Search results for: voice activity detection (VAD)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9935

Search results for: voice activity detection (VAD)

9485 An Efficient Clustering Technique for Copy-Paste Attack Detection

Authors: N. Chaitawittanun, M. Munlin

Abstract:

Due to rapid advancement of powerful image processing software, digital images are easy to manipulate and modify by ordinary people. Lots of digital images are edited for a specific purpose and more difficult to distinguish form their original ones. We propose a clustering method to detect a copy-move image forgery of JPEG, BMP, TIFF, and PNG. The process starts with reducing the color of the photos. Then, we use the clustering technique to divide information of measuring data by Hausdorff Distance. The result shows that the purposed methods is capable of inspecting the image file and correctly identify the forgery.

Keywords: image detection, forgery image, copy-paste, attack detection

Procedia PDF Downloads 338
9484 Chemical and Biological Examination of De-Oiled Indian Propolis

Authors: Harshada Vaidya-Kannur, Dattatraya Naik

Abstract:

Propolis, one of the beehive products also referred as bee-glue is sticky dark coloured complex mixture of compounds. The volatile oil can be isolated from the propolis by hydrodistillation. The mark that is left behind after the removal of volatile oil is referred as the de-oiled propolis. Antioxidant as well as anti-inflammatory properties of total ethanolic extract of de-oiled propolis (TEEDP) was investigated. Another lot of deoiled propolis was successively exacted with hexane, ethyl acetate and ethanol. Activities of these fractions were also determined. Antioxidant activity was determined by studying ABTS, DPPH and NO radical scavenging. Determination of anti-inflammatory activity was carried out by topical TPA induced mouse ear oedema model. It is noteworthy that ethyl acetate fraction of deoiled propolis (EAFDP) exhibited 49.45 % TEAC activity at the concentration 0.2 mg/ml which is equivalent to the activity of trolox at the concentration 0.2 mg/ml. Its DPPH scavenging activity (72.56%) was closely comparable to that of trolox (75%). However its NO scavenging activity was comparatively low. From IC50 values it could be concluded that the efficiency of scavenging ABTS radicals by the de-oiled propolis was more pronounced as compared to scavenging of other radicals. Studies by TPA induced mouse ear inflammation model indicated that the de-oiled propolis of Indian origin had significant topical anti-inflammatory activity. The EAFDP was found to be the most active fraction for this activity also. The purification of EAFP yielded six pure crystalline compounds. These compounds were identified by their physical data and spectral data.

Keywords: anti-inflammatory activity, anti-oxidant activity, column chromatography, de-oiled propolis

Procedia PDF Downloads 287
9483 Green Synthesis of Silver Nanoparticles by Olive Leaf Extract: Application in the Colorimetric Detection of Fe+3 Ions

Authors: Nasibeh Azizi Khereshki

Abstract:

Olive leaf (OL) extract as a green reductant agent was utilized for the biogenic synthesis of silver nanoparticles (Ag NPs) for the first time in this study, and then its performance was evaluated for colorimetric detection of Fe3+ in different media. Some analytical methods were used to characterize the nanosensor. The effective sensing parameters were optimized by central composite design (CCD) combined with response surface methodology (RSM) application. Then, the prepared material's applicability in antibacterial and optical chemical sensing for naked-eye detection of Fe3+ ions in aqueous solutions were evaluated. Furthermore, OL-Ag NPs-loaded paper strips were successfully applied to the colorimetric visualization of Fe3+. The colorimetric probe based on OL-AgNPs illustrated excellent selectivity and sensitivity towards Fe3+ ions, with LOD and LOQ of 0.81 μM and 2.7 μM, respectively. In addition, the developed method was applied to detect Fe3+ ions in real water samples and validated with a 95% confidence level against a reference spectroscopic method.

Keywords: Ag NPs, colorimetric detection, Fe(III) ions, green synthesis, olive leaves

Procedia PDF Downloads 77
9482 Influence of La on Increasing the ORR Activity of LaNi Supported with N and S Co-doped Carbon Black Electrocatalyst for Fuel Cells and Batteries

Authors: Maryam Kiani

Abstract:

Non-precious electrocatalysts play a crucial role in the oxygen reduction reaction (ORR) for regenerative fuel cells and rechargeable metal-air batteries. To enhance ORR activity, La (a less active element) is added to modify the activity of Ni. This addition increases the surface contents of Ni2+, N, and S species in LaNi/N-S-C, while still maintaining a substantial specific surface area and hierarchical porosity. Therefore, the additional La is essential for the successful ORR process.In addition, the presence of extra La in the LaNi/N-S-C electrocatalyst enhances the efficiency of charge transfer and improves the surface acid-base characteristics, facilitating the adsorption of oxygen molecules during the ORR process. As a result, this superior and desirable electrocatalyst exhibits significantly enhanced ORR bifunctional activity. In fact, its ORR activity is comparable to that of the 20 wt% Pt/C.

Keywords: fuel cells, batteries, dual-doped carbon black, ORR

Procedia PDF Downloads 103
9481 Geoclimatic Influences on the Constituents and Antioxidant Activity of Extracts from the Fruit of Arbutus unedo L.

Authors: Khadidja Bouzid, Fouzia Benali Toumi, Mohamed Bouzouina

Abstract:

We made a comparison between the total phenolic content, concentrations of flavonoids and antioxidant activity of four different extracts (butanol, ethyl acetate, chloroform, water) of Arbutus unedo L. fruit (Ericacea) of El Marsa and Terni area. The total phenolic content in the extracts was determined using the Folin-Ciocalteu reagent and it ranged between 26.57 and 48.23 gallic acid equivalents mg/g of dry weight of extract. The concentrations of flavonoids in plant extracts varied from 17.98 to 56.84 catechin equivalents mg/g. The antioxidant activity was analyzed in vitro using the DPPH reagent; among all extracts, ethyl acetate fraction from El Marsa area showed the highest antioxidant activity.

Keywords: antioxidant activity, Arbutus unedo L., fruit flavonoids, phenols, Western Algeria

Procedia PDF Downloads 454
9480 Early Detection of Breast Cancer in Digital Mammograms Based on Image Processing and Artificial Intelligence

Authors: Sehreen Moorat, Mussarat Lakho

Abstract:

A method of artificial intelligence using digital mammograms data has been proposed in this paper for detection of breast cancer. Many researchers have developed techniques for the early detection of breast cancer; the early diagnosis helps to save many lives. The detection of breast cancer through mammography is effective method which detects the cancer before it is felt and increases the survival rate. In this paper, we have purposed image processing technique for enhancing the image to detect the graphical table data and markings. Texture features based on Gray-Level Co-Occurrence Matrix and intensity based features are extracted from the selected region. For classification purpose, neural network based supervised classifier system has been used which can discriminate between benign and malignant. Hence, 68 digital mammograms have been used to train the classifier. The obtained result proved that automated detection of breast cancer is beneficial for early diagnosis and increases the survival rates of breast cancer patients. The proposed system will help radiologist in the better interpretation of breast cancer.

Keywords: medical imaging, cancer, processing, neural network

Procedia PDF Downloads 259
9479 Exploring the Relationship between Building Construction Activity and Road-Related Expenditure in Victoria

Authors: Md. Aftabuzzaman, Md. Kamruzzaman

Abstract:

Road-related expenditure and building construction activity are two significant drivers of the Victorian economy. This paper investigates the relationship between building construction activity and road-related expenditure. Data for construction activities were collected from Victorian Building Authority, and road-related expenditure data were explored by the Bureau of Infrastructure and Transport Research Economics. The trend between these two sectors was compared. The analysis found a strong relationship between road-related expenditure and the volume of construction activity, i.e., the more construction activities, the greater the requirement of road-related expenditure, or vice-versa. The road-related expenditure has a two-year lag period, suggesting that the road sector requires two years to respond to the growth in the building sector.

Keywords: building construction activity, infrastructure, road expenditure, Victorian Building Authority

Procedia PDF Downloads 129
9478 The Effect of a Muscarinic Antagonist on the Lipase Activity

Authors: Zohreh Bayat, Dariush Minai-Tehrani

Abstract:

Lipases constitute one of the most important groups of industrial enzymes that catalyze the hydrolysis of triacylglycerol to glycerol and fatty acids. Muscarinic antagonist relieves smooth muscle spasm of the gastrointestinal tract and effect on the cardiovascular system. In this research, the effect of a muscarinic antagonist on the lipase activity of Pseudomonas aeruginosa was studied. Lineweaver–Burk plot showed that the drug inhibited the enzyme by competitive inhibition. The IC50 value (60 uM) and Ki (30 uM) of the drug revealed the drug bound to the enzyme with high affinity. Determination of enzyme activity in various pH and temperature showed that the maximum activity of lipase was at pH 8 and 60°C both in presence and absence of the drug.

Keywords: bacteria, inhibition, kinetics, lipase

Procedia PDF Downloads 453
9477 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs

Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny

Abstract:

As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.

Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning

Procedia PDF Downloads 210
9476 A High Performance Piano Note Recognition Scheme via Precise Onset Detection and Segmented Short-Time Fourier Transform

Authors: Sonali Banrjee, Swarup Kumar Mitra, Aritra Acharyya

Abstract:

A piano note recognition method has been proposed by the authors in this paper. The authors have used a comprehensive method for onset detection of each note present in a piano piece followed by segmented short-time Fourier transform (STFT) for the identification of piano notes. The performance evaluation of the proposed method has been carried out in different harsh noisy environments by adding different levels of additive white Gaussian noise (AWGN) having different signal-to-noise ratio (SNR) in the original signal and evaluating the note detection error rate (NDER) of different piano pieces consisting of different number of notes at different SNR levels. The NDER is found to be remained within 15% for all piano pieces under consideration when the SNR is kept above 8 dB.

Keywords: AWGN, onset detection, piano note, STFT

Procedia PDF Downloads 160
9475 An Erudite Technique for Face Detection and Recognition Using Curvature Analysis

Authors: S. Jagadeesh Kumar

Abstract:

Face detection and recognition is an authoritative technology for image database management, video surveillance, and human computer interface (HCI). Face recognition is a rapidly nascent method, which has been extensively discarded in forensics such as felonious identification, tenable entree, and custodial security. This paper recommends an erudite technique using curvature analysis (CA) that has less false positives incidence, operative in different light environments and confiscates the artifacts that are introduced during image acquisition by ring correction in polar coordinate (RCP) method. This technique affronts mean and median filtering technique to remove the artifacts but it works in polar coordinate during image acquisition. Investigational fallouts for face detection and recognition confirms decent recitation even in diagonal orientation and stance variation.

Keywords: curvature analysis, ring correction in polar coordinate method, face detection, face recognition, human computer interaction

Procedia PDF Downloads 286
9474 Cellular Degradation Activity is Activated by Ambient Temperature Reduction in an Annual Fish (Nothobranchius rachovii)

Authors: Cheng-Yen Lu, Chin-Yuan Hsu

Abstract:

Ambient temperature reduction (ATR) can extend the lifespan of an annual fish (Nothobranchius rachovii), but the underlying mechanism is unknown. In this study, the expression, concentration, and activity of cellular-degraded molecules were evaluated in the muscle of N. rachovii reared under high (30 °C), moderate (25 °C), and low (20 °C) ambient temperatures by biochemical techniques. The results showed that (i) the activity of the 20S proteasome, the expression of microtubule-associated protein 1 light chain 3-II (LC3-II), the expression of lysosome-associated membrane protein type 2a (Lamp 2a), and lysosome activity increased with ATR; (ii) the expression of the 70 kD heat shock cognate protein (Hsc 70) decreased with ATR; (iii) the expression of the 20S proteasome, the expression of lysosome-associated membrane protein type 1 (Lamp 1), the expression of molecular target of rapamycin (mTOR), the expression of phosphorylated mTOR (p-mTOR), and the p-mTOR/mTOR ratio did not change with ATR. These findings indicated that ATR activated the activity of proteasome, macroautophagy, and chaperone-mediated autophagy. Taken together these data reveal that ATR likely activates cellular degradation activity to extend the lifespan of N. rachovii.

Keywords: ambient temperature reduction, autophagy, degradation activity, lifespan, proteasome

Procedia PDF Downloads 459
9473 A Review of Intelligent Fire Management Systems to Reduce Wildfires

Authors: Nomfundo Ngombane, Topside E. Mathonsi

Abstract:

Remote sensing and satellite imaging have been widely used to detect wildfires; nevertheless, the technologies present some limitations in terms of early wildfire detection as the technologies are greatly influenced by weather conditions and can miss small fires. The fires need to have spread a few kilometers for the technologies to provide accurate detection. The South African Advanced Fire Information System uses MODIS (Moderate Resolution Imaging Spectroradiometer) as satellite imaging. MODIS has limitations as it can exclude small fires and can fall short in validating fire vulnerability. Thus in the future, a Machine Learning algorithm will be designed and implemented for the early detection of wildfires. A simulator will be used to evaluate the effectiveness of the proposed solution, and the results of the simulation will be presented.

Keywords: moderate resolution imaging spectroradiometer, advanced fire information system, machine learning algorithm, detection of wildfires

Procedia PDF Downloads 78
9472 Facility Detection from Image Using Mathematical Morphology

Authors: In-Geun Lim, Sung-Woong Ra

Abstract:

As high resolution satellite images can be used, lots of studies are carried out for exploiting these images in various fields. This paper proposes the method based on mathematical morphology for extracting the ‘horse's hoof shaped object’. This proposed method can make an automatic object detection system to track the meaningful object in a large satellite image rapidly. Mathematical morphology process can apply in binary image, so this method is very simple. Therefore this method can easily extract the ‘horse's hoof shaped object’ from any images which have indistinct edges of the tracking object and have different image qualities depending on filming location, filming time, and filming environment. Using the proposed method by which ‘horse's hoof shaped object’ can be rapidly extracted, the performance of the automatic object detection system can be improved dramatically.

Keywords: facility detection, satellite image, object, mathematical morphology

Procedia PDF Downloads 381
9471 X-Corner Detection for Camera Calibration Using Saddle Points

Authors: Abdulrahman S. Alturki, John S. Loomis

Abstract:

This paper discusses a corner detection algorithm for camera calibration. Calibration is a necessary step in many computer vision and image processing applications. Robust corner detection for an image of a checkerboard is required to determine intrinsic and extrinsic parameters. In this paper, an algorithm for fully automatic and robust X-corner detection is presented. Checkerboard corner points are automatically found in each image without user interaction or any prior information regarding the number of rows or columns. The approach represents each X-corner with a quadratic fitting function. Using the fact that the X-corners are saddle points, the coefficients in the fitting function are used to identify each corner location. The automation of this process greatly simplifies calibration. Our method is robust against noise and different camera orientations. Experimental analysis shows the accuracy of our method using actual images acquired at different camera locations and orientations.

Keywords: camera calibration, corner detector, edge detector, saddle points

Procedia PDF Downloads 406
9470 Analysis of Facial Expressions with Amazon Rekognition

Authors: Kashika P. H.

Abstract:

The development of computer vision systems has been greatly aided by the efficient and precise detection of images and videos. Although the ability to recognize and comprehend images is a strength of the human brain, employing technology to tackle this issue is exceedingly challenging. In the past few years, the use of Deep Learning algorithms to treat object detection has dramatically expanded. One of the key issues in the realm of image recognition is the recognition and detection of certain notable people from randomly acquired photographs. Face recognition uses a way to identify, assess, and compare faces for a variety of purposes, including user identification, user counting, and classification. With the aid of an accessible deep learning-based API, this article intends to recognize various faces of people and their facial descriptors more accurately. The purpose of this study is to locate suitable individuals and deliver accurate information about them by using the Amazon Rekognition system to identify a specific human from a vast image dataset. We have chosen the Amazon Rekognition system, which allows for more accurate face analysis, face comparison, and face search, to tackle this difficulty.

Keywords: Amazon rekognition, API, deep learning, computer vision, face detection, text detection

Procedia PDF Downloads 104
9469 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning

Authors: Richard O’Riordan, Saritha Unnikrishnan

Abstract:

Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.

Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection

Procedia PDF Downloads 104
9468 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph

Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao

Abstract:

As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.

Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning

Procedia PDF Downloads 170
9467 Manufacturing Anomaly Detection Using a Combination of Gated Recurrent Unit Network and Random Forest Algorithm

Authors: Atinkut Atinafu Yilma, Eyob Messele Sefene

Abstract:

Anomaly detection is one of the essential mechanisms to control and reduce production loss, especially in today's smart manufacturing. Quick anomaly detection aids in reducing the cost of production by minimizing the possibility of producing defective products. However, developing an anomaly detection model that can rapidly detect a production change is challenging. This paper proposes Gated Recurrent Unit (GRU) combined with Random Forest (RF) to detect anomalies in the production process in real-time quickly. The GRU is used as a feature detector, and RF as a classifier using the input features from GRU. The model was tested using various synthesis and real-world datasets against benchmark methods. The results show that the proposed GRU-RF outperforms the benchmark methods with the shortest time taken to detect anomalies in the production process. Based on the investigation from the study, this proposed model can eliminate or reduce unnecessary production costs and bring a competitive advantage to manufacturing industries.

Keywords: anomaly detection, multivariate time series data, smart manufacturing, gated recurrent unit network, random forest

Procedia PDF Downloads 118
9466 Using Bidirectional Encoder Representations from Transformers to Extract Topic-Independent Sentiment Features for Social Media Bot Detection

Authors: Maryam Heidari, James H. Jones Jr.

Abstract:

Millions of online posts about different topics and products are shared on popular social media platforms. One use of this content is to provide crowd-sourced information about a specific topic, event or product. However, this use raises an important question: what percentage of information available through these services is trustworthy? In particular, might some of this information be generated by a machine, i.e., a bot, instead of a human? Bots can be, and often are, purposely designed to generate enough volume to skew an apparent trend or position on a topic, yet the consumer of such content cannot easily distinguish a bot post from a human post. In this paper, we introduce a model for social media bot detection which uses Bidirectional Encoder Representations from Transformers (Google Bert) for sentiment classification of tweets to identify topic-independent features. Our use of a Natural Language Processing approach to derive topic-independent features for our new bot detection model distinguishes this work from previous bot detection models. We achieve 94\% accuracy classifying the contents of data as generated by a bot or a human, where the most accurate prior work achieved accuracy of 92\%.

Keywords: bot detection, natural language processing, neural network, social media

Procedia PDF Downloads 116
9465 Evaluation of Bioactive Phenols in Blueberries from Different Cultivars

Authors: Christophe Gonçalves, Raquel P. F. Guiné, Daniela Teixeira, Fernando J. Gonçalves

Abstract:

Blueberries are widely valued for their high content in phenolic compounds with antioxidant activity, and hence beneficial for the human health. In this way, a study was done to determine the phenolic composition (total phenols, anthocyanins and tannins) and antioxidant activity of blueberries from three cultivars (Duke, Bluecrop, and Ozarblue) grown in two different Portuguese farms. Initially two successive extractions were done with methanol followed by two extractions with aqueous acetone solutions. These extracts obtained were then used to evaluate the amount of phenolic compounds and the antioxidant activity. The total phenols were observed to vary from 4.9 to 8.2 mg GAE/g fresh weight, with anthocyanin’s contents in the range 1.5-2.8 mg EMv3G/g and tannins contents in the range 1.5- 3.8 mg/g. The results for antioxidant activity ranged from 9.3 to 23.2 mol TE/g, and from 24.7 to 53.4 mol TE/g, when measured, respectively, by DPPH and ABTS methods. In conclusion it was observed that, in general, the cultivar had a visible effect on the phenols present, and furthermore, the geographical origin showed relevance either in the phenols contents or the antioxidant activity.

Keywords: anthocyanins, antioxidant activity, blueberry cultivar, geographical origin, phenolic compounds

Procedia PDF Downloads 474
9464 Exploratory Study on Mediating Role of Commitment-to-Change in Relations between Employee Voice, Employee Involvement and Organizational Change Readiness

Authors: Rohini Sharma, Chandan Kumar Sahoo, Rama Krishna Gupta Potnuru

Abstract:

Strong competitive forces and requirements to achieve efficiency are forcing the organizations to realize the necessity and inevitability of change. What's more, the trend does not appear to be abating. Researchers have estimated that about two thirds of change project fails. Empirical evidences further shows that organizations invest significantly in the planned change but people side is accounted for in a token or instrumental way, which is identified as one of the important reason, why change endeavours fail. However, whatever be the reason for change, organizational change readiness must be gauged prior to the institutionalization of organizational change. Hence, in this study the influence of employee voice and employee involvement on organizational change readiness via commitment-to-change is examined, as it is an area yet to be extensively studied. Also, though a recent study has investigated the interrelationship between leadership, organizational change readiness and commitment to change, our study further examined these constructs in relation with employee voice and employee involvement that plays a consequential role for organizational change readiness. Further, integrated conceptual model weaving varied concepts relating to organizational readiness with focus on commitment to change as mediator was found to be an area, which required more theorizing and empirical validation, and this study rooted in an Indian public sector organization is a step in this direction. Data for the study were collected through a survey among employees of Rourkela Steel Plant (RSP), a unit of Steel Authority of India Limited (SAIL); the first integrated Steel Plant in the public sector in India, for which stratified random sampling method was adopted. The schedule was distributed to around 700 employees, out of which 516 complete responses were obtained. The pre-validated scales were used for the study. All the variables in the study were measured on a five-point Likert scale ranging from “strongly disagree (1)” to “strongly agree (5)”. Structural equation modeling (SEM) using AMOS 22 was used to examine the hypothesized model, which offers a simultaneous test of an entire system of variables in a model. The study results shows that inter-relationship between employee voice and commitment-to-change, employee involvement and commitment-to-change and commitment-to-change and organizational change readiness were significant. To test the mediation hypotheses, Baron and Kenny’s technique was used. Examination of direct and mediated effect of mediators confirmed that commitment-to-change partially mediated the relation between employee involvement and organizational change readiness. Furthermore, study results also affirmed that commitment-to-change does not mediate the relation between employee involvement and organizational change readiness. The empirical exploration therefore establishes that it is important to harness employee’s valuable suggestions regarding change for building organizational change readiness. Regarding employee involvement, it was found that sharing information and involving people in decision-making, leads to a creation of participative climate, which educes employee commitment during change and commitment-to-change further, fosters organizational change readiness.

Keywords: commitment-to-change, change management, employee voice, employee involvement, organizational change readiness

Procedia PDF Downloads 327
9463 An Energy Detection-Based Algorithm for Cooperative Spectrum Sensing in Rayleigh Fading Channel

Authors: H. Bakhshi, E. Khayyamian

Abstract:

Cognitive radios have been recognized as one of the most promising technologies dealing with the scarcity of the radio spectrum. In cognitive radio systems, secondary users are allowed to utilize the frequency bands of primary users when the bands are idle. Hence, how to accurately detect the idle frequency bands has attracted many researchers’ interest. Detection performance is sensitive toward noise power and gain fluctuation. Since signal to noise ratio (SNR) between primary user and secondary users are not the same and change over the time, SNR and noise power estimation is essential. In this paper, we present a cooperative spectrum sensing algorithm using SNR estimation to improve detection performance in the real situation.

Keywords: cognitive radio, cooperative spectrum sensing, energy detection, SNR estimation, spectrum sensing, rayleigh fading channel

Procedia PDF Downloads 449
9462 Data-Centric Anomaly Detection with Diffusion Models

Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu

Abstract:

Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.

Keywords: diffusion models, anomaly detection, data-centric, generative AI

Procedia PDF Downloads 82
9461 Validation and Interpretation about Precedence Diagram for Start to Finish Relationship by Graph Theory

Authors: Naoki Ohshima, Ken Kaminishi

Abstract:

Four types of dependencies, which are 'Finish-to-start', 'Finish-to-finish', 'Start-to-start' and 'Start-to-finish (S-F)' as logical relationship are modeled based on the definition by 'the predecessor activity is defined as an activity to come before a dependent activity in a schedule' in PMBOK. However, it is found a self-contradiction in the precedence diagram for S-F relationship by PMBOK. In this paper, author would like to validate logical relationship of S-F by Graph Theory and propose a new interpretation of the precedence diagram for S-F relationship.

Keywords: project time management, sequence activity, start-to-finish relationship, precedence diagram, PMBOK

Procedia PDF Downloads 270
9460 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application

Authors: Jui-Chien Hsieh

Abstract:

Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.

Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network

Procedia PDF Downloads 114
9459 Adaptive Target Detection of High-Range-Resolution Radar in Non-Gaussian Clutter

Authors: Lina Pan

Abstract:

In non-Gaussian clutter of a spherically invariant random vector, in the cases that a certain estimated covariance matrix could become singular, the adaptive target detection of high-range-resolution radar is addressed. Firstly, the restricted maximum likelihood (RML) estimates of unknown covariance matrix and scatterer amplitudes are derived for non-Gaussian clutter. And then the RML estimate of texture is obtained. Finally, a novel detector is devised. It is showed that, without secondary data, the proposed detector outperforms the existing Kelly binary integrator.

Keywords: non-Gaussian clutter, covariance matrix estimation, target detection, maximum likelihood

Procedia PDF Downloads 464
9458 Isolation of Soil Thiobacterii and Determination of Their Bio-Oxidation Activity

Authors: A. Kistaubayeva, I. Savitskaya, D. Ibrayeva, M. Abdulzhanova, N. Voronova

Abstract:

36 strains of sulfur-oxidizing bacteria were isolated in Southern Kazakhstan soda-saline soils and identified. Screening of strains according bio-oxidation (destruction thiosulfate to sulfate) and enzymatic (Thiosulfate dehydrogenises and thiosulfate reductase) activity was conducted. There were selected modes of aeration and culture conditions (pH, temperature), which provide optimum harvest cells. These strains can be used in bio-melioration technology.

Keywords: elemental sulfur, oxidation activity, Тhiobacilli, fertilizers, heterotrophic S-oxidizers

Procedia PDF Downloads 384
9457 USBware: A Trusted and Multidisciplinary Framework for Enhanced Detection of USB-Based Attacks

Authors: Nir Nissim, Ran Yahalom, Tomer Lancewiki, Yuval Elovici, Boaz Lerner

Abstract:

Background: Attackers increasingly take advantage of innocent users who tend to use USB devices casually, assuming these devices benign when in fact they may carry an embedded malicious behavior or hidden malware. USB devices have many properties and capabilities that have become the subject of malicious operations. Many of the recent attacks targeting individuals, and especially organizations, utilize popular and widely used USB devices, such as mice, keyboards, flash drives, printers, and smartphones. However, current detection tools, techniques, and solutions generally fail to detect both the known and unknown attacks launched via USB devices. Significance: We propose USBWARE, a project that focuses on the vulnerabilities of USB devices and centers on the development of a comprehensive detection framework that relies upon a crucial attack repository. USBWARE will allow researchers and companies to better understand the vulnerabilities and attacks associated with USB devices as well as providing a comprehensive platform for developing detection solutions. Methodology: The framework of USBWARE is aimed at accurate detection of both known and unknown USB-based attacks by a process that efficiently enhances the framework's detection capabilities over time. The framework will integrate two main security approaches in order to enhance the detection of USB-based attacks associated with a variety of USB devices. The first approach is aimed at the detection of known attacks and their variants, whereas the second approach focuses on the detection of unknown attacks. USBWARE will consist of six independent but complimentary detection modules, each detecting attacks based on a different approach or discipline. These modules include novel ideas and algorithms inspired from or already developed within our team's domains of expertise, including cyber security, electrical and signal processing, machine learning, and computational biology. The establishment and maintenance of the USBWARE’s dynamic and up-to-date attack repository will strengthen the capabilities of the USBWARE detection framework. The attack repository’s infrastructure will enable researchers to record, document, create, and simulate existing and new USB-based attacks. This data will be used to maintain the detection framework’s updatability by incorporating knowledge regarding new attacks. Based on our experience in the cyber security domain, we aim to design the USBWARE framework so that it will have several characteristics that are crucial for this type of cyber-security detection solution. Specifically, the USBWARE framework should be: Novel, Multidisciplinary, Trusted, Lightweight, Extendable, Modular and Updatable and Adaptable. Major Findings: Based on our initial survey, we have already found more than 23 types of USB-based attacks, divided into six major categories. Our preliminary evaluation and proof of concepts showed that our detection modules can be used for efficient detection of several basic known USB attacks. Further research, development, and enhancements are required so that USBWARE will be capable to cover all of the major known USB attacks and to detect unknown attacks. Conclusion: USBWARE is a crucial detection framework that must be further enhanced and developed.

Keywords: USB, device, cyber security, attack, detection

Procedia PDF Downloads 397
9456 In vitro Antioxidant Activity of Caesalpinia sappan Extract

Authors: Monthon Tangjitmungman

Abstract:

Numerous diseases have been linked to oxidative stress, in which a disproportion of free radicals in the body leads to tissue or cell damage. Polyphenols are the most abundant antioxidants found in plants, and they are highly effective at scavenging oxidative free radicals. Due to the presence of phenolic compounds in Caesalpinia sappan has been discovered to have antioxidant activity. It has several health benefits, the most important of which is preventing cardiovascular and cancer diseases. This study aimed to determine the phenolic content and antioxidant activity of C. sappan extract using a variety of antioxidant assays. The extract of C. sappan was made using a mixture of solvents (ethyl alcohol: water in ratio 8:2). The total phenolic content of C. sappan extract was determined and expressed as gallic acid equivalents using the Folin-Cioucalteu method (GAE). The antioxidant activity of C. sappan extract was assessed using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and the ABTS radical scavenging capacity assay. An association was found between antioxidant activity and total phenol content. The antioxidant activity of C. sappan extract was also determined by DPPH and ABTS assays. The IC50 values for C. sappan extract from DPPH and ABTS assays were 54.48 μg/mL ± 0.545 and 25.46 μg/mL ± 0.790, respectively, in the DPPH assay. In the DPPH assay, vitamin C was used as a positive control, whereas Trolox was used as a positive control in the ABTS assay. In conclusion, C. sappan extract contains a high level of total phenolics and exhibits significant antioxidant activity. Nevertheless, more research should be done on the antioxidant activity, such as SOD and ROS scavenging assays and in vivo experiments, to determine whether the compound has antioxidant activity.

Keywords: ABTS assay, antioxidant activity, Caesalpinia sappan, DPPH assays, total phenolic content

Procedia PDF Downloads 384