Whittington Health NHS Trust. To date, there have been a total of 90 simulations - 19 aimed at Paediatric trainees, including 2 Child and Adolescent Mental Health (CAMHS) scenarios. The opportunity for joint debriefs provided by clinical faculty and airline pilots, has created a new exciting avenue to explore human factors within psychiatry. Through the use of real clinical environments and primed actors; the benefits of high fidelity simulation, interdisciplinary and interprofessional learning has been highlighted. The use of in-situ simulation within Psychiatry is a newly emerging concept and its success here has been recognised by unanimously positive feedback from participants and acknowledgement through nomination for the Health Service Journal (HSJ) Award (Best Education Programme 2021). Methodology: The first CAMHS simulation featured a collapsed patient in the toilet with a ligature tied around her neck, accompanied by a distressed parent. This required participants to consider:; emergency physical management of the case, alongside helping to contain the mother and maintaining situational awareness when transferring the patient to an appropriate clinical area. The second simulation was based on a 17- year- old girl attempting to leave the ward after presenting with an overdose, posing potential risk to herself. The safe learning environment enabled participants to explore techniques to engage the young person and understand their concerns, and consider the involvement of other members of the multidisciplinary team. The scenarios were followed by an immediate ‘hot’ debrief, combining technical feedback with Human Factors feedback from uniformed airline pilots and clinicians. The importance of psychological safety was paramount, encouraging open and honest contributions from all participants. Key learning points were summarized into written documents and circulated. Findings: The in-situ simulations demonstrated the need for practical changes both in the Emergency Department and on the Paediatric ward. The presence of airline pilots provided a novel way to debrief on Human Factors. The following key themes were identified: -Team-briefing (‘Golden 5 minutes’) - Taking a few moments to establish experience, initial roles and strategies amongst the team can reduce the need for conversations in front of a distressed patient or anxious relative. -Use of checklists / guidelines - Principles associated with checklist usage (control of pace, rigor, team situational awareness), instead of reliance on accurate memory recall when under pressure. -Read-back - Immediate repetition of safety critical instructions (e.g. drug / dosage) to mitigate the risks associated with miscommunication. -Distraction management - Balancing the risk of losing a team member to manage a distressed relative, versus it impacting on the care of the young person. -Task allocation - The value of the implementation of ‘The 5A’s’ (Availability, Address, Allocate, Ask, Advise), for effective task allocation. Conclusion: 100% of participants have requested more simulation training. Involvement of airline pilots has led to a shift in hospital culture, bringing to the forefront the value of Human Factors focused training and multidisciplinary simulation. This has been of significant value in not only physical health, but also mental health simulation.Keywords: human factors, in-situ simulation, inter-professional, multidisciplinary
Procedia PDF Downloads 1132551 'Go Baby Go'; Community-Based Integrated Early Childhood and Maternal Child Health Model Improving Early Childhood Stimulation, Care Practices and Developmental Outcomes in Armenia: A Quasi-Experimental Study
Authors: Viktorya Sargsyan, Arax Hovhannesyan, Karine Abelyan
Abstract:
Introduction: During the last decade, scientific studies have proven the importance of Early Childhood Development (ECD) interventions. These interventions are shown to create strong foundations for children’s intellectual, emotional and physical well-being, as well as the impact they have on learning and economic outcomes for children as they mature into adulthood. Many children in rural Armenia fail to reach their full development potential due to lack of early brain stimulation (playing, singing, reading, etc.) from their parents, and lack of community tools and services to follow-up children’s neurocognitive development. This is exacerbated by high rates of stunting and anemia among children under 3(CU3). This research study tested the effectiveness of an integrated ECD and Maternal, Newborn and Childhood Health (MNCH) model, called “Go Baby, Go!” (GBG), against the traditional (MNCH) strategy which focuses solely on preventive health and nutrition interventions. The hypothesis of this quasi-experimental study was: Children exposed to GBG will have better neurocognitive and nutrition outcomes compared to those receiving only the MNCH intervention. The secondary objective was to assess the effect of GBG on parental child care and nutrition practices. Methodology: The 14 month long study, targeted all 1,300 children aged 0 to 23 months, living in 43 study communities the in Gavar and Vardenis regions (Gegharkunik province, Armenia). Twenty-three intervention communities, 680 children, received GBG, and 20 control communities, 630 children, received MCHN interventions only. Baseline and evaluation data on child development, nutrition status and parental child care and nutrition practices were collected (caregiver interview, direct child assessment). In the intervention sites, in addition to MNCH (maternity schools, supportive supervision for Health Care Providers (HCP), the trained GBG facilitators conducted six interactive group sessions for mothers (key messages, information, group discussions, role playing, video-watching, toys/books preparation, according to GBG curriculum), and two sessions (condensed GBG) for adult family members (husbands, grandmothers). The trained HCPs received quality supervision for ECD counseling and screening. Findings: The GBG model proved to be effective in improving ECD outcomes. Children in the intervention sites had 83% higher odd of total ECD composite score (cognitive, language, motor) compared to children in the control sites (aOR 1.83; 95 percent CI: 1.08-3.09; p=0.025). Caregivers also demonstrated better child care and nutrition practices (minimum dietary diversity in intervention site is 55 percent higher compared to control (aOR=1.55, 95 percent CI 1.10-2.19, p =0.013); support for learning and disciplining practices (aOR=2.22, 95 percent CI 1.19-4.16, p=0.012)). However, there was no evidence of stunting reduction in either study arm. he effect of the integrated model was more prominent in Vardenis, a community which is characterised by high food insecurity and limited knowledge of positive parenting skills. Conclusion: The GBG model is effective and could be applied in target areas with the greatest economic disadvantages and parenting challenges to improve ECD, care practices and developmental outcomes. Longitudinal studies are needed to view the long-term effects of GBG on learning and school readiness.Keywords: early childhood development, integrated interventions, parental practices, quasi-experimental study
Procedia PDF Downloads 1742550 Curricular Reforms for Inclusive Education: Equalization of Opportunities for the Physically Challenged Persons
Authors: Ede Jairus Adagba
Abstract:
The National Policy on Education has made elaborate and fascinating provisions for the education of the people with Special Needs. This category of people includes the physically challenged, the disadvantaged, the gifted and talented. However, the focus of this paper is people that are physically challenged. The paper reasons that in spite of the commendable provisions, the present curricular and learning conditions are not conducive enough to cater for the interest of the physically challenged persons. As a panacea, some curricular and physical condition reforms are proposed. These are hoped to facilitate access to inclusive education and equalization for opportunities of the physically challenged.Keywords: curricular reforms, equalization, inclusive education, physically challenged persons
Procedia PDF Downloads 3132549 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends
Authors: Zheng Yuxun
Abstract:
This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis
Procedia PDF Downloads 612548 Evaluation of the Role of Simulation and Virtual Reality as High-Yield Adjuncts to Paediatric Education
Authors: Alexandra Shipley
Abstract:
Background: Undergraduate paediatric teaching must overcome two major challenges: 1) balancing patient safety with active student engagement and 2) exposing students to a comprehensive range of pathologies within a relatively short clinical placement. Whilst lectures and shadowing on paediatric wards constitute the mainstay of learning, Simulation and Virtual Reality (VR) are emerging as effective teaching tools, which - immune to the unpredictability and seasonal variation of hospital presentations - could expose students to the entire syllabus more reliably, efficiently, and independently. We aim to evaluate the potential utility of Simulation and VR in addressing gaps within the traditional paediatric curriculum from the perspective of medical students. Summary of Work: Exposure to and perceived utility of various learning opportunities within the Paediatric and Emergency Medicine courses were assessed through a questionnaire completed by 5th year medical students (n=23). Summary of Results: Students reported limited exposure to several common acute paediatric presentations, such as bronchiolitis (41%), croup (32%) or pneumonia (14%), and to clinical emergencies, including cardiac/respiratory arrests or trauma calls (27%). Across all conditions, average self-reported confidence in assessment and management to the level expected of an FY1 is greater amongst those who observed at least one case (e.g. 7.6/10 compared with 3.6/10 for croup). Students rated exposure through Simulation or VR to be of similar utility to witnessing a clinical scenario on the ward. In free text responses, students unanimously favoured being ‘challenged’ through ‘hands-on’ patient interaction over passive shadowing, where it is ‘easy to zone out.’ In recognition of the fact that such independence is only appropriate in certain clinical situations, many students reported wanting more Simulation and VR teaching. Importantly, students raised the necessity of ‘proper debriefs’ after these sessions to maximise educational value. Discussion and Conclusion: Our questionnaire elicited several student-perceived challenges in paediatric education, including incomplete exposure to common pathologies and limited opportunities for active involvement in patient care. Indeed, these experiences seem to be important predictors of confidence. Quantitative and qualitative feedback suggests that VR and Simulation satisfy students’ self-reported appetite for independent engagement with authentic clinical scenarios. Take-aways: Our findings endorse further development of VR and Simulation as high-yield adjuncts to paediatric education.Keywords: paediatric emergency education, simulation, virtual reality, medical education
Procedia PDF Downloads 762547 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features
Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova
Abstract:
The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.Keywords: emotion recognition, facial recognition, signal processing, machine learning
Procedia PDF Downloads 3212546 A Hebbian Neural Network Model of the Stroop Effect
Authors: Vadim Kulikov
Abstract:
The classical Stroop effect is the phenomenon that it takes more time to name the ink color of a printed word if the word denotes a conflicting color than if it denotes the same color. Over the last 80 years, there have been many variations of the experiment revealing various mechanisms behind semantic, attentional, behavioral and perceptual processing. The Stroop task is known to exhibit asymmetry. Reading the words out loud is hardly dependent on the ink color, but naming the ink color is significantly influenced by the incongruent words. This asymmetry is reversed, if instead of naming the color, one has to point at a corresponding color patch. Another debated aspects are the notions of automaticity and how much of the effect is due to semantic and how much due to response stage interference. Is automaticity a continuous or an all-or-none phenomenon? There are many models and theories in the literature tackling these questions which will be discussed in the presentation. None of them, however, seems to capture all the findings at once. A computational model is proposed which is based on the philosophical idea developed by the author that the mind operates as a collection of different information processing modalities such as different sensory and descriptive modalities, which produce emergent phenomena through mutual interaction and coherence. This is the framework theory where ‘framework’ attempts to generalize the concepts of modality, perspective and ‘point of view’. The architecture of this computational model consists of blocks of neurons, each block corresponding to one framework. In the simplest case there are four: visual color processing, text reading, speech production and attention selection modalities. In experiments where button pressing or pointing is required, a corresponding block is added. In the beginning, the weights of the neural connections are mostly set to zero. The network is trained using Hebbian learning to establish connections (corresponding to ‘coherence’ in framework theory) between these different modalities. The amount of data fed into the network is supposed to mimic the amount of practice a human encounters, in particular it is assumed that converting written text into spoken words is a more practiced skill than converting visually perceived colors to spoken color-names. After the training, the network performs the Stroop task. The RT’s are measured in a canonical way, as these are continuous time recurrent neural networks (CTRNN). The above-described aspects of the Stroop phenomenon along with many others are replicated. The model is similar to some existing connectionist models but as will be discussed in the presentation, has many advantages: it predicts more data, the architecture is simpler and biologically more plausible.Keywords: connectionism, Hebbian learning, artificial neural networks, philosophy of mind, Stroop
Procedia PDF Downloads 2712545 Robust Electrical Segmentation for Zone Coherency Delimitation Base on Multiplex Graph Community Detection
Authors: Noureddine Henka, Sami Tazi, Mohamad Assaad
Abstract:
The electrical grid is a highly intricate system designed to transfer electricity from production areas to consumption areas. The Transmission System Operator (TSO) is responsible for ensuring the efficient distribution of electricity and maintaining the grid's safety and quality. However, due to the increasing integration of intermittent renewable energy sources, there is a growing level of uncertainty, which requires a faster responsive approach. A potential solution involves the use of electrical segmentation, which involves creating coherence zones where electrical disturbances mainly remain within the zone. Indeed, by means of coherent electrical zones, it becomes possible to focus solely on the sub-zone, reducing the range of possibilities and aiding in managing uncertainty. It allows faster execution of operational processes and easier learning for supervised machine learning algorithms. Electrical segmentation can be applied to various applications, such as electrical control, minimizing electrical loss, and ensuring voltage stability. Since the electrical grid can be modeled as a graph, where the vertices represent electrical buses and the edges represent electrical lines, identifying coherent electrical zones can be seen as a clustering task on graphs, generally called community detection. Nevertheless, a critical criterion for the zones is their ability to remain resilient to the electrical evolution of the grid over time. This evolution is due to the constant changes in electricity generation and consumption, which are reflected in graph structure variations as well as line flow changes. One approach to creating a resilient segmentation is to design robust zones under various circumstances. This issue can be represented through a multiplex graph, where each layer represents a specific situation that may arise on the grid. Consequently, resilient segmentation can be achieved by conducting community detection on this multiplex graph. The multiplex graph is composed of multiple graphs, and all the layers share the same set of vertices. Our proposal involves a model that utilizes a unified representation to compute a flattening of all layers. This unified situation can be penalized to obtain (K) connected components representing the robust electrical segmentation clusters. We compare our robust segmentation to the segmentation based on a single reference situation. The robust segmentation proves its relevance by producing clusters with high intra-electrical perturbation and low variance of electrical perturbation. We saw through the experiences when robust electrical segmentation has a benefit and in which context.Keywords: community detection, electrical segmentation, multiplex graph, power grid
Procedia PDF Downloads 832544 Laying the Proto-Ontological Conditions for Floating Architecture as a Climate Adaptation Solution for Rising Sea Levels: Conceptual Framework and Definition of a Performance Based Design
Authors: L. Calcagni, A. Battisti, M. Hensel, D. S. Hensel
Abstract:
Since the beginning of the 21st century, we have seen a dynamic growth of water-based (WB) architecture, mainly due to the increasing threat of floods caused by sea level rise and heavy rains, all correlated with climate change. At the same time, the shortage of land available for urban development also led architects, engineers, and policymakers to reclaim the seabed or to build floating structures. Furthermore, the drive to produce energy from renewable resources has expanded the sector of offshore research, mining, and energy industry which seeks new types of WB structures. In light of these considerations, the time is ripe to consider floating architecture as a full-fledged building typology. Currently, there is no universally recognized academic definition of a floating building. Research on floating architecture lacks a proper, commonly shared vocabulary and typology distinction. Moreover, there is no global international legal framework for urban development on water, and there is no structured performance based building design (PBBD) approach for floating architecture in most countries, let alone national regulatory systems. Thus, first of all, the research intends to overcome the semantic and typological issues through the conceptualization of floating architecture, laying the proto-ontological conditions for floating development, and secondly to identify the parameters to be considered in the definition of a specific PBBD framework, setting the scene for national planning strategies. The theoretical overview and re-semanticization process involve the attribution of a new meaning to the term floating architecture. This terminological work of semantic redetermination is carried out through a systematic literature review and involves quantitative and historical research as well as logical argumentation methods. As it is expected that floating urban development is most likely to take place as an extension of coastal areas, the needs and design criteria are definitely more similar to those of the urban environment than to those of the offshore industry. Therefore, the identification and categorization of parameters –looking towards the potential formation of a PBBD framework for floating development– takes the urban and architectural guidelines and regulations as the starting point, taking the missing aspects, such as hydrodynamics (i.e. stability and buoyancy) from the offshore and shipping regulatory frameworks. This study is carried out through an evidence-based assessment of regulatory systems that are effective in different countries around the world, addressing on-land and on-water architecture as well as offshore and shipping industries. It involves evidence-based research and logical argumentation methods. Overall, inhabiting water is proposed not only as a viable response to the problem of rising sea levels, thus as a resilient frontier for urban development, but also as a response to energy insecurity, clean water, and food shortages, environmental concerns, and urbanization, in line with Blue Economy principles and the Agenda 2030. This review shows how floating architecture is to all intents and purposes, an urban adaptation measure and a solution towards self-sufficiency and energy-saving objectives. Moreover, the adopted methodology is, to all extents, open to further improvements and integrations, thus not rigid and already completely determined. Along with new designs and functions that will come into play in the practice field, eventually, life on water will seem no more unusual than life on land, especially by virtue of the multiple advantages it provides not only to users but also to the environment.Keywords: adaptation measures, building typology, floating architecture, performance based building design, rising sea levels
Procedia PDF Downloads 101