Search results for: accurate tagging algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5810

Search results for: accurate tagging algorithm

1040 Prospective Validation of the FibroTest Score in Assessing Liver Fibrosis in Hepatitis C Infection with Genotype 4

Authors: G. Shiha, S. Seif, W. Samir, K. Zalata

Abstract:

Prospective Validation of the FibroTest Score in assessing Liver Fibrosis in Hepatitis C Infection with Genotype 4 FibroTest (FT) is non-invasive score of liver fibrosis that combines the quantitative results of 5 serum biochemical markers (alpha-2-macroglobulin, haptoglobin, apolipoprotein A1, gamma glutamyl transpeptidase (GGT) and bilirubin) and adjusted with the patient's age and sex in a patented algorithm to generate a measure of fibrosis. FT has been validated in patients with chronic hepatitis C (CHC) (Halfon et al., Gastroenterol. Clin Biol.( 2008), 32 6suppl 1, 22-39). The validation of fibro test ( FT) in genotype IV is not well studied. Our aim was to evaluate the performance of FibroTest in an independent prospective cohort of hepatitis C patients with genotype 4. Subject was 122 patients with CHC. All liver biopsies were scored using METAVIR system. Our fibrosis score(FT) were measured, and the performance of the cut-off score were done using ROC curve. Among patients with advanced fibrosis, the FT was identically matched with the liver biopsy in 18.6%, overestimated the stage of fibrosis in 44.2% and underestimated the stage of fibrosis in 37.7% of cases. Also in patients with no/mild fibrosis, identical matching was detected in 39.2% of cases with overestimation in 48.1% and underestimation in 12.7%. So, the overall results of the test were identical matching, overestimation and underestimation in 32%, 46.7% and 21.3% respectively. Using ROC curve it was found that (FT) at the cut-off point of 0.555 could discriminate early from advanced stages of fibrosis with an area under ROC curve (AUC) of 0.72, sensitivity of 65%, specificity of 69%, PPV of 68%, NPV of 66% and accuracy of 67%. As FibroTest Score overestimates the stage of advanced fibrosis, it should not be considered as a reliable surrogate for liver biopsy in hepatitis C infection with genotype 4.

Keywords: fibrotest, chronic Hepatitis C, genotype 4, liver biopsy

Procedia PDF Downloads 413
1039 Optimal 3D Deployment and Path Planning of Multiple Uavs for Maximum Coverage and Autonomy

Authors: Indu Chandran, Shubham Sharma, Rohan Mehta, Vipin Kizheppatt

Abstract:

Unmanned aerial vehicles are increasingly being explored as the most promising solution to disaster monitoring, assessment, and recovery. Current relief operations heavily rely on intelligent robot swarms to capture the damage caused, provide timely rescue, and create road maps for the victims. To perform these time-critical missions, efficient path planning that ensures quick coverage of the area is vital. This study aims to develop a technically balanced approach to provide maximum coverage of the affected area in a minimum time using the optimal number of UAVs. A coverage trajectory is designed through area decomposition and task assignment. To perform efficient and autonomous coverage mission, solution to a TSP-based optimization problem using meta-heuristic approaches is designed to allocate waypoints to the UAVs of different flight capacities. The study exploits multi-agent simulations like PX4-SITL and QGroundcontrol through the ROS framework and visualizes the dynamics of UAV deployment to different search paths in a 3D Gazebo environment. Through detailed theoretical analysis and simulation tests, we illustrate the optimality and efficiency of the proposed methodologies.

Keywords: area coverage, coverage path planning, heuristic algorithm, mission monitoring, optimization, task assignment, unmanned aerial vehicles

Procedia PDF Downloads 213
1038 Comfort Sensor Using Fuzzy Logic and Arduino

Authors: Samuel John, S. Sharanya

Abstract:

Automation has become an important part of our life. It has been used to control home entertainment systems, changing the ambience of rooms for different events etc. One of the main parameters to control in a smart home is the atmospheric comfort. Atmospheric comfort mainly includes temperature and relative humidity. In homes, the desired temperature of different rooms varies from 20 °C to 25 °C and relative humidity is around 50%. However, it varies widely. Hence, automated measurement of these parameters to ensure comfort assumes significance. To achieve this, a fuzzy logic controller using Arduino was developed using MATLAB. Arduino is an open source hardware consisting of a 24 pin ATMEGA chip (atmega328), 14 digital input /output pins and an inbuilt ADC. It runs on 5v and 3.3v power supported by a board voltage regulator. Some of the digital pins in Aruduino provide PWM (pulse width modulation) signals, which can be used in different applications. The Arduino platform provides an integrated development environment, which includes support for c, c++ and java programming languages. In the present work, soft sensor was introduced in this system that can indirectly measure temperature and humidity and can be used for processing several measurements these to ensure comfort. The Sugeno method (output variables are functions or singleton/constant, more suitable for implementing on microcontrollers) was used in the soft sensor in MATLAB and then interfaced to the Arduino, which is again interfaced to the temperature and humidity sensor DHT11. The temperature-humidity sensor DHT11 acts as the sensing element in this system. Further, a capacitive humidity sensor and a thermistor were also used to support the measurement of temperature and relative humidity of the surrounding to provide a digital signal on the data pin. The comfort sensor developed was able to measure temperature and relative humidity correctly. The comfort percentage was calculated and accordingly the temperature in the room was controlled. This system was placed in different rooms of the house to ensure that it modifies the comfort values depending on temperature and relative humidity of the environment. Compared to the existing comfort control sensors, this system was found to provide an accurate comfort percentage. Depending on the comfort percentage, the air conditioners and the coolers in the room were controlled. The main highlight of the project is its cost efficiency.

Keywords: arduino, DHT11, soft sensor, sugeno

Procedia PDF Downloads 310
1037 Health Trajectory Clustering Using Deep Belief Networks

Authors: Farshid Hajati, Federico Girosi, Shima Ghassempour

Abstract:

We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories.

Keywords: health trajectory, clustering, deep learning, DBN

Procedia PDF Downloads 368
1036 Numerical Investigation of Turbulent Flow Control by Suction and Injection on a Subsonic NACA23012 Airfoil by Proper Orthogonal Decomposition Analysis and Perturbed Reynolds Averaged Navier‐Stokes Equations

Authors: Azam Zare

Abstract:

Separation flow control for performance enhancement over airfoils at high incidence angle has become an increasingly important topic. This work details the characteristics of an efficient feedback control of the turbulent subsonic flow over NACA23012 airfoil using forced reduced‐order model based on the proper orthogonal decomposition/Galerkin projection and perturbation method on the compressible Reynolds Averaged Navier‐Stokes equations. The forced reduced‐order model is used in the optimal control of the turbulent separated flow over a NACA23012 airfoil at Mach number of 0.2, Reynolds number of 5×106, and high incidence angle of 24° using blowing/suction controlling jets. The Spallart-Almaras turbulence model is implemented for high Reynolds number calculations. The main shortcoming of the POD/Galerkin projection on flow equations for controlling purposes is that the blowing/suction controlling jet velocity does not show up explicitly in the resulting reduced order model. Combining perturbation method and POD/Galerkin projection on flow equations introduce a forced reduced‐order model that can predict the time-varying influence of the blowing/suction controlling jet velocity. An optimal control theory based on forced reduced‐order system is used to design a control law for a nonlinear reduced‐order model, which attempts to minimize the vorticity content in the turbulent flow field over NACA23012 airfoil. Numerical simulations were performed to help understand the behavior of the controlled suction jet at 12% to 18% chord from leading edge and a pair of blowing/suction jets at 15% to 18% and 24% to 30% chord from leading edge, respectively. Analysis of streamline profiles indicates that the blowing/suction jets are efficient in removing separation bubbles and increasing the lift coefficient up to 22%, while the perturbation method can predict the flow field in an accurate Manner.

Keywords: flow control, POD, Galerkin projection, separation

Procedia PDF Downloads 149
1035 Method for Improving ICESAT-2 ATL13 Altimetry Data Utility on Rivers

Authors: Yun Chen, Qihang Liu, Catherine Ticehurst, Chandrama Sarker, Fazlul Karim, Dave Penton, Ashmita Sengupta

Abstract:

The application of ICESAT-2 altimetry data in river hydrology critically depends on the accuracy of the mean water surface elevation (WSE) at a virtual station (VS) where satellite observations intersect with water. The ICESAT-2 track generates multiple VSs as it crosses the different water bodies. The difficulties are particularly pronounced in large river basins where there are many tributaries and meanders often adjacent to each other. One challenge is to split photon segments along a beam to accurately partition them to extract only the true representative water height for individual elements. As far as we can establish, there is no automated procedure to make this distinction. Earlier studies have relied on human intervention or river masks. Both approaches are unsatisfactory solutions where the number of intersections is large, and river width/extent changes over time. We describe here an automated approach called “auto-segmentation”. The accuracy of our method was assessed by comparison with river water level observations at 10 different stations on 37 different dates along the Lower Murray River, Australia. The congruence is very high and without detectable bias. In addition, we compared different outlier removal methods on the mean WSE calculation at VSs post the auto-segmentation process. All four outlier removal methods perform almost equally well with the same R2 value (0.998) and only subtle variations in RMSE (0.181–0.189m) and MAE (0.130–0.142m). Overall, the auto-segmentation method developed here is an effective and efficient approach to deriving accurate mean WSE at river VSs. It provides a much better way of facilitating the application of ICESAT-2 ATL13 altimetry to rivers compared to previously reported studies. Therefore, the findings of our study will make a significant contribution towards the retrieval of hydraulic parameters, such as water surface slope along the river, water depth at cross sections, and river channel bathymetry for calculating flow velocity and discharge from remotely sensed imagery at large spatial scales.

Keywords: lidar sensor, virtual station, cross section, mean water surface elevation, beam/track segmentation

Procedia PDF Downloads 60
1034 Comparison of Two Anesthetic Methods during Interventional Neuroradiology Procedure: Propofol versus Sevoflurane Using Patient State Index

Authors: Ki Hwa Lee, Eunsu Kang, Jae Hong Park

Abstract:

Background: Interventional neuroradiology (INR) has been a rapidly growing and evolving neurosurgical part during the past few decades. Sevoflurane and propofol are both suitable anesthetics for INR procedure. Monitoring of depth of anesthesia is being used very widely. SEDLine™ monitor, a 4-channel processed EEG monitor, uses a proprietary algorithm to analyze the raw EEG signal and displays the Patient State Index (PSI) values. There are only a fewer studies examining the PSI in the neuro-anesthesia. We aimed to investigate the difference of PSI values and hemodynamic variables between sevoflurane and propofol anesthesia during INR procedure. Methods: We reviewed the medical records of patients who scheduled to undergo embolization of non-ruptured intracranial aneurysm by a single operator from May 2013 to December 2014, retrospectively. Sixty-five patients were categorized into two groups; sevoflurane (n = 33) vs propofol (n = 32) group. The PSI values, hemodynamic variables, and the use of hemodynamic drugs were analyzed. Results: Significant differences were seen between PSI values obtained during different perioperative stages in both two groups (P < 0.0001). The PSI values of propofol group were lower than that of sevoflurane group during INR procedure (P < 0.01). The patients in propofol group had more prolonged time of extubation and more phenylephrine requirement than sevoflurane group (p < 0.05). Anti-hypertensive drug was more administered to the patients during extubation in sevoflurane group (p < 0.05). Conclusions: The PSI can detect depth of anesthesia and changes of concentration of anesthetics during INR procedure. Extubation was faster in sevoflurane group, but smooth recovery was shown in propofol group.

Keywords: interventional neuroradiology, patient state index, propofol, sevoflurane

Procedia PDF Downloads 179
1033 Combat Capability Improvement Using Sleep Analysis

Authors: Gabriela Kloudova, Miloslav Stehlik, Peter Sos

Abstract:

The quality of sleep can affect combat performance where the vigilance, accuracy and reaction time are a decisive factor. In the present study, airborne and special units are measured on duty using actigraphy fingerprint scoring algorithm and QEEG (quantitative EEG). Actigraphic variables of interest will be: mean nightly sleep duration, mean napping duration, mean 24-h sleep duration, mean sleep latency, mean sleep maintenance efficiency, mean sleep fragmentation index, mean sleep onset time, mean sleep offset time and mean midpoint time. In an attempt to determine the individual somnotype of each subject, the data like sleep pattern, chronotype (morning and evening lateness), biological need for sleep (daytime and anytime sleepability) and trototype (daytime and anytime wakeability) will be extracted. Subsequently, a series of recommendations will be included in the training plan based on daily routine, timing of the day and night activities, duration of sleep and the number of sleeping blocks in a defined time. The aim of these modifications in the training plan is to reduce day-time sleepiness, improve vigilance, attention, accuracy, speed of the conducted tasks and to optimize energy supplies. Regular improvement of the training supposed to have long-term neurobiological consequences including neuronal activity changes measured by QEEG. Subsequently, that should enhance cognitive functioning in subjects assessed by the digital cognitive test batteries and improve their overall performance.

Keywords: sleep quality, combat performance, actigraph, somnotype

Procedia PDF Downloads 164
1032 Evaluation of Antimicrobial Susceptibility Profile of Urinary Tract Infections in Massoud Medical Laboratory: 2018-2021

Authors: Ali Ghorbanipour

Abstract:

The aim of this study is to investigate the drug resistance pattern and the value of the MIC (minimum inhibitory concentration)method to reduce the impact of infectious diseases and the slow development of resistance. Method: The study was conducted on clinical specimens collected between 2018 to 2021. identification of isolates and antibiotic susceptibility testing were performed using conventional biochemical tests. Antibiotic resistance was determined using kibry-Bauer disk diffusion and MIC by E-test methods comparative with microdilution plate elisa method. Results were interpreted according to CLSI. Results: Out of 249600 different clinical specimens, 18720 different pathogenic bacteria by overall detection ratio 7.7% were detected. Among pathogen bacterial were Gram negative bacteria (70%,n=13000) and Gram positive bacteria(30%,n=5720).Medically relevant gram-negative bacteria include a multitude of species such as E.coli , Klebsiella .spp , Pseudomonas .aeroginosa , Acinetobacter .spp , Enterobacterspp ,and gram positive bacteria Staphylococcus.spp , Enterococcus .spp , Streptococcus .spp was isolated . Conclusion: Our results highlighted that the resistance ratio among Gram Negative bacteria and Gram positive bacteria with different infection is high it suggest constant screening and follow-up programs for the detection of antibiotic resistance and the value of MIC drug susceptibility reporting that provide a new way to the usage of resistant antibiotic in combination with other antibiotics or accurate weight of antibiotics that inhibit or kill bacteria. Evaluation of wrong medication in the expansion of resistance and side effects of over usage antibiotics are goals. Ali ghorbanipour presently working as a supervision at the microbiology department of Massoud medical laboratory. Iran. Earlier, he worked as head department of pulmonary infection in firoozgarhospital, Iran. He received master degree in 2012 from Fergusson College. His research prime objective is a biologic wound dressing .to his credit, he has Published10 articles in various international congresses by presenting posters.

Keywords: antimicrobial profile, MIC & MBC Method, microplate antimicrobial assay, E-test

Procedia PDF Downloads 132
1031 Performance and Specific Emissions of an SI Engine Using Anhydrous Ethanol–Gasoline Blends in the City of Bogota

Authors: Alexander García Mariaca, Rodrigo Morillo Castaño, Juan Rolón Ríos

Abstract:

The government of Colombia has promoted the use of biofuels in the last 20 years through laws and resolutions, which regulate their use, with the objective to improve the atmospheric air quality and to promote Colombian agricultural industry. However, despite the use of blends of biofuels with fossil fuels, the air quality in large cities does not get better, this deterioration in the air is mainly caused by mobile sources that working with spark ignition internal combustion engines (SI-ICE), operating with a mixture in volume of 90 % gasoline and 10 % ethanol called E10, that for the case of Bogota represent 84 % of the fleet. Another problem is that Colombia has big cities located above 2200 masl and there are no accurate studies on the impact that the E10 mixture could cause in the emissions and performance of SI-ICE. This study aims to establish the optimal blend between gasoline ethanol in which an SI engine operates more efficiently in urban centres located at 2600 masl. The test was developed on SI engine four-stroke, single cylinder, naturally aspirated and with carburettor for the fuel supply using blends of gasoline and anhydrous ethanol in different ratios E10, E15, E20, E40, E60, E85 and E100. These tests were conducted in the city of Bogota, which is located at 2600 masl, with the engine operating at 3600 rpm and at 25, 50, 75 and 100% of load. The results show that the performance variables as engine brake torque, brake power and brake thermal efficiency decrease, while brake specific fuel consumption increases with the rise in the percentage of ethanol in the mixture. On the other hand, the specific emissions of CO2 and NOx present increases while specific emissions of CO and HC decreases compared to those produced by gasoline. From the tests, it is concluded that the SI-ICE worked more efficiently with the E40 mixture, where was obtained an increases of the brake power of 8.81 % and a reduction on brake specific fuel consumption of 2.5 %, coupled with a reduction in the specific emissions of CO2, HC and CO in 9.72, 52.88 and 76.66 % respectively compared to the results obtained with the E10 blend. This behaviour is because the E40 mixture provides the appropriate amount of the oxygen for the combustion process, which leads to better utilization of available energy in this process, thus generating a comparable power output to the E10 mixing and producing lower emissions CO and HC with the other test blends. Nevertheless, the emission of NOx increases in 106.25 %.

Keywords: emissions, ethanol, gasoline, engine, performance

Procedia PDF Downloads 321
1030 Optimizing 3D Shape Parameters of Sports Bra Pads in Motion by Finite Element Dynamic Modelling with Inverse Problem Solution

Authors: Jiazhen Chen, Yue Sun, Joanne Yip, Kit-Lun Yick

Abstract:

The design of sports bras poses a considerable challenge due to the difficulty in accurately predicting the wearing result after computer-aided design (CAD). It needs repeated physical try-on or virtual try-on to obtain a comfortable pressure range during motion. Specifically, in the context of running, the exact support area and force exerted on the breasts remain unclear. Consequently, obtaining an effective method to design the sports bra pads shape becomes particularly challenging. This predicament hinders the successful creation and production of sports bras that cater to women's health needs. The purpose of this study is to propose an effective method to obtain the 3D shape of sports bra pads and to understand the relationship between the supporting force and the 3D shape parameters of the pads. Firstly, the static 3D shape of the sports bra pad and human motion data (Running) are obtained by using the 3D scanner and advanced 4D scanning technology. The 3D shape of the sports bra pad is parameterised and simplified by Free-form Deformation (FFD). Then the sub-models of sports bra and human body are constructed by segmenting and meshing them with MSC Apex software. The material coefficient of sports bras is obtained by material testing. The Marc software is then utilised to establish a dynamic contact model between the human breast and the sports bra pad. To realise the reverse design of the sports bra pad, this contact model serves as a forward model for calculating the inverse problem. Based on the forward contact model, the inverse problem of the 3D shape parameters of the sports bra pad with the target bra-wearing pressure range as the boundary condition is solved. Finally, the credibility and accuracy of the simulation are validated by comparing the experimental results with the simulations by the FE model on the pressure distribution. On the one hand, this research allows for a more accurate understanding of the support area and force distribution on the breasts during running. On the other hand, this study can contribute to the customization of sports bra pads for different individuals. It can help to obtain sports bra pads with comfortable dynamic pressure.

Keywords: sports bra design, breast motion, running, inverse problem, finite element dynamic model

Procedia PDF Downloads 56
1029 Stress Concentration and Strength Prediction of Carbon/Epoxy Composites

Authors: Emre Ozaslan, Bulent Acar, Mehmet Ali Guler

Abstract:

Unidirectional composites are very popular structural materials used in aerospace, marine, energy and automotive industries thanks to their superior material properties. However, the mechanical behavior of composite materials is more complicated than isotropic materials because of their anisotropic nature. Also, a stress concentration availability on the structure, like a hole, makes the problem further complicated. Therefore, enormous number of tests require to understand the mechanical behavior and strength of composites which contain stress concentration. Accurate finite element analysis and analytical models enable to understand mechanical behavior and predict the strength of composites without enormous number of tests which cost serious time and money. In this study, unidirectional Carbon/Epoxy composite specimens with central circular hole were investigated in terms of stress concentration factor and strength prediction. The composite specimens which had different specimen wide (W) to hole diameter (D) ratio were tested to investigate the effect of hole size on the stress concentration and strength. Also, specimens which had same specimen wide to hole diameter ratio, but varied sizes were tested to investigate the size effect. Finite element analysis was performed to determine stress concentration factor for all specimen configurations. For quasi-isotropic laminate, it was found that the stress concentration factor increased approximately %15 with decreasing of W/D ratio from 6 to 3. Point stress criteria (PSC), inherent flaw method and progressive failure analysis were compared in terms of predicting the strength of specimens. All methods could predict the strength of specimens with maximum %8 error. PSC was better than other methods for high values of W/D ratio, however, inherent flaw method was successful for low values of W/D. Also, it is seen that increasing by 4 times of the W/D ratio rises the failure strength of composite specimen as %62.4. For constant W/D ratio specimens, all the strength prediction methods were more successful for smaller size specimens than larger ones. Increasing the specimen width and hole diameter together by 2 times reduces the specimen failure strength as %13.2.

Keywords: failure, strength, stress concentration, unidirectional composites

Procedia PDF Downloads 154
1028 3D Object Retrieval Based on Similarity Calculation in 3D Computer Aided Design Systems

Authors: Ahmed Fradi

Abstract:

Nowadays, recent technological advances in the acquisition, modeling, and processing of three-dimensional (3D) objects data lead to the creation of models stored in huge databases, which are used in various domains such as computer vision, augmented reality, game industry, medicine, CAD (Computer-aided design), 3D printing etc. On the other hand, the industry is currently benefiting from powerful modeling tools enabling designers to easily and quickly produce 3D models. The great ease of acquisition and modeling of 3D objects make possible to create large 3D models databases, then, it becomes difficult to navigate them. Therefore, the indexing of 3D objects appears as a necessary and promising solution to manage this type of data, to extract model information, retrieve an existing model or calculate similarity between 3D objects. The objective of the proposed research is to develop a framework allowing easy and fast access to 3D objects in a CAD models database with specific indexing algorithm to find objects similar to a reference model. Our main objectives are to study existing methods of similarity calculation of 3D objects (essentially shape-based methods) by specifying the characteristics of each method as well as the difference between them, and then we will propose a new approach for indexing and comparing 3D models, which is suitable for our case study and which is based on some previously studied methods. Our proposed approach is finally illustrated by an implementation, and evaluated in a professional context.

Keywords: CAD, 3D object retrieval, shape based retrieval, similarity calculation

Procedia PDF Downloads 261
1027 An Unusual Cause of Electrocardiographic Artefact: Patient's Warming Blanket

Authors: Sanjay Dhiraaj, Puneet Goyal, Aditya Kapoor, Gaurav Misra

Abstract:

In electrocardiography, an ECG artefact is used to indicate something that is not heart-made. Although technological advancements have produced monitors with the potential of providing accurate information and reliable heart rate alarms, despite this, interference of the displayed electrocardiogram still occurs. These interferences can be from the various electrical gadgets present in the operating room or electrical signals from other parts of the body. Artefacts may also occur due to poor electrode contact with the body or due to machine malfunction. Knowing these artefacts is of utmost importance so as to avoid unnecessary and unwarranted diagnostic as well as interventional procedures. We report a case of ECG artefacts occurring due to patient warming blanket and its consequences. A 20-year-old male with a preoperative diagnosis of exstrophy epispadias complex was posted for surgery under epidural and general anaesthesia. Just after endotracheal intubation, we observed nonspecific ECG changes on the monitor. At a first glance, the monitor strip revealed broad QRs complexes suggesting a ventricular bigeminal rhythm. Closer analysis revealed these to be artefacts because although the complexes were looking broad on the first glance there was clear presence of normal sinus complexes which were immediately followed by 'broad complexes' or artefacts produced by some device or connection. These broad complexes were labeled as artefacts as they were originating in the absolute refractory period of the previous normal sinus beat. It would be physiologically impossible for the myocardium to depolarize so rapidly as to produce a second QRS complex. A search for the possible reason for the artefacts was made and after deepening the plane of anaesthesia, ruling out any possible electrolyte abnormalities, checking of ECG leads and its connections, changing monitors, checking all other monitoring connections, checking for proper grounding of anaesthesia machine and OT table, we found that after switching off the patient’s warming apparatus the rhythm returned to a normal sinus one and the 'broad complexes' or artefacts disappeared. As misdiagnosis of ECG artefacts may subject patients to unnecessary diagnostic and therapeutic interventions so a thorough knowledge of the patient and monitors allow for a quick interpretation and resolution of the problem.

Keywords: ECG artefacts, patient warming blanket, peri-operative arrhythmias, mobile messaging services

Procedia PDF Downloads 271
1026 Pricing, Production and Inventory Policies Manufacturing under Stochastic Demand and Continuous Prices

Authors: Masoud Rabbani, Majede Smizadeh, Hamed Farrokhi-Asl

Abstract:

We study jointly determining prices and production in a multiple period horizon under a general non-stationary stochastic demand with continuous prices. In some periods we need to increase capacity of production to satisfy demand. This paper presents a model to aid multi-period production capacity planning by quantifying the trade-off between product quality and production cost. The product quality is estimated as the statistical variation from the target performances obtained from the output tolerances of the production machines that manufacture the components. We consider different tolerance for different machines that use to increase capacity. The production cost is estimated as the total cost of owning and operating a production facility during the planning horizon.so capacity planning has cost that impact on price. Pricing products often turns out to be difficult to measure them because customers have a reservation price to pay that impact on price and demand. We decide to determine prices and production for periods after enhance capacity and consider reservation price to determine price. First we use an algorithm base on fuzzy set of the optimal objective function values to determine capacity planning by determine maximize interval from upper bound in minimum objectives and define weight for objectives. Then we try to determine inventory and pricing policies. We can use a lemma to solve a problem in MATLAB and find exact answer.

Keywords: price policy, inventory policy, capacity planning, product quality, epsilon -constraint

Procedia PDF Downloads 568
1025 Mobile Traffic Management in Congested Cells using Fuzzy Logic

Authors: A. A. Balkhi, G. M. Mir, Javid A. Sheikh

Abstract:

To cater the demands of increasing traffic with new applications the cellular mobile networks face new changes in deployment in infrastructure for making cellular networks heterogeneous. To reduce overhead processing the densely deployed cells require smart behavior with self-organizing capabilities with high adaptation to the neighborhood. We propose self-organization of unused resources usually excessive unused channels of neighbouring cells with densely populated cells to reduce handover failure rates. The neighboring cells share unused channels after fulfilling some conditional candidature criterion using threshold values so that they are not suffered themselves for starvation of channels in case of any abrupt change in traffic pattern. The cells are classified as ‘red’, ‘yellow’, or ‘green’, as per the available channels in cell which is governed by traffic pattern and thresholds. To combat the deficiency of channels in red cell, migration of unused channels from under-loaded cells, hierarchically from the qualified candidate neighboring cells is explored. The resources are returned back when the congested cell is capable of self-contained traffic management. In either of the cases conditional sharing of resources is executed for enhanced traffic management so that User Equipment (UE) is provided uninterrupted services with high Quality of Service (QoS). The fuzzy logic-based simulation results show that the proposed algorithm is efficiently in coincidence with improved successful handoffs.

Keywords: candidate cell, channel sharing, fuzzy logic, handover, small cells

Procedia PDF Downloads 120
1024 Automatic Detection and Update of Region of Interest in Vehicular Traffic Surveillance Videos

Authors: Naydelis Brito Suárez, Deni Librado Torres Román, Fernando Hermosillo Reynoso

Abstract:

Automatic detection and generation of a dynamic ROI (Region of Interest) in vehicle traffic surveillance videos based on a static camera in Intelligent Transportation Systems is challenging for computer vision-based systems. The dynamic ROI, being a changing ROI, should capture any other moving object located outside of a static ROI. In this work, the video is represented by a Tensor model composed of a Background and a Foreground Tensor, which contains all moving vehicles or objects. The values of each pixel over a time interval are represented by time series, and some pixel rows were selected. This paper proposes a pixel entropy-based algorithm for automatic detection and generation of a dynamic ROI in traffic videos under the assumption of two types of theoretical pixel entropy behaviors: (1) a pixel located at the road shows a high entropy value due to disturbances in this zone by vehicle traffic, (2) a pixel located outside the road shows a relatively low entropy value. To study the statistical behavior of the selected pixels, detecting the entropy changes and consequently moving objects, Shannon, Tsallis, and Approximate entropies were employed. Although Tsallis entropy achieved very high results in real-time, Approximate entropy showed results slightly better but in greater time.

Keywords: convex hull, dynamic ROI detection, pixel entropy, time series, moving objects

Procedia PDF Downloads 73
1023 Decision Making System for Clinical Datasets

Authors: P. Bharathiraja

Abstract:

Computer Aided decision making system is used to enhance diagnosis and prognosis of diseases and also to assist clinicians and junior doctors in clinical decision making. Medical Data used for decision making should be definite and consistent. Data Mining and soft computing techniques are used for cleaning the data and for incorporating human reasoning in decision making systems. Fuzzy rule based inference technique can be used for classification in order to incorporate human reasoning in the decision making process. In this work, missing values are imputed using the mean or mode of the attribute. The data are normalized using min-ma normalization to improve the design and efficiency of the fuzzy inference system. The fuzzy inference system is used to handle the uncertainties that exist in the medical data. Equal-width-partitioning is used to partition the attribute values into appropriate fuzzy intervals. Fuzzy rules are generated using Class Based Associative rule mining algorithm. The system is trained and tested using heart disease data set from the University of California at Irvine (UCI) Machine Learning Repository. The data was split using a hold out approach into training and testing data. From the experimental results it can be inferred that classification using fuzzy inference system performs better than trivial IF-THEN rule based classification approaches. Furthermore it is observed that the use of fuzzy logic and fuzzy inference mechanism handles uncertainty and also resembles human decision making. The system can be used in the absence of a clinical expert to assist junior doctors and clinicians in clinical decision making.

Keywords: decision making, data mining, normalization, fuzzy rule, classification

Procedia PDF Downloads 517
1022 Simon Says: What Should I Study?

Authors: Fonteyne Lot

Abstract:

SIMON (Study capacities and Interest Monitor is a freely accessible online self-assessment tool that allows secondary education pupils to evaluate their interests and capacities in order to choose a post-secondary major that maximally suits their potential. The tool consists of two broad domains that correspond with two general questions pupils ask: 'What study fields interest me?' and 'Am I capable to succeed in this field of study?'. The first question is addressed by a RIASEC-type interest inventory that links personal interests to post-secondary majors. Pupils are provided with a personal profile and an overview of majors with their degree of congruence. The output is dynamic: respondents can manipulate their score and they can compare their results to the profile of all fields of study. That way they are stimulated to explore the broad range of majors. To answer whether pupils are capable of succeeding in a preferred major, a battery of tests is provided. This battery comprises a range of factors that are predictive of academic success. Traditional predictors such as (educational) background and cognitive variables (mathematical and verbal skills) are included. Moreover, non-cognitive predictors of academic success (such as 'motivation', 'test anxiety', 'academic self-efficacy' and 'study skills') are assessed. These non-cognitive factors are generally not included in admission decisions although research shows they are incrementally predictive of success and are less discriminating. These tests inform pupils on potential causes of success and failure. More important, pupils receive their personal chances of success per major. These differential probabilities are validated through the underlying research on academic success of students. For example, the research has shown that we can identify 22 % of the failing students in psychology and educational sciences. In this group, our prediction is 95% accurate. SIMON leads more students to a suitable major which in turn alleviates student success and retention. Apart from these benefits, the instrument grants insight into risk factors of academic failure. It also supports and fosters the development of evidence-based remedial interventions and therefore gives way to a more efficient use of means.

Keywords: academic success, online self-assessment, student retention, vocational choice

Procedia PDF Downloads 401
1021 Gas Network Noncooperative Game

Authors: Teresa Azevedo PerdicoúLis, Paulo Lopes Dos Santos

Abstract:

The conceptualisation of the problem of network optimisation as a noncooperative game sets up a holistic interactive approach that brings together different network features (e.g., com-pressor stations, sources, and pipelines, in the gas context) where the optimisation objectives are different, and a single optimisation procedure becomes possible without having to feed results from diverse software packages into each other. A mathematical model of this type, where independent entities take action, offers the ideal modularity and subsequent problem decomposition in view to design a decentralised algorithm to optimise the operation and management of the network. In a game framework, compressor stations and sources are under-stood as players which communicate through network connectivity constraints–the pipeline model. That is, in a scheme similar to tatonnementˆ, the players appoint their best settings and then interact to check for network feasibility. The devolved degree of network unfeasibility informs the players about the ’quality’ of their settings, and this two-phase iterative scheme is repeated until a global optimum is obtained. Due to network transients, its optimisation needs to be assessed at different points of the control interval. For this reason, the proposed approach to optimisation has two stages: (i) the first stage computes along the period of optimisation in order to fulfil the requirement just mentioned; (ii) the second stage is initialised with the solution found by the problem computed at the first stage, and computes in the end of the period of optimisation to rectify the solution found at the first stage. The liability of the proposed scheme is proven correct on an abstract prototype and three example networks.

Keywords: connectivity matrix, gas network optimisation, large-scale, noncooperative game, system decomposition

Procedia PDF Downloads 152
1020 Ectopic Mediastinal Parathyroid Adenoma: A Case Report with Diagnostic and Management Challenges

Authors: Augustina Konadu Larbi-Ampofo, Ekemini Umoinwek

Abstract:

Background: Hypercalcaemia is a common electrolyte imbalance that increases mortality if poorly controlled. Primary hyperparathyroidism often presents like this with a prevalence of 0.1-0.3%. Management due to an ectopic parathyroid adenoma in the mediastinum is challenging, especially in a patient with a pacemaker. Case Presentation: A 79-year-old woman with a history of a previous cardiac arrest, permanent pacemaker, ischaemic heart disease, bilateral renal calculi, rectal polyps, liver cirrhosis, and a family history of hyperthyroidism presented to the emergency department with acute back pain. Management and Outcome: The patient was diagnosed with primary hyperparathyroidism due to her elevated corrected calcium and parathyroid hormone levels. Parathyroid investigations consisting of an NM MIBI scan, SPECT-CT, 4D parathyroid scan, and an ultrasound scan of the neck and thorax confirmed an ectopic parathyroid adenoma in the mediastinum at the level of the aortic arch, along with benign thyroid nodules. The location of the adenoma warranted a thoracoscopic surgical approach; however, the presence of her pacemaker and other cardiovascular conditions predisposed her to a potentially poorer post-operative outcome. Discussion: Mediastinal ectopic parathyroid adenomas are rare and difficult to diagnose and treat, often needing a multimodal imaging approach for accurate localisation. Surgery is a definitive treatment; however, in this patient, long-term medical treatment with cinacalcet was the only next suitable treatment option. The difficulty with this is that cinacalcet tackles the biochemical markers of the disease entity and not the disease itself, leaving room for what happens next if there is refractory/uncontrolled hypercalcaemia in this patient with a pacemaker. Moreover, the coexistence of her multiple conditions raises the suspicion of an underlying multisystemic or multiple endocrine disorder, with multiple endocrine neoplasia coming to mind, necessitating further genetic or autoimmune investigations. Conclusion: Mediastinal ectopic parathyroid adenomas are rare, with diagnostic and management challenges.

Keywords: mediastinal ectopic parathyroid adenoma, hyperparathyroidism, SPECT/CT, nuclear medicine, multimodal imaging

Procedia PDF Downloads 16
1019 Joint Optimal Pricing and Lot-Sizing Decisions for an Advance Sales System under Stochastic Conditions

Authors: Maryam Ghoreishi, Christian Larsen

Abstract:

In this paper, we investigate the effect of stochastic inputs on problem of joint optimal pricing and lot-sizing decisions where the inventory cycle is divided into advance and spot sales periods. During the advance sales period, customer can make reservations while customer with reservations can cancel their order. However, during the spot sales period customers receive the order as soon as the order is placed, but they cannot make any reservation or cancellation during that period. We assume that the inter arrival times during the advance sales and spot sales period are exponentially distributed where the arrival rate is decreasing function of price. Moreover, we assume that the number of cancelled reservations is binomially distributed. In addition, we assume that deterioration process follows an exponential distribution. We investigate two cases. First, we consider two-state case where we find the optimal price during the spot sales period and the optimal price during the advance sales period. Next, we develop a generalized case where we extend two-state case also to allow dynamic prices during the spot sales period. We apply the Markov decision theory in order to find the optimal solutions. In addition, for the generalized case, we apply the policy iteration algorithm in order to find the optimal prices, the optimal lot-size and maximum advance sales amount.

Keywords: inventory control, pricing, Markov decision theory, advance sales system

Procedia PDF Downloads 323
1018 SISSLE in Consensus-Based Ripple: Some Improvements in Speed, Security, Last Mile Connectivity and Ease of Use

Authors: Mayank Mundhra, Chester Rebeiro

Abstract:

Cryptocurrencies are rapidly finding wide application in areas such as Real Time Gross Settlements and Payments Systems. Ripple is a cryptocurrency that has gained prominence with banks and payment providers. It solves the Byzantine General’s Problem with its Ripple Protocol Consensus Algorithm (RPCA), where each server maintains a list of servers, called Unique Node List (UNL) that represents the network for the server, and will not collectively defraud it. The server believes that the network has come to a consensus when members of the UNL come to a consensus on a transaction. In this paper we improve Ripple to achieve better speed, security, last mile connectivity and ease of use. We implement guidelines and automated systems for building and maintaining UNLs for resilience, robustness, improved security, and efficient information propagation. We enhance the system so as to ensure that each server receives information from across the whole network rather than just from the UNL members. We also introduce the paradigm of UNL overlap as a function of information propagation and the trust a server assigns to its own UNL. Our design not only reduces vulnerabilities such as eclipse attacks, but also makes it easier to identify malicious behaviour and entities attempting to fraudulently Double Spend or stall the system. We provide experimental evidence of the benefits of our approach over the current Ripple scheme. We observe ≥ 4.97x and 98.22x in speedup and success rate for information propagation respectively, and ≥ 3.16x and 51.70x in speedup and success rate in consensus.

Keywords: Ripple, Kelips, unique node list, consensus, information propagation

Procedia PDF Downloads 144
1017 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines

Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri

Abstract:

This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.

Keywords: wind turbines, aeroelasticity, repetitive control, periodic systems

Procedia PDF Downloads 246
1016 Software Transactional Memory in a Dynamic Programming Language at Virtual Machine Level

Authors: Szu-Kai Hsu, Po-Ching Lin

Abstract:

As more and more multi-core processors emerge, traditional sequential programming paradigm no longer suffice. Yet only few modern dynamic programming languages can leverage such advantage. Ruby, for example, despite its wide adoption, only includes threads as a simple parallel primitive. The global virtual machine lock of official Ruby runtime makes it impossible to exploit full parallelism. Though various alternative Ruby implementations do eliminate the global virtual machine lock, they only provide developers dated locking mechanism for data synchronization. However, traditional locking mechanism error-prone by nature. Software Transactional Memory is one of the promising alternatives among others. This paper introduces a new virtual machine: GobiesVM to provide a native software transactional memory based solution for dynamic programming languages to exploit parallelism. We also proposed a simplified variation of Transactional Locking II algorithm. The empirical results of our experiments show that support of STM at virtual machine level enables developers to write straightforward code without compromising parallelism or sacrificing thread safety. Existing source code only requires minimal or even none modi cation, which allows developers to easily switch their legacy codebase to a parallel environment. The performance evaluations of GobiesVM also indicate the difference between sequential and parallel execution is significant.

Keywords: global interpreter lock, ruby, software transactional memory, virtual machine

Procedia PDF Downloads 283
1015 LTE Modelling of a DC Arc Ignition on Cold Electrodes

Authors: O. Ojeda Mena, Y. Cressault, P. Teulet, J. P. Gonnet, D. F. N. Santos, MD. Cunha, M. S. Benilov

Abstract:

The assumption of plasma in local thermal equilibrium (LTE) is commonly used to perform electric arc simulations for industrial applications. This assumption allows to model the arc using a set of magneto-hydromagnetic equations that can be solved with a computational fluid dynamic code. However, the LTE description is only valid in the arc column, whereas in the regions close to the electrodes the plasma deviates from the LTE state. The importance of these near-electrode regions is non-trivial since they define the energy and current transfer between the arc and the electrodes. Therefore, any accurate modelling of the arc must include a good description of the arc-electrode phenomena. Due to the modelling complexity and computational cost of solving the near-electrode layers, a simplified description of the arc-electrode interaction was developed in a previous work to study a steady high-pressure arc discharge, where the near-electrode regions are introduced at the interface between arc and electrode as boundary conditions. The present work proposes a similar approach to simulate the arc ignition in a free-burning arc configuration following an LTE description of the plasma. To obtain the transient evolution of the arc characteristics, appropriate boundary conditions for both the near-cathode and the near-anode regions are used based on recent publications. The arc-cathode interaction is modeled using a non-linear surface heating approach considering the secondary electron emission. On the other hand, the interaction between the arc and the anode is taken into account by means of the heating voltage approach. From the numerical modelling, three main stages can be identified during the arc ignition. Initially, a glow discharge is observed, where the cold non-thermionic cathode is uniformly heated at its surface and the near-cathode voltage drop is in the order of a few hundred volts. Next, a spot with high temperature is formed at the cathode tip followed by a sudden decrease of the near-cathode voltage drop, marking the glow-to-arc discharge transition. During this stage, the LTE plasma also presents an important increase of the temperature in the region adjacent to the hot spot. Finally, the near-cathode voltage drop stabilizes at a few volts and both the electrode and plasma temperatures reach the steady solution. The results after some seconds are similar to those presented for thermionic cathodes.

Keywords: arc-electrode interaction, thermal plasmas, electric arc simulation, cold electrodes

Procedia PDF Downloads 121
1014 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning

Authors: Madhawa Basnayaka, Jouni Paltakari

Abstract:

Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.

Keywords: artificial intelligence, chipless RFID, deep learning, machine learning

Procedia PDF Downloads 49
1013 Efficient Estimation for the Cox Proportional Hazards Cure Model

Authors: Khandoker Akib Mohammad

Abstract:

While analyzing time-to-event data, it is possible that a certain fraction of subjects will never experience the event of interest, and they are said to be cured. When this feature of survival models is taken into account, the models are commonly referred to as cure models. In the presence of covariates, the conditional survival function of the population can be modelled by using the cure model, which depends on the probability of being uncured (incidence) and the conditional survival function of the uncured subjects (latency), and a combination of logistic regression and Cox proportional hazards (PH) regression is used to model the incidence and latency respectively. In this paper, we have shown the asymptotic normality of the profile likelihood estimator via asymptotic expansion of the profile likelihood and obtain the explicit form of the variance estimator with an implicit function in the profile likelihood. We have also shown the efficient score function based on projection theory and the profile likelihood score function are equal. Our contribution in this paper is that we have expressed the efficient information matrix as the variance of the profile likelihood score function. A simulation study suggests that the estimated standard errors from bootstrap samples (SMCURE package) and the profile likelihood score function (our approach) are providing similar and comparable results. The numerical result of our proposed method is also shown by using the melanoma data from SMCURE R-package, and we compare the results with the output obtained from the SMCURE package.

Keywords: Cox PH model, cure model, efficient score function, EM algorithm, implicit function, profile likelihood

Procedia PDF Downloads 142
1012 Web Proxy Detection via Bipartite Graphs and One-Mode Projections

Authors: Zhipeng Chen, Peng Zhang, Qingyun Liu, Li Guo

Abstract:

With the Internet becoming the dominant channel for business and life, many IPs are increasingly masked using web proxies for illegal purposes such as propagating malware, impersonate phishing pages to steal sensitive data or redirect victims to other malicious targets. Moreover, as Internet traffic continues to grow in size and complexity, it has become an increasingly challenging task to detect the proxy service due to their dynamic update and high anonymity. In this paper, we present an approach based on behavioral graph analysis to study the behavior similarity of web proxy users. Specifically, we use bipartite graphs to model host communications from network traffic and build one-mode projections of bipartite graphs for discovering social-behavior similarity of web proxy users. Based on the similarity matrices of end-users from the derived one-mode projection graphs, we apply a simple yet effective spectral clustering algorithm to discover the inherent web proxy users behavior clusters. The web proxy URL may vary from time to time. Still, the inherent interest would not. So, based on the intuition, by dint of our private tools implemented by WebDriver, we examine whether the top URLs visited by the web proxy users are web proxies. Our experiment results based on real datasets show that the behavior clusters not only reduce the number of URLs analysis but also provide an effective way to detect the web proxies, especially for the unknown web proxies.

Keywords: bipartite graph, one-mode projection, clustering, web proxy detection

Procedia PDF Downloads 243
1011 A Framework Based on Dempster-Shafer Theory of Evidence Algorithm for the Analysis of the TV-Viewers’ Behaviors

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we propose an approach of detecting the behavior of the viewers of a TV program in a non-controlled environment. The experiment we propose is based on the use of three types of connected objects (smartphone, smart watch, and a connected remote control). 23 participants were observed while watching their TV programs during three phases: before, during and after watching a TV program. Their behaviors were detected using an approach based on The Dempster Shafer Theory (DST) in two phases. The first phase is to approximate dynamically the mass functions using an approach based on the correlation coefficient. The second phase is to calculate the approximate mass functions. To approximate the mass functions, two approaches have been tested: the first approach was to divide each features data space into cells; each one has a specific probability distribution over the behaviors. The probability distributions were computed statistically (estimated by empirical distribution). The second approach was to predict the TV-viewing behaviors through the use of classifiers algorithms and add uncertainty to the prediction based on the uncertainty of the model. Results showed that mixing the fusion rule with the computation of the initial approximate mass functions using a classifier led to an overall of 96%, 95% and 96% success rate for the first, second and third TV-viewing phase respectively. The results were also compared to those found in the literature. This study aims to anticipate certain actions in order to maintain the attention of TV viewers towards the proposed TV programs with usual connected objects, taking into account the various uncertainties that can be generated.

Keywords: Iot, TV-viewing behaviors identification, automatic classification, unconstrained environment

Procedia PDF Downloads 228