Search results for: Reynolds stress model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20055

Search results for: Reynolds stress model

15285 Transformation of the Business Model in an Occupational Health Care Company Embedded in an Emerging Personal Data Ecosystem: A Case Study in Finland

Authors: Tero Huhtala, Minna Pikkarainen, Saila Saraniemi

Abstract:

Information technology has long been used as an enabler of exchange for goods and services. Services are evolving from generic to personalized, and the reverse use of customer data has been discussed in both academia and industry for the past few years. This article presents the results of an empirical case study in the area of preventive health care services. The primary data were gathered in workshops, in which future personal data-based services were conceptualized by analyzing future scenarios from a business perspective. The aim of this study is to understand business model transformation in emerging personal data ecosystems. The work was done as a case study in the context of occupational healthcare. The results have implications to theory and practice, indicating that adopting personal data management principles requires transformation of the business model, which, if successfully managed, may provide access to more resources, potential to offer better value, and additional customer channels. These advantages correlate with the broadening of the business ecosystem. Expanding the scope of this study to include more actors would improve the validity of the research. The results draw from existing literature and are based on findings from a case study and the economic properties of the healthcare industry in Finland.

Keywords: ecosystem, business model, personal data, preventive healthcare

Procedia PDF Downloads 255
15284 Dynamic Process Monitoring of an Ammonia Synthesis Fixed-Bed Reactor

Authors: Bothinah Altaf, Gary Montague, Elaine B. Martin

Abstract:

This study involves the modeling and monitoring of an ammonia synthesis fixed-bed reactor using partial least squares (PLS) and its variants. The process exhibits complex dynamic behavior due to the presence of heat recycling and feed quench. One limitation of static PLS model in this situation is that it does not take account of the process dynamics and hence dynamic PLS was used. Although it showed, superior performance to static PLS in terms of prediction, the monitoring scheme was inappropriate hence adaptive PLS was considered. A limitation of adaptive PLS is that non-conforming observations also contribute to the model, therefore, a new adaptive approach was developed, robust adaptive dynamic PLS. This approach updates a dynamic PLS model and is robust to non-representative data. The developed methodology showed a clear improvement over existing approaches in terms of the modeling of the reactor and the detection of faults.

Keywords: ammonia synthesis fixed-bed reactor, dynamic partial least squares modeling, recursive partial least squares, robust modeling

Procedia PDF Downloads 395
15283 AI-based Digital Healthcare Application to Assess and Reduce Fall Risks in Residents of Nursing Homes in Germany

Authors: Knol Hester, Müller Swantje, Danchenko Natalya

Abstract:

Objective: Falls in older people cause an autonomy loss and result in an economic burden. LCare is an AI-based application to manage fall risks. The study's aim was to assess the effect of LCare use on patient outcomes in nursing homes in Germany. Methods: LCare identifies and monitors fall risks through a 3D-gait analysis and a digital questionnaire, resulting in tailored recommendations on fall prevention. A study was conducted with AOK Baden-Württemberg (01.09.2019- 31.05.2021) in 16 care facilities. Assessments at baseline and follow-up included: a fall risk score; falls (baseline: fall history in the past 12 months; follow-up: a fall record since the last analysis); fall-related injuries and hospitalizations; gait speed; fear of falling; psychological stress; nurses experience on app use. Results: 94 seniors were aged 65-99 years at the initial analysis (average 84±7 years); 566 mobility analyses were carried out in total. On average, the fall risk was reduced by 17.8 % as compared to the baseline (p<0.05). The risk of falling decreased across all subgroups, including a trend in dementia patients (p=0.06), constituting 43% of analyzed patients, and patients with walking aids (p<0.05), constituting 76% of analyzed patients. There was a trend (p<0.1) towards fewer falls and fall-related injuries and hospitalizations (baseline: 23 seniors who fell, 13 injury consequences, 9 hospitalizations; follow-up: 14 seniors who fell, 2 injury consequences, 0 hospitalizations). There was a 16% improvement in gait speed (p<0.05). Residents reported less fear of falling and psychological stress by 38% in both outcomes (p<0.05). 81% of nurses found LCare effective. Conclusions: In the presented study, the use of LCare app was associated with a reduction of fall risk among nursing home residents, improvement of health-related outcomes, and a trend toward reduction in injuries and hospitalizations. LCare may help to improve senior resident care and save healthcare costs.

Keywords: falls, digital healthcare, falls prevention, nursing homes, seniors, AI, digital assessment

Procedia PDF Downloads 138
15282 Variation of Manning’s Coefficient in a Meandering Channel with Emergent Vegetation Cover

Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua

Abstract:

Vegetation plays a major role in deciding the flow parameters in an open channel. It enhances the aesthetic view of the revetments. The major types of vegetation in river typically comprises of herbs, grasses, weeds, trees, etc. The vegetation in an open channel usually consists of aquatic plants with complete submergence, partial submergence, floating plants. The presence of vegetative plants can have both benefits and problems. The major benefits of aquatic plants are they reduce the soil erosion, which provides the water with a free surface to move on without hindrance. The obvious problems are they retard the flow of water and reduce the hydraulic capacity of the channel. The degree to which the flow parameters are affected depends upon the density of the vegetation, degree of submergence, pattern of vegetation, vegetation species. Vegetation in open channel tends to provide resistance to flow, which in turn provides a background to study the varying trends in flow parameters having vegetative growth in the channel surface. In this paper, an experiment has been conducted on a meandering channel having sinuosity of 1.33 with rigid vegetation cover to investigate the effect on flow parameters, variation of manning’s n with degree of the denseness of vegetation, vegetation pattern and submergence criteria. The measurements have been carried out in four different cross-sections two on trough portion of the meanders, two on the crest portion. In this study, the analytical solution of Shiono and knight (SKM) for lateral distributions of depth-averaged velocity and bed shear stress have been taken into account. Dimensionless eddy viscosity and bed friction have been incorporated to modify the SKM to provide more accurate results. A mathematical model has been formulated to have a comparative analysis with the results obtained from Shiono-Knight Method.

Keywords: bed friction, depth averaged velocity, eddy viscosity, SKM

Procedia PDF Downloads 140
15281 Simulation of a Cost Model Response Requests for Replication in Data Grid Environment

Authors: Kaddi Mohammed, A. Benatiallah, D. Benatiallah

Abstract:

Data grid is a technology that has full emergence of new challenges, such as the heterogeneity and availability of various resources and geographically distributed, fast data access, minimizing latency and fault tolerance. Researchers interested in this technology address the problems of the various systems related to the industry such as task scheduling, load balancing and replication. The latter is an effective solution to achieve good performance in terms of data access and grid resources and better availability of data cost. In a system with duplication, a coherence protocol is used to impose some degree of synchronization between the various copies and impose some order on updates. In this project, we present an approach for placing replicas to minimize the cost of response of requests to read or write, and we implement our model in a simulation environment. The placement techniques are based on a cost model which depends on several factors, such as bandwidth, data size and storage nodes.

Keywords: response time, query, consistency, bandwidth, storage capacity, CERN

Procedia PDF Downloads 276
15280 Intellectual Property and SMEs in the Baltic Sea Region: A Comparative Study on the Use of the Utility Model Protection

Authors: Christina Wainikka, Besrat Tesfaye

Abstract:

Several of the countries in the Baltic Sea region are ranked high in international innovations rankings, such as the Global Innovation Index and European Innovation Scoreboard. There are however some concerns in the performance of different countries. For example, there is a widely spread notion about “The Swedish Paradox”. Sweden is ranked high due to investments in R&D and patent activity, but the outcome is not as high as could be expected. SMEs in Sweden are also below EU average when it comes to registering intellectual property rights such as patents and trademarks. This study is concentrating on the protection of utility model. This intellectual property right does not exist in Sweden, but in for example Finland and Germany. The utility model protection is sometimes referred to as a “patent light” since it is easier to obtain than the patent protection but at the same time does cover technical solutions. In examining statistics on patent activities and activities in registering utility models it is clear that utility model protection is scarcely used in the countries that have the protection. In Germany 10 577 applications were made in 2021. In Finland there were 259 applications made in 2021. This can be compared with patent applications that were 58 568 in Germany in 2021 and 1 662 in Finland in 2021. In Sweden there has never been a protection for utility models. The only protection for technical solutions is patents and business secrets. The threshold for obtaining a patent is high, due to the legal requirements and the costs. The patent protection is there for often not chosen by SMEs in Sweden. This study examines whether the protection of utility models in other countries in the Baltic region provide SMEs in these countries with better options to protect their innovations. The legal methodology is comparative law. In order to study the effects of the legal differences statistics are examined and interviews done with SMEs from different industries.

Keywords: baltic sea region, comparative law, SME, utility model

Procedia PDF Downloads 119
15279 Perceptions of Community Members in Lephalale Area, Limpopo Province, Towards Water Conservation: Development of a Psychological Model

Authors: M. L. Seretlo-Rangata, T. Sodi, S. Govender

Abstract:

Despite interventions by various governments to regulate water demand and address water scarcity, literature shows that billions of people across the world continue to struggle with access because not everyone contributes equally to conservation efforts. Behavioral factors such as individual and collective aspects of cognition and commitment have been found to play an important role in water conservation. The aim of the present study was to explore the perceptions of community members in the Lephalale area, Limpopo province, towards water conservation with a view to developing an explanatory psychological model on water conservation. Twenty (20) participants who relied on communal taps to access water in Lephalale Local Municipality, Limpopo province, were selected through purposeful sampling. In-depth, semi-structured, individual face-to-face interviews were used to gather data and were analyzed utilizing thematic content analysis (TCA). The research findings revealed that there are various psychological effects of water scarcity on communities, such as emotional distress, interpersonal conflicts and disruptions of daily activities of living. Additionally, the study results showed that the coping strategies developed by participants to deal with water scarcity included adopting alternative water use behaviors as well as adjusting current behaviors and lifestyles. Derived from the study findings, a psychological model of water conservation was developed. The model incorporates some ideas from the Value-Belief-Norm (VBN) theory and the Afrocentric theory. The model suggests that people’s worldviews, including their values, beliefs and culture, are significant determinants of their pro-environmental behaviors. The study concludes by recommending that authorities and policymakers should consider psychological factors when developing water management programs, strategies and interventions with the consultation of psychology experts.

Keywords: water conservation, psychological model, pro-environmental behaviour, conservation psychology, water-use behaviour

Procedia PDF Downloads 75
15278 Grading Fourteen Zones of Isfahan in Terms of the Impact of Globalization on the Urban Fabric of the City, Using the TOPSIS Model

Authors: A. Zahedi Yeganeh, A. Khademolhosseini, R. Mokhtari Malekabadi

Abstract:

Undoubtedly one of the most far-reaching and controversial topics considered in the past few decades, has been globalization. Globalization lies in the essence of the modern culture. It is a complex and rapidly expanding network of links and mutual interdependence that is an aspect of modern life; though some argue that this link existed since the beginning of human history. If we consider globalization as a dynamic social process in which the geographical constraints governing the political, economic, social and cultural relationships have been undermined, it might not be possible to simply describe its impact on the urban fabric. But since in this phenomenon the increase in communications of societies (while preserving the main cultural - regional characteristics) with one another and the increase in the possibility of influencing other societies are discussed, the need for more studies will be felt. The main objective of this study is to grade based on some globalization factors on urban fabric applying the TOPSIS model. The research method is descriptive - analytical and survey. For data analysis, the TOPSIS model and SPSS software were used and the results of GIS software with fourteen cities are shown on the map. The results show that the process of being influenced by the globalization of the urban fabric of fourteen zones of Isfahan was not similar and there have been large differences in this respect between city zones; the most affected areas are zones 5, 6 and 9 of the municipality and the least impact has been on the zones 4 and 3 and 2.

Keywords: grading, globalization, urban fabric, 14 zones of Isfahan, TOPSIS model

Procedia PDF Downloads 318
15277 An Improved Single Point Closure Model Based on Dissipation Anisotropy for Geophysical Turbulent Flows

Authors: A. P. Joshi, H. V. Warrior, J. P. Panda

Abstract:

This paper is a continuation of the work carried out by various turbulence modelers in Oceanography on the topic of oceanic turbulent mixing. It evaluates the evolution of ocean water temperature and salinity by the appropriate modeling of turbulent mixing utilizing proper prescription of eddy viscosity. Many modelers in past have suggested including terms like shear, buoyancy and vorticity to be the parameters that decide the slow pressure strain correlation. We add to it the fact that dissipation anisotropy also modifies the correlation through eddy viscosity parameterization. This recalibrates the established correlation constants slightly and gives improved results. This anisotropization of dissipation implies that the critical Richardson’s number increases much beyond unity (to 1.66) to accommodate enhanced mixing, as is seen in reality. The model is run for a couple of test cases in the General Ocean Turbulence Model (GOTM) and the results are presented here.

Keywords: Anisotropy, GOTM, pressure-strain correlation, Richardson critical number

Procedia PDF Downloads 169
15276 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 235
15275 Physiological and Biochemical Assisted Screening of Wheat Varieties under Partial Rhizosphere Drying

Authors: Muhammad Aown Sammar Raza

Abstract:

Environmental stresses are one of the major reasons for poor crop yield across the globe. Among the various environmental stresses, drought stress is the most damaging one, especially in arid and semi-arid regions. Wheat is the major staple food of many countries of the world, which is badly affected by drought stress. In order to fulfill the dietary needs of increasing population with depleting water resources there is a need to adopt technologies which result in sufficient crop yield with less water consumption. One of them is partial root zone drying. Keeping in view these conditions, a wire house experiment was conducted at agronomic research area of University College of Agriculture and Environmental Sciences, The Islamia University Bahawalpur during 2015, to screen out the different wheat varieties for partial root zone drying (PRD). Five approved local wheat varieties (V1= Galaxy-2013, V2= Punjab-2011, V3 = Faisalabad-2008, V4 = Lasani-2008 and V5 = V.8200) and two irrigation levels (I1= control irrigation and I2 = PRD irrigation) with completely randomized design having four replications were used in the experiment. Among the varieties, Galaxy-2013 performed the best and attained maximum plant height, leaf area, stomatal conductance, photosynthesis, total sugars, proline contents and antioxidant enzymes activities and minimum values of growth and physiological parameters were recorded in variety V.8200. For irrigation levels, higher values of growth, physiological and water related parameters were recorded in control treatment (I1) except leaf water potential, osmotic potential, total sugars and proline contents. However, enzyme activities were higher under PRD treatment for all varieties. It was concluded that Galaxy-2013 is the most compatible and V.8200 is the most susceptible variety for PRD, respectively and more quality traits and enzymatic activities were recorded under PRD irrigation as compared to control treatment.

Keywords: antioxidant enzymes activities, osmolytes concentration, partial root zone drying, photosynthetic rate, water relations, wheat

Procedia PDF Downloads 249
15274 Load Forecast of the Peak Demand Based on Both the Peak Demand and Its Location

Authors: Qais H. Alsafasfeh

Abstract:

The aim of this paper is to provide a forecast of the peak demand for the next 15 years for electrical distribution companies. The proposed methodology provides both the peak demand and its location for the next 15 years. This paper describes the Spatial Load Forecasting model used, the information provided by electrical distribution company in Jordan, the workflow followed, the parameters used and the assumptions made to run the model. The aim of this paper is to provide a forecast of the peak demand for the next 15 years for electrical distribution companies. The proposed methodology provides both the peak demand and its location for the next 15 years. This paper describes the Spatial Load Forecasting model used, the information provided by electrical distribution company in Jordan, the workflow followed, the parameters used and the assumptions made to run the model.

Keywords: load forecast, peak demand, spatial load, electrical distribution

Procedia PDF Downloads 499
15273 Most Important Educational Planning Issues in the Developing Countries

Authors: Naeem Khan

Abstract:

In 1971 Williams in his essay titled "What Educational Planning is About in Higher Education" defined educational planning as "planning in education, as in anything else consist essentially of deciding, in advance, what you want, to do and how you are going to do in". In the “World Year book of Education”. While Anderson and Bowman in 1976 in their joint article titled "Theoretical Considerations in Educational Planning" defined it as "the process of preparing a set of decisions for future action pertaining in education". There are so many other definitions which are related to educational planning in which every one stress on the importance of educational planning. But developing countries face a lot of problems related to the educational planning and this paper is to discuss few of them.

Keywords: educational planning, problems, developing countries, education system,

Procedia PDF Downloads 557
15272 An Extended Model for Sustainable Food and Nutrition Security in the Agrifood Sector

Authors: Ioannis Manikas

Abstract:

The increased consumer demand for environmentally friendly production and distribution practices and the stricter environmental regulations turned environmental aspects into important criteria in business decision-making. On the other hand, Food and Nutrition Security (FNS) has evolved dramatically during the last decades in theory and practice serving as a reference point for exchanging experiences among all agents involved in programs and projects to fostering policy and strategy development. Global pressures make it more important than ever to gain a better understanding of the contribution that agrifood businesses make to FNS and to examine ways to make them more resilient in an increasingly globalized and uncertain world. This study extends the standard three-dimensional model of sustainability to include two more dimensions: A technological dimension and a policy/political dimension. Apart from the economic, environmental and social dimensions regularly used in sustainability literature, the extended model will accurately represent the measures and policies addressing food and nutrition security.

Keywords: food and nutrition security, sustainability, food safety, resilience

Procedia PDF Downloads 343
15271 Investigation on Mesh Sensitivity of a Transient Model for Nozzle Clogging

Authors: H. Barati, M. Wu, A. Kharicha, A. Ludwig

Abstract:

A transient model for nozzle clogging has been developed and successfully validated against a laboratory experiment. Key steps of clogging are considered: transport of particles by turbulent flow towards the nozzle wall; interactions between fluid flow and nozzle wall, and the adhesion of the particle on the wall; the growth of the clog layer and its interaction with the flow. The current paper is to investigate the mesh (size and type) sensitivity of the model in both two and three dimensions. It is found that the algorithm for clog growth alone excluding the flow effect is insensitive to the mesh type and size, but the calculation including flow becomes sensitive to the mesh quality. The use of 2D meshes leads to overestimation of the clog growth because the 3D nature of flow in the boundary layer cannot be properly solved by 2D calculation. 3D simulation with tetrahedron mesh can also lead to an error estimation of the clog growth. A mesh-independent result can be achieved with hexahedral mesh, or at least with triangular prism (inflation layer) for near-wall regions.

Keywords: clogging, continuous casting, inclusion, simulation, submerged entry nozzle

Procedia PDF Downloads 287
15270 Evaluating the Use of Digital Art Tools for Drawing to Enhance Artistic Ability and Improve Digital Skill among Junior School Students

Authors: Aber Salem Aboalgasm, Rupert Ward

Abstract:

This study investigated some results of the use of digital art tools by junior school children in order to discover if these tools could promote artistic ability and creativity. The study considers the ease of use and usefulness of the tools as well as how to assess artwork produced by digital means. As the use of these tools is a relatively new development in Art education, this study may help educators in their choice of which tools to use and when to use them. The study also aims to present a model for the assessment of students’ artistic development and creativity by studying their artistic activity. This model can help in determining differences in students’ creative ability and could be useful both for teachers, as a means of assessing digital artwork, and for students, by providing the motivation to use the tools to their fullest extent. Sixteen students aged nine to ten years old were observed and recorded while they used the digital drawing tools. The study found that, according to the students’ own statements, it was not the ease of use but the successful effects the tools provided which motivated the children to use them.

Keywords: artistic ability, creativity, drawing digital tool, TAM model, psychomotor domain

Procedia PDF Downloads 332
15269 Factors Affecting the Ultimate Compressive Strength of the Quaternary Calcarenites, North Western Desert, Egypt

Authors: M. A. Rashed, A. S. Mansour, H. Faris, W. Afify

Abstract:

The calcarenites carbonate rocks of the Quaternary ridges, which extend along the northwestern Mediterranean coastal plain of Egypt, represent an excellent model for the transformation of loose sediments to real sedimentary rocks by the different stages of meteoric diagenesis. The depositional and diagenetic fabrics of the rocks, in addition to the strata orientation, highly affect their ultimate compressive strength and other geotechnical properties. There is a marked increase in the compressive strength (UCS) from the first to the fourth ridge rock samples. The lowest values are related to the loose packing, weakly cemented aragonitic ooid sediments with high porosity, besides the irregularly distributed of cement, which result in decreasing the ability of these rocks to withstand crushing under direct pressure. The high (UCS) values are attributed to the low porosity, the presence of micritic cement, the reduction in grain size and the occurrence of micritization and calcretization processes. The strata orientation has a notable effect on the measured (UCS). The lowest values have been recorded for the samples cored in the inclined direction; whereas the highest values have been noticed in most samples cored in the vertical and parallel directions to bedding plane. In case of the inclined direction, the bedding planes were oriented close to the plane of maximum shear stress. The lowest and highest anisotropy values have been recorded for the first and the third ridges rock samples, respectively, which may attributed to the relatively homogeneity and well sorted grain-stone of the first ridge rock samples, and relatively heterogeneity in grain and pore size distribution and degree of cementation of the third ridge rock samples, besides, the abundance of shell fragments with intra-particle pore spaces, which may produce lines of weakness within the rock.

Keywords: compressive strength, anisotropy, calcarenites, Egypt

Procedia PDF Downloads 378
15268 Modelling Phytoremediation Rates of Aquatic Macrophytes in Aquaculture Effluent

Authors: E. A. Kiridi, A. O. Ogunlela

Abstract:

Pollutants from aquacultural practices constitute environmental problems and phytoremediation could offer cheaper environmentally sustainable alternative since equipment using advanced treatment for fish tank effluent is expensive to import, install, operate and maintain, especially in developing countries. The main objective of this research was, therefore, to develop a mathematical model for phytoremediation by aquatic plants in aquaculture wastewater. Other objectives were to evaluate the retention times on phytoremediation rates using the model and to measure the nutrient level of the aquaculture effluent and phytoremediation rates of three aquatic macrophytes, namely; water hyacinth (Eichornia crassippes), water lettuce (Pistial stratoites) and morning glory (Ipomea asarifolia). A completely randomized experimental design was used in the study. Approximately 100 g of each macrophyte were introduced into the hydroponic units and phytoremediation indices monitored at 8 different intervals from the first to the 28th day. The water quality parameters measured were pH and electrical conductivity (EC). Others were concentration of ammonium–nitrogen (NH₄⁺ -N), nitrite- nitrogen (NO₂⁻ -N), nitrate- nitrogen (NO₃⁻ -N), phosphate –phosphorus (PO₄³⁻ -P), and biomass value. The biomass produced by water hyacinth was 438.2 g, 600.7 g, 688.2 g and 725.7 g at four 7–day intervals. The corresponding values for water lettuce were 361.2 g, 498.7 g, 561.2 g and 623.7 g and for morning glory were 417.0 g, 567.0 g, 642.0 g and 679.5g. Coefficient of determination was greater than 80% for EC, TDS, NO₂⁻ -N, NO₃⁻ -N and 70% for NH₄⁺ -N using any of the macrophytes and the predicted values were within the 95% confidence interval of measured values. Therefore, the model is valuable in the design and operation of phytoremediation systems for aquaculture effluent.

Keywords: aquaculture effluent, macrophytes, mathematical model, phytoremediation

Procedia PDF Downloads 230
15267 Transcriptional Response of Honey Bee to Differential Nutritional Status and Nosema Infection

Authors: Farida Azzouz-Olden, Arthur G. Hunt, Gloria Degrandi-Hoffman

Abstract:

Bees are confronting several environmental challenges, including the intermingled effects of malnutrition and disease. Intuitively, pollen is the healthiest nutritional choice; however, commercial substitutes, such as BeePro and MegaBee, are widely used. Herein we examined how feeding natural and artificial diets shapes transcription in the abdomen of the honey bee, and how transcription shifts in combination with Nosema parasitism. Gene ontology enrichment revealed that, compared with poor diet (carbohydrates (C)), bees fed pollen (P > C), BeePro (B > C), and MegaBee (M > C) showed a broad upregulation of metabolic processes, especially lipids; however, pollen feeding promoted more functions and superior proteolysis. The superiority of the pollen diet was also evident through the remarkable overexpression of vitellogenin in bees fed pollen instead of MegaBee or BeePro. Upregulation of bioprocesses under carbohydrates feeding compared to pollen (C > P) provided a clear poor nutritional status, uncovering stark expression changes that were slight or absent relatively to BeePro (C > B) or MegaBee (C > M). Poor diet feeding (C > P) induced starvation response genes and hippo signaling pathway, while it repressed growth through different mechanisms. Carbohydrate feeding (C > P) also elicited ‘adult behavior’, and developmental processes suggesting transition to foraging. Finally, it altered the ‘circadian rhythm’, reflecting the role of this mechanism in the adaptation to nutritional stress in mammals. Nosema-infected bees fed pollen compared to carbohydrates (PN > CN) upheld certain bioprocesses of uninfected bees (P > C). Poor nutritional status was more apparent against pollen (CN > PN) than BeePro (CN > BN) or MegaBee (CN > MN). Nosema accentuated the effects of malnutrition since more starvation-response genes and stress response mechanisms were upregulated in CN > PN compared to C > P. The bioprocess ‘Macromolecular complex assembly’ was also enriched in CN > PN, and involved genes associated with human HIV and/or influenza, thus providing potential candidates for bee-Nosema interactions. Finally, the enzyme Duox emerged as essential for guts defense in bees, similarly to Drosophila. These results provide evidence of the superior nutritional status of bees fed pollen instead of artificial substitutes in terms of overall health, even in the presence of a pathogen.

Keywords: honeybee, immunity, Nosema, nutrition, RNA-seq

Procedia PDF Downloads 159
15266 Assessing the Cumulative Impact of PM₂.₅ Emissions from Power Plants by Using the Hybrid Air Quality Model and Evaluating the Contributing Salient Factor in South Taiwan

Authors: Jackson Simon Lusagalika, Lai Hsin-Chih, Dai Yu-Tung

Abstract:

Particles with an aerodynamic diameter of 2.5 meters or less are referred to as "fine particulate matter" (PM₂.₅) are easily inhaled and can go deeper into the lungs than other particles in the atmosphere, where it may have detrimental health consequences. In this study, we use a hybrid model that combined CMAQ and AERMOD as well as initial meteorological fields from the Weather Research and Forecasting (WRF) model to study the impact of power plant PM₂.₅ emissions in South Taiwan since it frequently experiences higher PM₂.₅ levels. A specific date of March 3, 2022, was chosen as a result of a power outage that prompted the bulk of power plants to shut down. In some way, it is not conceivable anywhere in the world to turn off the power for the sole purpose of doing research. Therefore, this catastrophe involving a power outage and the shutdown of power plants offers a great occasion to evaluate the impact of air pollution driven by this power sector. As a result, four numerical experiments were conducted in the study using the Continuous Emission Data System (CEMS), assuming that the power plants continued to function normally after the power outage. The hybrid model results revealed that power plants have a minor impact in the study region. However, we examined the accumulation of PM₂.₅ in the study and discovered that once the vortex at 925hPa was established and moved to the north of Taiwan's coast, the study region experienced higher observed PM₂.₅ concentrations influenced by meteorological factors. This study recommends that decision-makers take into account not only control techniques, specifically emission reductions, but also the atmospheric and meteorological implications for future investigations.

Keywords: PM₂.₅ concentration, powerplants, hybrid air quality model, CEMS, Vorticity

Procedia PDF Downloads 79
15265 Experimental Evaluation of Contact Interface Stiffness and Damping to Sustain Transients and Resonances

Authors: Krystof Kryniski, Asa Kassman Rudolphi, Su Zhao, Per Lindholm

Abstract:

ABB offers range of turbochargers from 500 kW to 80+ MW diesel and gas engines. Those operate on ships, power stations, generator-sets, diesel locomotives and large, off-highway vehicles. The units need to sustain harsh operating conditions, exposure to high speeds, temperatures and varying loads. They are expected to work at over-critical speeds damping effectively any transients and encountered resonances. Components are often connected via friction joints. Designs of those interfaces need to account for surface roughness, texture, pre-stress, etc. to sustain against fretting fatigue. The experience from field contributed with valuable input on components performance in hash sea environment and their exposure to high temperature, speed and load conditions. Study of tribological interactions of oxide formations provided an insight into dynamic activities occurring between the surfaces. Oxidation was recognized as the dominant factor of a wear. Microscopic inspections of fatigue cracks on turbine indicated insufficient damping and unrestrained structural stress leading to catastrophic failure, if not prevented in time. The contact interface exhibits strongly non-linear mechanism and to describe it the piecewise approach was used. Set of samples representing the combinations of materials, texture, surface and heat treatment were tested on a friction rig under range of loads, frequencies and excitation amplitudes. Developed numerical technique extracted the friction coefficient, tangential contact stiffness and damping. Vast amount of experimental data was processed with the multi-harmonics balance (MHB) method to categorize the components subjected to the periodic excitations. At the pre-defined excitation level both force and displacement formed semi-elliptical hysteresis curves having the same area and secant as the actual ones. By cross-correlating the terms remaining in the phase and out of the phase, respectively it was possible to separate an elastic energy from dissipation and derive the stiffness and damping characteristics.

Keywords: contact interface, fatigue, rotor-dynamics, torsional resonances

Procedia PDF Downloads 377
15264 Dynamic Thermal Modelling of a PEMFC-Type Fuel Cell

Authors: Marco Avila Lopez, Hasnae Ait-Douchi, Silvia De Los Santos, Badr Eddine Lebrouhi, Pamela Ramírez Vidal

Abstract:

In the context of the energy transition, fuel cell technology has emerged as a solution for harnessing hydrogen energy and mitigating greenhouse gas emissions. An in-depth study was conducted on a PEMFC-type fuel cell, with an initiation of an analysis of its operational principles and constituent components. Subsequently, the modelling of the fuel cell was undertaken using the Python programming language, encompassing both steady-state and transient regimes. In the case of the steady-state regime, the physical and electrochemical phenomena occurring within the fuel cell were modelled, with the assumption of uniform temperature throughout all cell compartments. Parametric identification was carried out, resulting in a remarkable mean error of only 1.62% when the model results were compared to experimental data documented in the literature. The dynamic model that was developed enabled the scrutiny of the fuel cell's response in terms of temperature and voltage under varying current conditions.

Keywords: fuel cell, modelling, dynamic, thermal model, PEMFC

Procedia PDF Downloads 85
15263 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 95
15262 Closed-Form Solutions for Nanobeams Based on the Nonlocal Euler-Bernoulli Theory

Authors: Francesco Marotti de Sciarra, Raffaele Barretta

Abstract:

Starting from nonlocal continuum mechanics, a thermodynamically new nonlocal model of Euler-Bernoulli nanobeams is provided. The nonlocal variational formulation is consistently provided and the governing differential equation for transverse displacement are presented. Higher-order boundary conditions are then consistently derived. An example is contributed in order to show the effectiveness of the proposed model.

Keywords: Bernoulli-Euler beams, nanobeams, nonlocal elasticity, closed-form solutions

Procedia PDF Downloads 375
15261 A Development of Creative Instruction Model through Digital Media

Authors: Kathaleeya Chanda, Panupong Chanplin, Suppara Charoenpoom

Abstract:

This purposes of the development of creative instruction model through digital media are to: 1) enable learners to learn from instruction media application; 2) help learners implementing instruction media correctly and appropriately; and 3) facilitate learners to apply technology for searching information and practicing skills to implement technology creatively. The sample group consists of 130 cases of secondary students studying in Bo Kluea School, Bo Kluea Nuea Sub-district, Bo Kluea District, Nan Province. The probability sampling was selected through the simple random sampling and the statistics used in this research are percentage, mean, standard deviation and one group pretest – posttest design. The findings are summarized as follows: The congruence index of instruction media for occupation and technology subjects is appropriate. By comparing between learning achievements before implementing the instruction media and learning achievements after implementing the instruction media, it is found that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. For the learning achievements from instruction media implementation, pretest mean is 16.24 while posttest mean is 26.28. Besides, pretest and posttest results are compared and differences of mean are tested, the test results show that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. This can be interpreted that the learners achieve better learning progress.

Keywords: teaching learning model, digital media, creative instruction model, Bo Kluea school

Procedia PDF Downloads 146
15260 Study and Simulation of a Dynamic System Using Digital Twin

Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli

Abstract:

Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.

Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models

Procedia PDF Downloads 153
15259 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception

Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu

Abstract:

Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.

Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish

Procedia PDF Downloads 151
15258 Novel Pyrimidine Based Semicarbazones: Confirmation of Four Binding Site Pharmacophoric Model Hypothesis for Antiepileptic Activity

Authors: Harish Rajak, Swati Singh

Abstract:

A series of novel pyrimidine based semicarbazone were designed and synthesized on the basis of semicarbazone based pharmacophoric model to satisfy the structural prerequisite crucial for antiepileptic activity. The semicarbazones based pharmacophoric model consists of following four essential binding sites: (i) An aryl hydrophobic binding site with halo substituent; (ii) A hydrogen bonding domain; (iii) An electron donor group and (iv) Another hydrophobic-hydrophilic site controlling the pharmacokinetic features of the anticonvulsant. The aryl semicarbazones has been recognized as a structurally novel class of compounds with remarkable anticonvulsant activity. In the present study, all the test semicarbazones were subjected to molecular docking using Glide v5.8. Some of the compounds were found to interact with ARG192, GLU270 and THR353 residues of 1OHV protein, present in GABA-AT receptor. The chemical structures of the synthesized molecules were characterized by elemental and spectral (IR, 1H NMR, 13C NMR and MS) analysis. The anticonvulsant activities of the compounds were investigated using maximal electroshock seizure (MES) and subcutaneous pentylenetrtrazole (scPTZ) models. The neurotoxicity was evaluated in mice by the rotorod test. The attempts were also made to establish structure-activity relationships among synthesized compounds. The results of the present study confirmed that the pharmacophore model with four binding sites is essential for antiepileptic activity.

Keywords: pyrimidine, semicarbazones, anticonvulsant activity, neurotoxicity

Procedia PDF Downloads 256
15257 The Effectiveness of Computerized Dynamic Listening Assessment Informed by Attribute-Based Mediation Model

Authors: Yaru Meng

Abstract:

The study contributes to the small but growing literature around computerized approaches to dynamic assessment (C-DA), wherein individual items are accompanied by mediating prompts. Mediation in the current computerized dynamic listening assessment (CDLA) was informed by an attribute-based mediation model (AMM) that identified the underlying L2 listening cognitive abilities and associated descriptors. The AMM served to focus mediation during C-DA on particular cognitive abilities with a goal of specifying areas of learner difficulty. 86 low-intermediate L2 English learners from a university in China completed three listening assessments, with an experimental group receiving the CLDA system and a control group a non-dynamic assessment. As an assessment, the use of the AMM in C-DA generated detailed diagnoses for each learner. In addition, both within- and between-group repeated ANOVA found greater gains at the level of specific attributes among C-DA learners over the course of a 5-week study. Directions for future research are discussed.

Keywords: computerized dynamic assessment, effectiveness, English as foreign language listening, attribute-based mediation model

Procedia PDF Downloads 229
15256 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children

Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco

Abstract:

Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.

Keywords: evolutionary computation, feature selection, classification, clustering

Procedia PDF Downloads 375