Search results for: crack problems
1905 Silver Nanoparticle Application in Food Packaging and Impacts on Food Safety and Consumer’s Health
Authors: Worku Dejene Bekele, András Marczika Csilla Sörös
Abstract:
Silver nanoparticles are silver metal with a size of 1-100nm. The most common source of silver nanoparticles is inorganic salts. Nanoparticles can be ingested through our foods and constitute nanoparticles and silver ions, whether as an additive or by migrants and, in some cases, as a pollutant. Silver nanoparticles are the most widely applicable engineered nanomaterials, especially for antimicrobial function. Ag nanoparticles give different advantages in the case of food safety, quality, and overall acceptability; however, they affect the health of humans and animals, putting them at risk of health problems and environmental pollution. Silver nanoparticles have been used widely in food packaging technologies, especially in water treatments, meat and meat products, fruit, and many other food products. This is for bio-preservation from food products. The primary goal of this review is to determine the safety and health impact of Ag nanoparticles application in food packaging and analysis of the human organs more affected by this preservative technology, to assess the implications of a nanoparticle on food safety, to determine the effects of nanoparticles on consumers health and to determine the impact of nanotechnology on product acceptability. But currently, much research has demonstrated that there is cause to believe that silver nanoparticles may have toxicological effects on biological organs and systems. The silver nanoparticles affect DNA expression, gastrointestinal barriers, lungs, and other breathing organs illness. Silver particles and molecules are very toxic. During its application in food packaging, food industries used the thinnest particle. This particle can potentially affect the gastrointestinal tracts-it suffers from mucus production, DNA, lungs, and other breezing organs. This review is targeted to demonstrate the knowledge gap that industrials use in the application of silver nanoparticles in food packaging and preservation and its health effects on the consumer.Keywords: food preservatives, health impact, nanoparticle, silver nanoparticle
Procedia PDF Downloads 761904 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model
Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok
Abstract:
The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.Keywords: functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity
Procedia PDF Downloads 1551903 Fluid-Structure Interaction Analysis of a Vertical Axis Wind Turbine Blade Made with Natural Fiber Based Composite Material
Authors: Ivan D. Ortega, Juan D. Castro, Alberto Pertuz, Manuel Martinez
Abstract:
One of the problems considered when scientists talk about climate change is the necessity of utilizing renewable sources of energy, on this category there are many approaches to the problem, one of them is wind energy and wind turbines whose designs have frequently changed along many years trying to achieve a better overall performance on different conditions. From that situation, we get the two main types known today: Vertical and Horizontal axis wind turbines, which have acronyms VAWT and HAWT, respectively. This research aims to understand how well suited a composite material, which is still in development, made with natural origin fibers is for its implementation on vertical axis wind turbines blades under certain wind loads. The study consisted on acquiring the mechanical properties of the materials to be used which where bactris guineenis, also known as pama de lata in Colombia, and adhesive that acts as the matrix which had not been previously studied to the point required for this project. Then, a simplified 3D model of the airfoil was developed and tested under some preliminary loads using finite element analysis (FEA), these loads were acquired in the Colombian Chicamocha Canyon. Afterwards, a more realistic pressure profile was obtained using computational fluid dynamics which took into account the 3D shape of the complete blade and its rotation. Finally, the blade model was subjected to the wind loads using what is known as one way fluidstructure interaction (FSI) and its behavior analyzed to draw conclusions. The observed overall results were positive since the material behaved fairly as expected. Data suggests the material would be really useful in this kind of applications in small to medium size turbines if it is given more attention and time to develop.Keywords: CFD, FEA, FSI, natural fiber, VAWT
Procedia PDF Downloads 2301902 Correlation Results Based on Magnetic Susceptibility Measurements by in-situ and Ex-Situ Measurements as Indicators of Environmental Changes Due to the Fertilizer Industry
Authors: Nurin Amalina Widityani, Adinda Syifa Azhari, Twin Aji Kusumagiani, Eleonora Agustine
Abstract:
Fertilizer industry activities contribute to environmental changes. Changes to the environment became one of a few problems in this era of globalization. Parameters that can be seen as criteria to identify changes in the environment can be seen from the aspects of physics, chemistry, and biology. One aspect that can be assessed quickly and efficiently to describe environmental change is the aspect of physics, one of which is the value of magnetic susceptibility (χ). The rock magnetism method can be used as a proxy indicator of environmental changes, seen from the value of magnetic susceptibility. The rock magnetism method is based on magnetic susceptibility studies to measure and classify the degree of pollutant elements that cause changes in the environment. This research was conducted in the area around the fertilizer plant, with five coring points on each track, each coring point a depth of 15 cm. Magnetic susceptibility measurements were performed by in-situ and ex-situ. In-situ measurements were carried out directly by using the SM30 tool by putting the tools on the soil surface at each measurement point and by that obtaining the value of the magnetic susceptibility. Meanwhile, ex-situ measurements are performed in the laboratory by using the Bartington MS2B tool’s susceptibility, which is done on a coring sample which is taken every 5 cm. In-situ measurement shows results that the value of magnetic susceptibility at the surface varies, with the lowest score on the second and fifth points with the -0.81 value and the highest value at the third point, with the score of 0,345. Ex-situ measurements can find out the variations of magnetic susceptibility values at each depth point of coring. At a depth of 0-5 cm, the value of the highest XLF = 494.8 (x10-8m³/kg) is at the third point, while the value of the lowest XLF = 187.1 (x10-8m³/kg) at first. At a depth of 6-10 cm, the highest value of the XLF was at the second point, which was 832.7 (x10-8m³/kg) while the lowest XLF is at the first point, at 211 (x10-8m³/kg). At a depth of 11-15 cm, the XLF’s highest value = 857.7 (x10-8m³/kg) is at the second point, whereas the value of the lowest XLF = 83.3 (x10-8m³/kg) is at the fifth point. Based on the in situ and exsit measurements, it can be seen that the highest magnetic susceptibility values from the surface samples are at the third point.Keywords: magnetic susceptibility, fertilizer plant, Bartington MS2B, SM30
Procedia PDF Downloads 3471901 Study on Energy Transfer in Collapsible Soil During Laboratory Proctor Compaction Test
Authors: Amritanshu Sandilya, M. V. Shah
Abstract:
Collapsible soils such as loess are a common geotechnical challenge due to their potential to undergo sudden and severe settlement under certain loading conditions. The need for filling engineering to increase developing land has grown significantly in recent years, which has created several difficulties in managing soil strength and stability during compaction. Numerous engineering problems, such as roadbed subsidence and pavement cracking, have been brought about by insufficient fill strength. Therefore, strict control of compaction parameters is essential to reduce these distresses. Accurately measuring the degree of compaction, which is often represented by compactness is an important component of compaction control. For credible predictions of how collapsible soils will behave under complicated loading situations, the accuracy of laboratory studies is essential. Therefore, this study aims to investigate the energy transfer in collapsible soils during laboratory Proctor compaction tests to provide insights into how energy transfer can be optimized to achieve more accurate and reliable results in compaction testing. The compaction characteristics in terms of energy of loess soil have been studied at moisture content corresponding to dry of optimum, at the optimum and wet side of optimum and at different compaction energy levels. The hammer impact force (E0) and soil bottom force (E) were measured using an impact load cell mounted at the bottom of the compaction mould. The variation in energy consumption ratio (E/ E0) was observed and compared with the compaction curve of the soil. The results indicate that the plot of energy consumption ratio versus moisture content can serve as a reliable indicator of the compaction characteristics of the soil in terms of energy.Keywords: soil compaction, proctor compaction test, collapsible soil, energy transfer
Procedia PDF Downloads 951900 Stereo Motion Tracking
Authors: Yudhajit Datta, Hamsi Iyer, Jonathan Bandi, Ankit Sethia
Abstract:
Motion Tracking and Stereo Vision are complicated, albeit well-understood problems in computer vision. Existing softwares that combine the two approaches to perform stereo motion tracking typically employ complicated and computationally expensive procedures. The purpose of this study is to create a simple and effective solution capable of combining the two approaches. The study aims to explore a strategy to combine the two techniques of two-dimensional motion tracking using Kalman Filter; and depth detection of object using Stereo Vision. In conventional approaches objects in the scene of interest are observed using a single camera. However for Stereo Motion Tracking; the scene of interest is observed using video feeds from two calibrated cameras. Using two simultaneous measurements from the two cameras a calculation for the depth of the object from the plane containing the cameras is made. The approach attempts to capture the entire three-dimensional spatial information of each object at the scene and represent it through a software estimator object. In discrete intervals, the estimator tracks object motion in the plane parallel to plane containing cameras and updates the perpendicular distance value of the object from the plane containing the cameras as depth. The ability to efficiently track the motion of objects in three-dimensional space using a simplified approach could prove to be an indispensable tool in a variety of surveillance scenarios. The approach may find application from high security surveillance scenes such as premises of bank vaults, prisons or other detention facilities; to low cost applications in supermarkets and car parking lots.Keywords: kalman filter, stereo vision, motion tracking, matlab, object tracking, camera calibration, computer vision system toolbox
Procedia PDF Downloads 3311899 An Effective Synthesis Method of Microwave Solution Combustion with the Application of Visible Light-Responsive Photocatalyst of Rb21 Dye
Authors: Rahul Jarariya
Abstract:
The textile industry uses various types of dyes and discharges a lot of highly coloured wastewater. It impacts the environment like allergic reaction, respiratory, skin problems, irritation to a mucous membrane, the upper respiratory tract has to the fore, Intoxicated dye discharges 40 to 50,000 tons with great concern. Spinel ferrites gained a lot of attention due to their wide application area from biomedical to wastewater treatment. Generally, spinel ferrite is known as M-Fe2O4. Spinel type nanoparticles possess high suspension stability. The synthesis method of Microwave solution combustion (MC) method is effective for nanoscale materials, including oxides, metals, alloys, and sulfides, works as fast and energy-efficient during the process. The review focuses on controlling, nanostructure and doping. The influence of the fuel concentration and the post-treatment temperature on the structural and magnetic properties. The effects of amounts of fuel and phase changes, particle size and shape, and magnetic properties can be characterized by various techniques. Urea is the most commonly used fuel. Ethanol or n-butanol is apt for removing impurities. As a result of the materials gives fine purity. Photocatalysis phenomena act with catalyst dosage to degrade dye from wastewater. Visible light responsive produces a large amount of hydroxyl (•OH) radical made the degradation efficiency of Rh21 type dye. It develops a narrow bandgap to make it suitable for enhanced photocatalytic activity.Keywords: microwave solution combustion method, normal spinel, doped spinels, magnetic property, Rb21
Procedia PDF Downloads 1901898 Development of Regional Cooperation to Sustainable Implementation of Customary Refugee Solutions in International Arena
Authors: Md. Reduanul Haque
Abstract:
In recent time, more and more refugees are emerging in the international arena than the times ever that has come into the notice of world scholars. The prevailing customary solutions such as voluntary repatriation, local integration, and resettlement of refugee problem have been reflected unsustainable one for the lack of regional cooperation. In the international arena, the protraction of refugee problems is seen, and refugees are suffering due to the outrageous process of customary refugee solutions. If the regional cooperation can be developed, then the suffering of the refugees can be mitigated by the contribution of neighboring country and international and regional organizations. Data collected from the various secondary sources have been used throughout the research. It has been discussing in the refugee academia for a long time to develop regional cooperation mechanisms to ensure the sustainability of this solution and to make the environment of the country of origin for suitable voluntary repatriation as well as a durable solution. It is mainly qualitative research based on primary and secondary data will be studied on library-based project. Data collected by such methodology on this study indicates to make a bridge between the gaps of the cooperation mechanism and to make a more regional approach to share the burden and to strengthen the customary refugee solution. Hence, the importance of questing for a regional mechanism is to ensure the responsible countries to be more responsible towards refugees, their human rights, and durable solution under the mandate of the UNHCR. To implement effectively all the customary durable solutions, country to country or regional organization to organization based regional cooperation can be developed where the countries and regional organizations will work together to draw a sustainable solution to this problem in international context.Keywords: refugee, regional cooperation, sustainable implementation, customary solutions, international arena
Procedia PDF Downloads 1481897 Doped and Co-doped ZnO Based Nanoparticles and their Photocatalytic and Gas Sensing Property
Authors: Neha Verma, Manik Rakhra
Abstract:
Statement of the Problem: Nowadays, a tremendous increase in population and advanced industrialization augment the problems related to air and water pollutions. Growing industries promoting environmental danger, which is an alarming threat to the ecosystem. For safeguard, the environment, detection of perilous gases and release of colored wastewater is required for eutrophication pollution. Researchers around the globe are trying their best efforts to save the environment. For this remediation advanced oxidation process is used for potential applications. ZnO is an important semiconductor photocatalyst with high photocatalytic and gas sensing activities. For efficient photocatalytic and gas sensing properties, it is necessary to prepare a doped/co-doped ZnO compound to decrease the electron-hole recombination rates. However, lanthanide doped and co-doped metal oxide is seldom studied for photocatalytic and gas sensing applications. The purpose of this study is to describe the best photocatalyst for the photodegradation of dyes and gas sensing properties. Methodology & Theoretical Orientation: Economical framework has to be used for the synthesis of ZnO. In the depth literature survey, a simple combustion method is utilized for gas sensing and photocatalytic activities. Findings: Rare earth doped and co-doped ZnO nanoparticles were the best photocatalysts for photodegradation of organic dyes and different gas sensing applications by varying various factors such as pH, aging time, and different concentrations of doping and codoping metals in ZnO. Complete degradation of dye was observed only in min. Gas sensing nanodevice showed a better response and quick recovery time for doped/co-doped ZnO. Conclusion & Significance: In order to prevent air and water pollution, well crystalline ZnO nanoparticles were synthesized by rapid and economic method, which is used as photocatalyst for photodegradation of organic dyes and gas sensing applications to sense the release of hazardous gases from the environment.Keywords: ZnO, photocatalyst, photodegradation of dye, gas sensor
Procedia PDF Downloads 1591896 Effects of Reclaimed Agro-Industrial Wastewater for Long-Term Irrigation of Herbaceous Crops on Soil Chemical Properties
Authors: E. Tarantino, G. Disciglio, G. Gatta, L. Frabboni, A. Libutti, A. Tarantino
Abstract:
Worldwide, about two-thirds of industrial and domestic wastewater effluent is discharged without treatment, which can cause contamination and eutrophication of the water. In particular, for Mediterranean countries, irrigation with treated wastewater would mitigate the water stress and support the agricultural sector. Changing global weather patterns will make the situation worse, due to increased susceptibility to drought, which can cause major environmental, social, and economic problems. The study was carried out in open field in an intensive agricultural area of the Apulian region in Southern Italy where freshwater resources are often scarce. As well as providing a water resource, irrigation with treated wastewater represents a significant source of nutrients for soil–plant systems. However, the use of wastewater might have further effects on soil. This study thus investigated the long-term impact of irrigation with reclaimed agro-industrial wastewater on the chemical characteristics of the soil. Two crops (processing tomato and broccoli) were cultivated in succession in Stornarella (Foggia) over four years from 2012 to 2016 using two types of irrigation water: groundwater and tertiary treated agro-industrial wastewater that had undergone an activated sludge process, sedimentation filtration, and UV radiation. Chemical analyses were performed on the irrigation waters and soil samples. The treated wastewater was characterised by high levels of several chemical parameters including TSS, EC, COD, BOD5, Na+, Ca2+, Mg2+, NH4-N, PO4-P, K+, SAR and CaCO3, as compared with the groundwater. However, despite these higher levels, the mean content of several chemical parameters in the soil did not show relevant differences between the irrigation treatments, in terms of the chemical features of the soil.Keywords: agro-industrial wastewater, broccoli, long-term re-use, tomato
Procedia PDF Downloads 3781895 Strategies for Tackling Climate Change: Review of Sustainability and Air-Conditioning
Authors: Tosin T. Oye, Keng Goh, Naren Gupta, Toyosi K. Oye
Abstract:
One of the most extreme difficulties confronting humankind in the twenty-first century is the consumption of energy. Non-renewable energy sources have been the fundamental energy assets for human culture. The consumption of energy sources emanating from the use of air-conditioning is still causing and has caused harm to the environment and human health. The request for energy could be double or perhaps triple in the future because of the utilization of air-conditioning systems as the worldwide population develops and emerging districts grow their economics. This has recently raised worries in sustainable development over climate change, global warming, ozone layer reduction, health issues, and possible supply problems. As a result of the improvement of way of life, air-conditioning has generally been applied. Nevertheless, environmental pollutions and health issues related with the use of air-conditioning unfolds more as often as possible. In order to diminish their level of undesirable impact on the environment, it is essential to establish suitable strategies for tackling climate change. Therefore, this paper aims to review and analyze studies in sustainability and air- conditioning and subsequently suggest strategies for combatting climate change. Future perspectives for tackling climate change are likewise suggested. The key findings revealed that it is required to establish sustainability measures to reduce the level of energy consumption and carbon emissions in a bid to effectively tackle climate change and its impact on the environment, and then raise public alertness towards the adverse impact of climate change arising from the use of air-conditioning systems. The research outcome offers valuable awareness to the general public, organizations, policymakers, and the government in making future municipal zones sustainable and more climate resilient.Keywords: air-conditioning, climate change, environment, human health, sustainability
Procedia PDF Downloads 1321894 The Relationship between Demographic, Social and Economic Characteristics and the Level of Implementation of Rural Women’s Practices to Preserve the Environment in the Governorates of Sharkia and Beni Suef
Authors: Asmaa Ahmed Nasr El-Din
Abstract:
The Egyptian countryside faces many environmental problems in the field of environmental pollution in a wide range due to the current bad behavior patterns towards the environment, where the rural people continued to follow unconscious environmental practices in addition to the lack of environmental awareness among the rural people in terms of legislation, and the damages resulting from those practices. Rural women play an important and vital role that cannot be neglected in the field of reducing environmental pollution and rationalizing environmental resources, and it is their responsibility to maintain the safety of environmental elements such as water, air, food, and soil from pollution, either through limiting their personal practice that leads to the pollution of these elements or from During the upbringing of her children on the right behaviors towards these elements to protect them from pollution and thus avoid the infection of family members with diseases arising from environmental pollution that may affect their health and production capacity. Therefore, the research aimed to identify the level of rural women’s implementation of environmental practices (land, water, air, public health, and food waste), as well as determining the nature of the relationship between the studied independent variables (demographic, social and economic characteristics) and the level of rural women’s implementation of their role in preserving the environment and identifying some women’s information sources rural environment to preserve the environment. The research was conducted in the villages of Tarout and Qam al-Arous in the governorates of Sharkia and BeniSuef, respectively, and a random sample of 333 rural women was selected using the Yamani equation. Statistical ratio analysis, arithmetic mean, Pearson simple correlation coefficient value, and T-test.Keywords: environment, rural women, EL-sharkia, banuef
Procedia PDF Downloads 1161893 3D Human Face Reconstruction in Unstable Conditions
Authors: Xiaoyuan Suo
Abstract:
3D object reconstruction is a broad research area within the computer vision field involving many stages and still open problems. One of the existing challenges in this field lies with micromotion, such as the facial expressions on the appearance of the human or animal face. Similar literatures in this field focuses on 3D reconstruction in stable conditions such as an existing image or photos taken in a rather static environment, while the purpose of this work is to discuss a flexible scan system using multiple cameras that can correctly reconstruct 3D stable and moving objects -- human face with expression in particular. Further, a mathematical model is proposed at the end of this literature to automate the 3D object reconstruction process. The reconstruction process takes several stages. Firstly, a set of simple 2D lines would be projected onto the object and hence a set of uneven curvy lines can be obtained, which represents the 3D numerical data of the surface. The lines and their shapes will help to identify object’s 3D construction in pixels. With the two-recorded angles and their distance from the camera, a simple mathematical calculation would give the resulting coordinate of each projected line in an absolute 3D space. This proposed research will benefit many practical areas, including but not limited to biometric identification, authentications, cybersecurity, preservation of cultural heritage, drama acting especially those with rapid and complex facial gestures, and many others. Specifically, this will (I) provide a brief survey of comparable techniques existing in this field. (II) discuss a set of specialized methodologies or algorithms for effective reconstruction of 3D objects. (III)implement, and testing the developed methodologies. (IV) verify findings with data collected from experiments. (V) conclude with lessons learned and final thoughts.Keywords: 3D photogrammetry, 3D object reconstruction, facial expression recognition, facial recognition
Procedia PDF Downloads 1541892 Evaluation of Railway Network and Service Performance Based on Transportation Sustainability in DKI Jakarta
Authors: Nur Bella Octoria Bella, Ayomi Dita Rarasati
Abstract:
DKI Jakarta is Indonesia's capital city with the 10th highest congestion rate in the world based on the 2019 traffic index. Other than that based on World Air Quality Report in 2019 showed DKI Jakarta's air pollutant concentrate 49.4 µg and the 5th highest air pollutant in the world. In the urban city nowadays, the mobility rate is high enough and the efficiency for sustainability assessment in transport infrastructure development is needed. This efficiency is the important key for sustainable infrastructure development. DKI Jakarta is nowadays in the process of constructing the railway infrastructure to support the transportation system. The problems appearing are the railway infrastructure networks and the service in DKI Jakarta already planned based on sustainability factors or not. Therefore, the aim of this research is to make the evaluation of railways infrastructure networks performance and services in DKI Jakarta regards on the railway sustainability key factors. Further, this evaluation will be used to make the railway sustainability assessment framework and to offer some of the alternative solutions to improve railway transportation sustainability in DKI Jakarta. Firstly a very detailed literature review of papers that have focused on railway sustainability factors and their improvements of railway sustainability, published in the scientific journal in the period 2011 until 2021. Regarding the sustainability factors from the literature review, further, it is used to assess the current condition of railway infrastructure in DKI Jakarta. The evaluation will be using a Likert rate questionnaire and directed to the transportation railway expert and the passenger. Furthermore, the mapping and evaluation rate based on the sustainability factors will be compared to the effect factors using the Analytical Hierarchical Process (AHP). This research offers the network's performance and service rate impact on the sustainability aspect and the passenger willingness for using the rail public transportation in DKI Jakarta.Keywords: transportation sustainability, railway transportation, sustainability, DKI Jakarta
Procedia PDF Downloads 1691891 Planning and Design Criteria to Make Urban Transport More Sustainable: The Case of Baku
Authors: Gülnar Bayramoğlu Barman
Abstract:
Since the industrial revolution, technological developments and increased population have caused environmental damages. To protect the nature and architectural environment, firstly, green architecture, ecological architecture and then sustainability occurred. This term has been proposed not to be a new term but a response to environmental disturbances caused by human activities and it is re-conceptualization of architecture. Sustainable architecture or sustainability is lot more extensive than ecological and green architecture. It contains the imbalance between environmental problems that is natural environment and consumption that occurred all around the world. An important part of sustainability debate focused on urban planning and design for more sustainable forms and patterns. In particular, it is discussed that planning and design of urban areas have a major effect on transport and therefore can help reduce car usage, emissions, global warming and climate change. There are many planning and design approaches and movement that introduce certain criteria and strategies to prevent car dependency and encourage people to use public transportation and walking. However, when review the literature, it is seen that planning movements, such as New Urbanism and Transit Oriented Development originated and were implemented mostly in West European and North American Cities. The purpose of this study is to find out whether all those criteria, principles and strategies are also relevant planning approaches for more non-western cities like Baku, which has a very different planning background and therefore possibly different urban form and transport issues. In order to answer the above mentioned question, planning and design approaches in the literature and these recent planning movements were studied and a check list was formed which indicate planning and design approaches that can help attain a more sustainable transport outcome. The checklist was then applied to the case of Baku.Keywords: sustainability, sustainable development, sustainable transportation, transport, urban design
Procedia PDF Downloads 4421890 Time-Domain Expressions for Bridge Self-Excited Aerodynamic Forces by Modified Particle Swarm Optimizer
Authors: Hao-Su Liu, Jun-Qing Lei
Abstract:
This study introduces the theory of modified particle swarm optimizer and its application in time-domain expressions for bridge self-excited aerodynamic forces. Based on the indicial function expression and the rational function expression in time-domain expression for bridge self-excited aerodynamic forces, the characteristics of the two methods, i.e. the modified particle swarm optimizer and conventional search method, are compared in flutter derivatives’ fitting process. Theoretical analysis and numerical results indicate that adopting whether the indicial function expression or the rational function expression, the fitting flutter derivatives obtained by modified particle swarm optimizer have better goodness of fit with ones obtained from experiment. As to the flutter derivatives which have higher nonlinearity, the self-excited aerodynamic forces, using the flutter derivatives obtained through modified particle swarm optimizer fitting process, are much closer to the ones simulated by the experimental. The modified particle swarm optimizer was used to recognize the parameters of time-domain expressions for flutter derivatives of an actual long-span highway-railway truss bridge with double decks at the wind attack angle of 0°, -3° and +3°. It was found that this method could solve the bounded problems of attenuation coefficient effectively in conventional search method, and had the ability of searching in unboundedly area. Accordingly, this study provides a method for engineering industry to frequently and efficiently obtain the time-domain expressions for bridge self-excited aerodynamic forces.Keywords: time-domain expressions, bridge self-excited aerodynamic forces, modified particle swarm optimizer, long-span highway-railway truss bridge
Procedia PDF Downloads 3221889 Optimum Dewatering Network Design Using Firefly Optimization Algorithm
Authors: S. M. Javad Davoodi, Mojtaba Shourian
Abstract:
Groundwater table close to the ground surface causes major problems in construction and mining operation. One of the methods to control groundwater in such cases is using pumping wells. These pumping wells remove excess water from the site project and lower the water table to a desirable value. Although the efficiency of this method is acceptable, it needs high expenses to apply. It means even small improvement in a design of pumping wells can lead to substantial cost savings. In order to minimize the total cost in the method of pumping wells, a simulation-optimization approach is applied. The proposed model integrates MODFLOW as the simulation model with Firefly as the optimization algorithm. In fact, MODFLOW computes the drawdown due to pumping in an aquifer and the Firefly algorithm defines the optimum value of design parameters which are numbers, pumping rates and layout of the designing wells. The developed Firefly-MODFLOW model is applied to minimize the cost of the dewatering project for the ancient mosque of Kerman city in Iran. Repetitive runs of the Firefly-MODFLOW model indicates that drilling two wells with the total rate of pumping 5503 m3/day is the result of the minimization problem. Results show that implementing the proposed solution leads to at least 1.5 m drawdown in the aquifer beneath mosque region. Also, the subsidence due to groundwater depletion is less than 80 mm. Sensitivity analyses indicate that desirable groundwater depletion has an enormous impact on total cost of the project. Besides, in a hypothetical aquifer decreasing the hydraulic conductivity contributes to decrease in total water extraction for dewatering.Keywords: groundwater dewatering, pumping wells, simulation-optimization, MODFLOW, firefly algorithm
Procedia PDF Downloads 2961888 Quality of Life for Families with Children/Youth with Autism Spectrum Disorder
Authors: José Nogueira
Abstract:
This research aims to analyze the impact of autism spectrum disorders (ASD) in families with children and youth (0-25 years) with ASD in Portugal. The impact will be evaluated on a multidimensional perspective, following the work on the concept of quality life from WHOQOL Group (UN). The study includes quantitative and qualitative methodology. It correlates statistical sources and other information with the data obtained through a survey of a sample of about 100 families with children/youth with ASD (October and November 2013). The results indicate a strong impact of autism on the quality of life for families in all study dimensions. The research shows a negative impact on quality of life for families in material and financial conditions, physical and emotional well-being, career progression, feelings of injustice, social participation and self-perception of happiness. The quality of life remained in the relationship with the family and the spouse, interpersonal relationships and beliefs about himself. The ASD improved the quality of life aspects such as interest, knowledge and exercise of rights on disability, autonomy to make decisions and be able to deal with stress. Other dimensions are contemplated: a detailed characterization of the child/young with ASD and all family members (household composition, relationship status, academic qualifications, occupation, income, and leisure) the impact of diagnosis in the family wellbeing, medical and therapeutic processes, school inclusion, public support, social participation, and the adequacy and implementation of legislation. The study evaluates also the strengths and weaknesses of the Portuguese public rehabilitation system and demonstrates how a good law-in-theory may not solve the problems of families in practice due to the allocation of insufficient public resources, both financial and human resources.Keywords: autism, families, quality of life, autism spectrum disorder
Procedia PDF Downloads 3611887 Subjective Mapping Methodologies: Mapping Local Perceptions with Geographic Information Systems
Authors: A. Llopis Alvarez, D. Muller-Eie
Abstract:
Participatory GIS (geographic information systems) are designed for community mapping exercises in order to produce spatial representations of local knowledge. Ideally, participatory GIS caters to public participation through the use of spatial data in order to increase community-led policy-and decision-making. Having defined a spatial object, such as a neighborhood, subjective mapping involves attaining a description of the spatial, physical, social and psychological characteristics of that spatial object. This paper highlights an emerging appreciation of the subjective component, particularly in spatial analyses. The beliefs, feelings, and behaviors associated with an urban area reflect its sense of place for an individual or a group. It is important therefore to understand what types of beliefs, emotions, and behavioral patterns are relevant to particular resident, groups and urban scales. In this sense, resident’s emotional attachment to their urban areas motivates civic engagement and facilitates awareness of its strengths and its problems. Similarly, subjective perceptions act in complex ways to influence the formation and maintenance of social identity and quality of life. This paper reports on findings from a case study of immigrant population in Norwegian cities, their residential conditions and their relationship to quality of urban life. Cognitive mapping methodologies are used in this study to understand local perceptions of urban qualities. Thus, measures to alleviate disadvantages and improve quality of urban life are more likely to be effective when they are informed by an understanding of a place as constructed by those who live in it, meaning their subjective perceptions about it.Keywords: mapping methodologies, participatory GIS, perceptual maps, public participation, spatial analysis, subjective perceptions
Procedia PDF Downloads 1471886 SSRUIC Students’ Attitude and Preference toward Error Corrections
Authors: Papitchaya Papangkorn
Abstract:
Matching the expectations of teachers and learners is significant for successful language learning. Moreover, teachers should discover what their learners think and feel about what and how they want to learn. Therefore, this study investigates International College, Suan Sunandha Rajabhat University students’ preferences toward error corrections in order to help SSRUIC teachers match their expectations and their learners because it is important for successful language learning. This study examined the learners’ attitude and preference toward error correction through 50 first year SSRUIC students both male (25) and female (25) in Bangkok, Thailand. The data were collected from a questionnaire and interviews to investigate the necessity and frequency, timing, type of errors, method of corrective feedback, and person who gives error correction in order to answer the overall research question and sub-questions. The findings indicate five suggestions regarding the overall research question. Firstly, errors should be treated, and always be treated. Secondly, treating errors after finish speaking is the most appropriate time. Thirdly, “errors that may cause problems in an understanding of listener” and “frequent spoken errors” should be treated. Fourthly, repetition and explicit feedback were the most popular types of feedback among males, whereas metalinguistic feedback was the most favoured types amongst females. Finally, teachers were the most preferred person to deliver corrective feedback for the learners. Although the results of the study are difficult to generalize to a larger population, which are Thai EFL learners because of the small sample, the findings provide useful information that may contribute to understanding of SSRUIC learners’ preferences toward error corrections and it might reduce the gap between what teachers employ and what students expect when receiving corrective feedback. The reduction of this gap may be useful for the learning process and could enhance the efforts of both teachers and learners in a Thai context.Keywords: attitude, corrective feedback, error, preference
Procedia PDF Downloads 3601885 Mental Health of Female Runners - Results of a Pilot Study
Authors: Katalin Gocze, Gabriella Kiss, Zsuzsanna Gurdan, Krisztian Kvell, Attila Trabert
Abstract:
Introduction: On a worldwide scale running has become an increasingly popular leisure time activity during the past decade. Since the participation rate of women has risen significantly the aim of our study was to analyze the mental status, sleeping habits and the prevalence of depression among female runners. Methods: Cross-sectional analysis included the use of validated and globally used surveys for the comprehensive evaluation of insomnia (AIS), depression (BDI), exercise dependence (EDS) and exercise addiction (EAI). Recreational and amateur female runners participating at half-marathon events in Hungary were asked to take part in our pilot study. Results: Participants mean age was 42.03±9.03 years. The prevalence of imsomnia was 18.87%. 60.34% has worries regarding their weight and 43.1% think that they have an actual weight problem. 77.6% stated that their body weight has an influence on their mood. 2.7% displayed borderline clinical depression, the prevalence of mild mood disorders was 10.81%. 17.2% had previously problems with disordered eating. Participants had a mean total EDS score of 46.94±15.55 and a mean total of 13.49±3.80 on EAI. Component scores were the highest for tolerance (a need for increased amounts of exercise to achieve the desired effect or a diminished effect occurs with continued use of the same amount of exercise). Conclusion: Even tough running can help improve mental health, tackle depression and overcome adversity, athletes are at risk of experiencing psychological difficulties which have an impact on their physical perfomance as well. Further research can help initiate targeted educational and screening programs to ensure that female athletes find a path to emotional well-being.Keywords: depression, eating disorder, exercise addiction, exercise dependence, insomnia, running
Procedia PDF Downloads 1291884 Reaching a Mobile and Dynamic Nose after Rhinoplasty: A Pilot Study
Authors: Guncel Ozturk
Abstract:
Background: Rhinoplasty is the most commonly performed cosmetic operations in plastic surgery. Maneuvers used in rhinoplasty lead to a firm and stiff nasal tip in the early postoperative months. This unnatural stability of the nose may easily cause distortion in the reshaped nose after severe trauma. Moreover, a firm nasal tip may cause difficulties in performing activities such as touching, hugging, or kissing. Decreasing the stability and increasing the mobility of the nasal tip would help rhinoplasty patients to avoid these small but relatively important problems. Methods: We use delivery approach with closed rhinoplasty and changed positions of intranasal incisions to reach a dynamic and mobile nose. A total of 203 patients who had undergone primary closed rhinoplasty in private practice were inspected retrospectively. Posterior strut flap that was connected with connective tissues in the caudal of septum and the medial crurals were formed. Cartilage of the posterior strut graft was left 2 mm thick in the distal part of septum, it was cut vertically, and the connective tissue in the distal part was preserved. Results: The median patient age was 24 (range 17-42) years. The median follow-up period was15.2 (range12-26) months. Patient satisfaction was assessed with the 'Rhinoplasty Outcome Evaluation' (ROE) questionnaire. Twelve months after surgeries, 87.5% of patients reported excellent outcomes, according to ROE. Conclusion: The soft tissue connections between that segment and surrounding structures should be preserved to save the support of the tip while having a mobile tip at the same time with this method. These modifications would access to a mobile, non-stiff, and dynamic nasal tip in the early postoperative months. Further and prospective studies should be performed for supporting this method.Keywords: closed rhinoplasty, dynamic, mobile, tip
Procedia PDF Downloads 1371883 Module Based Review over Current Regenerative Braking Landing Gear
Authors: Madikeri Rohit
Abstract:
As energy efficiency is the key concern in many aircraft manufacturing companies regenerative braking is a technique using which energy lost due to friction while braking can be regained. In the operation of an aircraft, significant energy is lost during deceleration or braking which occurs during its landing phase. This problem can be overcome using Regenerative Breaking System (RBS) in landing gear. The major problem faced is regarding the batteries and the overall efficiency gained in competence with the added weight. As the amount of energy required to store is huge we need batteries with high capacity for storage. Another obstacle by using high capacity batteries is the added weight which undermines the efficiency obtained using RBS. An approach to this problem is to either use the obtained energy immediately without storage or to store in other forms such as mechanical, pneumatic and hydraulic. Problem faced with mechanical systems is the weight of the flywheel needed to obtain required efficiency. Pneumatic and hydraulic systems are a better option at present. Using hydraulic systems for storing energy is efficient as it integrates into the overall hydraulic system present in the aircraft. Another obstacle is faced with the redundancy of this system. Conventional braking must be used along with RBS in order to provide redundancy. Major benefits obtained using RBS is with the help of the energy obtained during landing which can be used of engine less taxing. This reduces fuel consumption as well as noise and air pollution. Another added benefit of using RBS is to provide electrical supply to lighting systems, cabin pressurization system and can be used for emergency power supply in case of electric failure. This paper discusses about using RBS in landing gear, problems, prospects and new techniques being pursued to improve RBS.Keywords: regenerative braking, types of energy conversion, landing gear, energy storage
Procedia PDF Downloads 2651882 Telephonic Communication in Palliative Care for Better Management of Terminal Cancer Patients in Rural India: An NGO Based Approach
Authors: Aditya Manna, L. K. Khanra, S. K. Sarkar
Abstract:
Aim: Due to financial incapability and the absence of manpower-poor families often fail to carry their advanced cancer patients to the nodal centers. This pilot study will explore whether communication by mobile phone can lessen this burden. Method: Initially a plan was generated regarding management of an advanced cancer patient in a nodal center at District Head Quarter. Subsequently every two week a trained social worker attached to the nodal center will follow up and give necessary advice and emotional support to the patients and their families through their registered mobile phone number. Patient’s family were also encouraged to communicate with the team by phone in case of fresh complain and urgency in between. Results: Since initiation in January 2013, 193 cancer patients were contacted by mobile phone every two weeks to enquire about their difficulties. In 76% of the situation trained social workers could give necessary advice by phone regarding management of their physical symptoms. Moreover, patient’s family was really overwhelmed by the emotional support offered by the team over the phone. Only 24% of cancer patients have to attend the nodal center for expert advice from Palliative Care specialists. Conclusion: This novel approach helped: (a) In providing regular physical and emotional support to the patients and their families. (b) In significantly reducing the financial and manpower problems of carrying patients to the nodal units. (c) In improving the quality of life of patients by continuous guidance. More and more team members can take help of this new strategy for better communication and uninterrupted care.Keywords: palliative care, terminal care, home based palliative care, rural india
Procedia PDF Downloads 3051881 Qualitative Inquiry on Existential Concerns and Well-Being among the Youth of Higher Education Institutions in Ethiopia: Case Study of Addis Ababa University
Authors: Ezgiamn Abraha Hagos
Abstract:
Higher education is important for college students to develop their authentic identity by means of getting exposure to diverse ideas and experiences. However, current college students are not successfully achieving a satisfying sense of meaning and purpose in their lives, which often places them in a state of existential vacuum. Thus, this study uncovers the existential concerns of youth in higher education by means of assessing their view on meaningful life and integration of it as a guide into their lives and challenges faced in doing so. Data were procured from thirty undergraduate students of Addis Ababa University, Ethiopia via interview, naïve sketch method, and content analysis of selected magazines and newspapers. Data were analyzed using organization, immersion, generating themes, coding, offering interpretation as well as checking the data. Relationship, education, and belief were found to be main sources of meaning. But, many of the study participants failed to articulate their meaning in life explicitly and identified to be in a state of drifting. Moreover, hopelessness, economic problems and quality of training impinge their sense of meaning in life negatively. The content analysis principally embodied the youth in higher education as a group of people confronted with rafts of challenges such as debauchery, moral crisis, self-destructive behaviors and hankering for support and direction. Thus, crafting the asset-based approach and counseling services that will prepare the youth for the future and develop holistically in terms of body and mind are tremendously vital.Keywords: higher education institutions; meaning in life; youth
Procedia PDF Downloads 1141880 Need of Medicines Information OPD in Tertiary Health Care Settings: A Cross Sectional Study
Authors: Swanand Pathak, Kiran R. Giri, Reena R. Giri, Kamlesh Palandurkar, Sangita Totade, Rajesh Jha, S. S. Patel
Abstract:
Background: Population burden, illiteracy, availability of few doctors for larger group of population leads to many unanswered questions left in a patient’s mind. Incomplete information results into noncompliance, therapeutic failure, and adverse drug reactions (ADR). It is very important to establish a system which will provide noncommercial, independent, unbiased source of medicine information. Medicines Info OPD is a concept and step towards safe and appropriate use of medicines. Objective: (1) to assess the present status of knowledge about the medicines in the patients and its correlation with education; (2) to assess the medicine information dispensing modalities, their use and sufficiency from the patients view point; (3) to assess the overall need for Medicines Information OPD in present scenario. Materials and Methods: A pre-validated questionnaire based study was conducted amongst 500 patients of tertiary health care hospital. The questionnaire consisted of specific questions regarding understanding of prescription, knowledge about adverse drug reaction, view about self-medication and opinion regarding the need of Medicines Info OPD. Results: Significantly large proportion of patients opined that doctors do not have sufficient time in current Indian healthcare to explain the prescription and they are not aware of adverse drug reactions, expiry date or use the package inserts etc. Conclusion: Clinically relevant, up to date, user specific, independent, objective and unbiased Medicines Info OPD is essential for appropriate drug use and can help in a big way to common public to address many problems faced by them.Keywords: information, prescription, unbiased, clinically relevant
Procedia PDF Downloads 4441879 Investigation of the Effects of the Whey Addition on the Biogas Production of a Reactor Using Cattle Manure for Biogas Production
Authors: Behnam Mahdiyan Nasl
Abstract:
In a lab-scale research, the effects of feeding whey into the biogas system and how to solve the probable problems arising were analysed. In the study a semi-continuous glass reactor, having a total capacity of 13 liters and having a working capacity of 10 liters, was placed in an incubator, and the temperature was tried to be held at 38 °C. At first, the reactor was operated by adding 5 liters of animal manure and water with a ratio of 1/1. By passing time, the production rate of the gas reduced intensively that on the fourth day there was no production of gas and the system stopped working. In this condition, the pH was adjusted and by adding NaOH, it was increased from 5.4 to 7. On 48th day, the first gas measurement was done and an amount of 12.07 % of CH₄ was detected. After making buffer in the ambient, the number of bacteria existing in the cattle’s manure and contributing to the gas production was thought to be not adequate, and up to 20 % of its volume 2 liters of mud was added to the reactor. 7 days after adding the anaerobic mud, second gas measurement was carried out, and biogas including 43 % CH₄ was obtained. From the 61st day of the study, the cheese whey with the animal manure was started to be added with an amount of 40 mL per day. However, by passing time, the raising of the microorganisms existed in the whey (especially Ni and Co), the percent of methane in the biogas decreased. In fact, 2 weeks after adding PAS, the gas measurement was done and 36,97 % CH₄ was detected. 0,06 mL Ni-Co (to gain a concentration of 0.05 mg/L in the reactor’s mixture) solution was added to the system for 15 days. To find out the effect of the solution on archaea, 7 days after stopping addition of the solution, methane gas was found to have a 9,03 % increase and reach 46 %. Lastly, the effects of adding molasses to the reactor were investigated. The effects of its activity on the bacteria was analysed by adding 4 grams of it to the system. After adding molasses in 10 days, according to the last measurement, the amount of methane gas reached up to 49%.Keywords: biogas, cheese whey, cattle manure, energy
Procedia PDF Downloads 3401878 Performance Evaluation of Next Generation Shale Stabilizer
Authors: N. K. Thakur
Abstract:
A major proportion of the formations drilled for the production of hydrocarbons consists of clay containing shales. The petroleum industry has hugely investigated the role of clay minerals and their subsequent effect on wellbore stability during the drilling and production of hydrocarbons. It has been found that when the shale formation comes in contact with water-based drilling fluid, the interaction of clay minerals like montmorillonite with infiltrated water leads to hydration of the clay minerals, which causes shale swelling. When shale swelling proceeds further, it may lead to major drilling complications like caving, pipe sticking, which invariably influences wellbore stability, wellbore diameter, the mechanical strength of shale, stress distribution in the wellbore, etc. These problems ultimately lead to an increase in nonproductive time and additional costs during drilling. Several additives are used to prevent shale instability. Among the popular additives used for shale inhibition in drilling muds, ionic liquids and nanoparticles are emerging to be the best additives. The efficiency of the proposed additives will be studied and compared with conventional clay inhibitors like KCl. The main objective is to develop a highly efficient water-based mud for mitigating shale instability and reducing fluid loss which is environmentally friendly and does not alter the formation permeability. The use of nanoparticles has been exploited to enhance the rheological and fluid loss properties in water-based drilling fluid ionic liquid have attracted significant research interest due to its unique thermal stability. It is referred to as ‘green chemical’. The preliminary experimental studies performed are promising. The application of more effective mud additives is always desirable to make the drilling process techno-economically proficient.Keywords: ionic liquid, shale inhibitor, wellbore stability, unconventional
Procedia PDF Downloads 2011877 Determination of Gold in Microelectronics Waste Pieces
Authors: S. I. Usenko, V. N. Golubeva, I. A. Konopkina, I. V. Astakhova, O. V. Vakhnina, A. A. Korableva, A. A. Kalinina, K. B. Zhogova
Abstract:
Gold can be determined in natural objects and manufactured articles of different origin. The up-to-date status of research and problems of high gold level determination in alloys and manufactured articles are described in detail in the literature. No less important is the task of this metal determination in minerals, process products and waste pieces. The latters, as objects of gold content chemical analysis, are most hard-to-study for two reasons: Because of high requirements to accuracy of analysis results and because of difference in chemical and phase composition. As a rule, such objects are characterized by compound, variable and very often unknown matrix composition that leads to unpredictable and uncontrolled effect on accuracy and other analytical characteristics of analysis technique. In this paper, the methods for the determination of gold are described, using flame atomic-absorption spectrophotometry and gravimetric analysis technique. The techniques are aimed at gold determination in a solution for gold etching (KJ+J2), in the technological mixture formed after cleaning stainless steel members of vacuum-deposit installation with concentrated nitric and hydrochloric acids as well as in gold-containing powder resulted from liquid wastes reprocessing. Optimal conditions for sample preparation and analysis of liquid and solid waste specimens of compound and variable matrix composition were chosen. The boundaries of relative resultant error were determined for the methods within the range of gold mass concentration from 0.1 to 30g/dm3 in the specimens of liquid wastes and mass fractions from 3 to 80% in the specimens of solid wastes.Keywords: microelectronics waste pieces, gold, sample preparation, atomic-absorption spectrophotometry, gravimetric analysis technique
Procedia PDF Downloads 2091876 Development of an Inexpensive Electrocatalytic Energy Material: Cu-Ni-CeO2 for High Performance Alcoholic Fuel Cell
Authors: Sujit Kumar Guchhait, Subir Paul
Abstract:
One of the major research areas is to find an alternative source of energy to fulfill the energy crisis and environmental problems. The Fuel cell is such kind of energy producing unit. Use of fuel cell to produce renewable energy for commercial purpose is limited by the high cost of Pt based electrode material. Development of high energetic, as well as inexpensive fuel cell electrode materials, is needs of hour to produce clean energy using derive bio-fuel. In this present investigation, inexpensive Cu-Ni-CeO2 electrode material has been synthesized by using pulse current. The surface morphology of the electrode materials is controlled by several deposition parameters to increase the rate of electrochemical oxidation of alcoholic fuel, ethanol. The electrochemical characterization of the developed material was done by Cyclic Voltammetry (CV) and Chronoamperometry (CA) and Electrochemical Impedance Spectroscopy test. It is interesting to find that both these materials have shown high electrocatalytic properties in terms of high exchange current density (I0), low polarization resistance (Rp) and low impedance. It is seen that the addition of CeO2 to Ni-Cu has outperformed Pt as far as high electrocatalytic properties are concerned. The exchange current density on the Cu-Ni-CeO2 electrode surface for ethanol oxidation is about eight times higher than the same on the Pt surface with much lower polarization resistance than the later. The surface morphology of the electrode materials has been revealed by Field Effect Scanning Electron Microscope (FESEM). It is seen that grains are narrow and subspherical with 3D surface containing pores in between two elongated grains. XRD study exhibits the presence of Ni and CeO2 on the Cu surface.Keywords: electro-catalyst, alcoholic fuel, cyclic voltammetry, potentiodynamic polarization, EIS, XRD, SEM
Procedia PDF Downloads 306