Search results for: steering vector
756 Musical Instruments Classification Using Machine Learning Techniques
Authors: Bhalke D. G., Bormane D. S., Kharate G. K.
Abstract:
This paper presents classification of musical instrument using machine learning techniques. The classification has been carried out using temporal, spectral, cepstral and wavelet features. Detail feature analysis is carried out using separate and combined features. Further, instrument model has been developed using K-Nearest Neighbor and Support Vector Machine (SVM). Benchmarked McGill university database has been used to test the performance of the system. Experimental result shows that SVM performs better as compared to KNN classifier.Keywords: feature extraction, SVM, KNN, musical instruments
Procedia PDF Downloads 479755 Preparedness and Control of Mosquito-Borne Diseases: Experiences from Northwestern Italy
Authors: Federica Verna, Alessandra Pautasso, Maria Caramelli, Cristiana Maurella, Walter Mignone, Cristina Casalone
Abstract:
Mosquito-Borne Diseases (MBDs) are dangerously increasing in prevalence, geographical distribution and severity, representing an emerging threat for both humans and animals. Interaction between multiple disciplines is needed for an effective early warning, surveillance and control of MBDs, according to the One Health concept. This work reports the integrated surveillance system enforced by IZSPLV in Piedmont, Liguria and Valle d’Aosta regions (Northwestern Italy) in order to control MDBs spread. Veterinary services and local human health authority are involved in an information network, to connect the surveillance of human clinical cases with entomological surveillance and veterinary monitoring in order to implement control measures in case of outbreak. A systematic entomological surveillance is carried out during the vector season using mosquitoes traps located in sites selected according to risk factors. Collected mosquitoes are counted, identified to species level by morphological standard classification keys and pooled by collection site, date and species with a maximum of 100 individuals. Pools are analyzed, after RNA extraction, by Real Time RT-PCR distinctive for West Nile Virus (WNV) Lineage 1 and Lineage 2, Real Time RT-PCR USUTU virus (USUV) and a traditional flavivirus End-point RT-PCR. Positive pools are sequenced and the related sequences employed to perform a basic local alignment search tool (BLAST) in the GenBank library. Positive samples are sent to the National Reference Centre for Animal Exotic Diseases (CESME, Teramo) for confirmation. With particular reference to WNV, after the confirmation, as provided by national legislation, control measures involving both local veterinary and human health services are activated: equine sera are randomly sampled within a 4 km radius from the positive collection sites and tested with ELISA kit and WNV NAT screening of blood donors is introduced. This surveillance network allowed to detect since 2011 USUV circulation in this area of Italy. WNV was detected in Piedmont and Liguria for the first time in 2014 in mosquitoes. During the 2015 vector season, we observed the expansion of its activity in Piedmont. The virus was detected in almost all Provinces both in mosquitoes (6 pools) and animals (19 equine sera, 4 birds). No blood bag tested resulted infected. The first neuroinvasive human case occurred too. Competent authorities should be aware of a potentially increased risk of MBDs activity during the 2016 vector season. This work shows that this surveillance network allowed to early detect the presence of MBDs in humans and animals, and provided useful information to public authorities, in order to apply control measures. Finally, an additional value of our diagnostic protocol is the ability to detect all viruses belonging to the Flaviviridae family, considering the emergence caused by other Flaviviruses in humans such as the recent Zika virus infection in South America. Italy has climatic and environmental features conducive to Zika virus transmission, the competent vector and many travellers from Brazil reported every year.Keywords: integrated surveillance, mosquito borne disease, West Nile virus, Zika virus
Procedia PDF Downloads 361754 Towards a Reinvented Cash Management Function: Mobilising Innovative Advances for Enhanced Performance and Optimised Cost Management: Insights from Large Moroccan Companies in the Casablanca-Settat Region
Authors: Badrane Nohayla, Bamousse Zineb
Abstract:
Financial crises, exchange rate volatility, fluctuations in commodity prices, increased competitive pressures, and environmental issues are all threats that businesses face. In light of these diverse challenges, proactive, agile, and innovative cash management becomes an indispensable financial shield, allowing companies to thrive despite the adverse conditions of the global environment. In the same spirit, uncertainty, turbulence, volatility, and competitiveness continue to disrupt economic environments, compelling companies to swiftly master innovative breakthroughs that provide added value. In such a context, innovation emerges as a catalytic vector for performance, aiming to reduce costs, strengthen growth, and ultimately ensure the sustainability of Moroccan companies in the national arena. Moreover, innovation in treasury management promises to be one of the key pillars of financial stability, enabling companies to navigate the tumultuous waters of a globalized environment. Therefore, the objective of this study is to better understand the impact of innovative treasury management on cost optimization and, by extension, performance improvement. To elucidate this relationship, we conducted an exploratory qualitative study with 20 large Moroccan companies operating in the Casablanca-Settat region. The results highlight that innovation at the heart of treasury management is a guarantee of sustainability against the risks of failure and stands as a true pivot of the performance of Moroccan companies, an important parameter of their financial balance and a catalytic vector of their growth in the national economic landscape. In this regard, the present study aims to explore the extent to which innovation at the core of the treasury function serves as an indispensable tool for boosting performance while optimising costs in large Moroccan companies.Keywords: innovative cash management, artificial intelligence, financial performance, risk management, cost savings
Procedia PDF Downloads 27753 Interior Noise Reduction of Construction Equipment Vehicle
Authors: Pradeep Jawale, Sharad Supare, Sachin Kumar Jain, Nagesh Walke
Abstract:
One can witness the constant development and redevelopment of cities throughout the world. Construction equipment vehicles (CEVs) are commonly used on the construction site. However, noise pollution from construction sites due to the use of CEV has become a major problem for many cities. The construction equipment employed, which includes excavators and bulldozers, is one of the main causes of these elevated noise levels. The construction workers possibly will face a potential risk to their auditory health and well-being due to the noise levels they are exposed to. Different countries have imposed exterior and operator noise limits for construction equipment vehicles, enabling them to control noise pollution from CEVs. In this study, the operator ear level noise of the identified vehicle is higher than the benchmark vehicle by 8 dB(A). It was a tough time for the NVH engineer to beat the interior noise level of the benchmark vehicle. Initially, the noise source identification technique was used to identify the dominant sources for increasing the interior noise of the test vehicle. It was observed that the transfer of structure-borne and air-borne noise to the cabin was the major issue with the vehicle. It was foremost required to address the issue without compromising the overall performance of the vehicle. Surprisingly, the steering pump and radiator fan were identified as the major dominant sources than typical conventional sources like powertrain, intake, and exhaust. Individual sources of noise were analyzed in detail, and optimizations were made to minimize the noise at the source. As a result, the significant noise reduction achieved inside the vehicle and the overall in-cab noise level for the vehicle became a new benchmark in the market.Keywords: interior noise, noise reduction, CEV, noise source identification
Procedia PDF Downloads 44752 Computational Assistance of the Research, Using Dynamic Vector Logistics of Processes for Critical Infrastructure Subjects Continuity
Authors: Urbánek Jiří J., Krahulec Josef, Urbánek Jiří F., Johanidesová Jitka
Abstract:
These Computational assistance for the research and modelling of critical infrastructure subjects continuity deal with this paper. It enables us the using of prevailing operation system MS Office (SmartArt...) for mathematical models, using DYVELOP (Dynamic Vector Logistics of Processes) method. It serves for crisis situations investigation and modelling within the organizations of critical infrastructure. In the first part of the paper, it will be introduced entities, operators and actors of DYVELOP method. It uses just three operators of Boolean algebra and four types of the entities: the Environments, the Process Systems, the Cases and the Controlling. The Process Systems (PrS) have five “brothers”: Management PrS, Transformation PrS, Logistic PrS, Event PrS and Operation PrS. The Cases have three “sisters”: Process Cell Case, Use Case and Activity Case. They all need for the controlling of their functions special Ctrl actors, except ENV – it can do without Ctrl. Model´s maps are named the Blazons and they are able mathematically - graphically express the relationships among entities, actors and processes. In the second part of this paper, the rich blazons of DYVELOP method will be used for the discovering and modelling of the cycling cases and their phases. The blazons need live PowerPoint presentation for better comprehension of this paper mission. The crisis management of energetic crisis infrastructure organization is obliged to use the cycles for successful coping of crisis situations. Several times cycling of these cases is a necessary condition for the encompassment of the both the emergency event and the mitigation of organization´s damages. Uninterrupted and continuous cycling process bring for crisis management fruitfulness and it is a good indicator and controlling actor of organizational continuity and its sustainable development advanced possibilities. The research reliable rules are derived for the safety and reliable continuity of energetic critical infrastructure organization in the crisis situation.Keywords: blazons, computational assistance, DYVELOP method, critical infrastructure
Procedia PDF Downloads 381751 Modelling Dengue Disease With Climate Variables Using Geospatial Data For Mekong River Delta Region of Vietnam
Authors: Thi Thanh Nga Pham, Damien Philippon, Alexis Drogoul, Thi Thu Thuy Nguyen, Tien Cong Nguyen
Abstract:
Mekong River Delta region of Vietnam is recognized as one of the most vulnerable to climate change due to flooding and seawater rise and therefore an increased burden of climate change-related diseases. Changes in temperature and precipitation are likely to alter the incidence and distribution of vector-borne diseases such as dengue fever. In this region, the peak of the dengue epidemic period is around July to September during the rainy season. It is believed that climate is an important factor for dengue transmission. This study aims to enhance the capacity of dengue prediction by the relationship of dengue incidences with climate and environmental variables for Mekong River Delta of Vietnam during 2005-2015. Mathematical models for vector-host infectious disease, including larva, mosquito, and human being were used to calculate the impacts of climate to the dengue transmission with incorporating geospatial data for model input. Monthly dengue incidence data were collected at provincial level. Precipitation data were extracted from satellite observations of GSMaP (Global Satellite Mapping of Precipitation), land surface temperature and land cover data were from MODIS. The value of seasonal reproduction number was estimated to evaluate the potential, severity and persistence of dengue infection, while the final infected number was derived to check the outbreak of dengue. The result shows that the dengue infection depends on the seasonal variation of climate variables with the peak during the rainy season and predicted dengue incidence follows well with this dynamic for the whole studied region. However, the highest outbreak of 2007 dengue was not captured by the model reflecting nonlinear dependences of transmission on climate. Other possible effects will be discussed to address the limitation of the model. This suggested the need of considering of both climate variables and another variability across temporal and spatial scales.Keywords: infectious disease, dengue, geospatial data, climate
Procedia PDF Downloads 381750 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation
Authors: Fidelia A. Orji, Julita Vassileva
Abstract:
This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning
Procedia PDF Downloads 127749 Controller Design Using GA for SMC Systems
Authors: Susy Thomas, Sajju Thomas, Varghese Vaidyan
Abstract:
This paper considers SMCs using linear feedback with switched gains and proposes a method which can minimize the pole perturbation. The method is able to enhance the robustness property of the controller. A pre-assigned neighborhood of the ‘nominal’ positions is assigned and the system poles are not allowed to stray out of these bounds even when parameters variations/uncertainties act upon the system. A quasi SMM is maintained within the assigned boundaries of the sliding surface.Keywords: parameter variations, pole perturbation, sliding mode control, switching surface, robust switching vector
Procedia PDF Downloads 361748 From Comfort to Safety: Assessing the Influence of Car Seat Design on Driver Reaction and Performance
Authors: Sabariah Mohd Yusoff, Qamaruddin Adzeem Muhamad Murad
Abstract:
This study investigates the impact of car seat design on driver response time, addressing a critical gap in understanding how ergonomic features influence both performance and safety. Controlled driving experiments were conducted with fourteen participants (11 male, 3 female) across three locations chosen for their varying traffic conditions to account for differences in driver alertness. Participants interacted with various seat designs while performing driving tasks, and objective metrics such as braking and steering response times were meticulously recorded. Advanced statistical methods, including regression analysis and t-tests, were employed to identify design factors that significantly affect driver response times. Subjective feedback was gathered through detailed questionnaires—focused on driving experience and knowledge of response time—and in-depth interviews. This qualitative data was analyzed thematically to provide insights into driver comfort and usability preferences. The study aims to identify key seat design features that impact driver response time and to gain a deeper understanding of driver preferences for comfort and usability. The findings are expected to inform evidence-based guidelines for optimizing car seat design, ultimately enhancing driver performance and safety. The research offers valuable implications for automotive manufacturers and designers, contributing to the development of seats that improve driver response time and overall driving safety.Keywords: car seat design, driver response time, cognitive driving, ergonomics optimization
Procedia PDF Downloads 23747 Comparative Study Performance of the Induction Motor between SMC and NLC Modes Control
Authors: A. Oukaci, R. Toufouti, D. Dib, l. Atarsia
Abstract:
This article presents a multitude of alternative techniques to control the vector control, namely the nonlinear control and sliding mode control. Moreover, the implementation of their control law applied to the high-performance to the induction motor with the objective to improve the tracking control, ensure stability robustness to parameter variations and disturbance rejection. Tests are performed numerical simulations in the Matlab/Simulink interface, the results demonstrate the efficiency and dynamic performance of the proposed strategy.Keywords: Induction Motor (IM), Non-linear Control (NLC), Sliding Mode Control (SMC), nonlinear sliding surface
Procedia PDF Downloads 570746 Contextual Factors of Innovation for Improving Commercial Banks' Performance in Nigeria
Authors: Tomola Obamuyi
Abstract:
The banking system in Nigeria adopted innovative banking, with the aim of enhancing financial inclusion, and making financial services readily and cheaply available to majority of the people, and to contribute to the efficiency of the financial system. Some of the innovative services include: Automatic Teller Machines (ATMs), National Electronic Fund Transfer (NEFT), Point of Sale (PoS), internet (Web) banking, Mobile Money payment (MMO), Real-Time Gross Settlement (RTGS), agent banking, among others. The introduction of these payment systems is expected to increase bank efficiency and customers' satisfaction, culminating in better performance for the commercial banks. However, opinions differ on the possible effects of the various innovative payment systems on the performance of commercial banks in the country. Thus, this study empirically determines how commercial banks use innovation to gain competitive advantage in the specific context of Nigeria's finance and business. The study also analyses the effects of financial innovation on the performance of commercial banks, when different periods of analysis are considered. The study employed secondary data from 2009 to 2018, the period that witnessed aggressive innovation in the financial sector of the country. The Vector Autoregression (VAR) estimation technique forecasts the relative variance of each random innovation to the variables in the VAR, examine the effect of standard deviation shock to one of the innovations on current and future values of the impulse response and determine the causal relationship between the variables (VAR granger causality test). The study also employed the Multi-Criteria Decision Making (MCDM) to rank the innovations and the performance criteria of Return on Assets (ROA) and Return on Equity (ROE). The entropy method of MCDM was used to determine which of the performance criteria better reflect the contributions of the various innovations in the banking sector. On the other hand, the Range of Values (ROV) method was used to rank the contributions of the seven innovations to performance. The analysis was done based on medium term (five years) and long run (ten years) of innovations in the sector. The impulse response function derived from the VAR system indicated that the response of ROA to the values of cheques transaction, values of NEFT transactions, values of POS transactions was positive and significant in the periods of analysis. The paper also confirmed with entropy and range of value that, in the long run, both the CHEQUE and MMO performed best while NEFT was next in performance. The paper concluded that commercial banks would enhance their performance by continuously improving on the services provided through Cheques, National Electronic Fund Transfer and Point of Sale since these instruments have long run effects on their performance. This will increase the confidence of the populace and encourage more usage/patronage of these services. The banking sector will in turn experience better performance which will improve the economy of the country. Keywords: Bank performance, financial innovation, multi-criteria decision making, vector autoregression,Keywords: Bank performance, financial innovation, multi-criteria decision making, vector autoregression
Procedia PDF Downloads 118745 Landslide Susceptibility Mapping Using Soft Computing in Amhara Saint
Authors: Semachew M. Kassa, Africa M Geremew, Tezera F. Azmatch, Nandyala Darga Kumar
Abstract:
Frequency ratio (FR) and analytical hierarchy process (AHP) methods are developed based on past landslide failure points to identify the landslide susceptibility mapping because landslides can seriously harm both the environment and society. However, it is still difficult to select the most efficient method and correctly identify the main driving factors for particular regions. In this study, we used fourteen landslide conditioning factors (LCFs) and five soft computing algorithms, including Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Artificial Neural Network (ANN), and Naïve Bayes (NB), to predict the landslide susceptibility at 12.5 m spatial scale. The performance of the RF (F1-score: 0.88, AUC: 0.94), ANN (F1-score: 0.85, AUC: 0.92), and SVM (F1-score: 0.82, AUC: 0.86) methods was significantly better than the LR (F1-score: 0.75, AUC: 0.76) and NB (F1-score: 0.73, AUC: 0.75) method, according to the classification results based on inventory landslide points. The findings also showed that around 35% of the study region was made up of places with high and very high landslide risk (susceptibility greater than 0.5). The very high-risk locations were primarily found in the western and southeastern regions, and all five models showed good agreement and similar geographic distribution patterns in landslide susceptibility. The towns with the highest landslide risk include Amhara Saint Town's western part, the Northern part, and St. Gebreal Church villages, with mean susceptibility values greater than 0.5. However, rainfall, distance to road, and slope were typically among the top leading factors for most villages. The primary contributing factors to landslide vulnerability were slightly varied for the five models. Decision-makers and policy planners can use the information from our study to make informed decisions and establish policies. It also suggests that various places should take different safeguards to reduce or prevent serious damage from landslide events.Keywords: artificial neural network, logistic regression, landslide susceptibility, naïve Bayes, random forest, support vector machine
Procedia PDF Downloads 79744 Metric Dimension on Line Graph of Honeycomb Networks
Authors: M. Hussain, Aqsa Farooq
Abstract:
Let G = (V,E) be a connected graph and distance between any two vertices a and b in G is a−b geodesic and is denoted by d(a, b). A set of vertices W resolves a graph G if each vertex is uniquely determined by its vector of distances to the vertices in W. A metric dimension of G is the minimum cardinality of a resolving set of G. In this paper line graph of honeycomb network has been derived and then we calculated the metric dimension on line graph of honeycomb network.Keywords: Resolving set, Metric dimension, Honeycomb network, Line graph
Procedia PDF Downloads 199743 Unequal Error Protection of VQ Image Transmission System
Authors: Khelifi Mustapha, A. Moulay lakhdar, I. Elawady
Abstract:
We will study the unequal error protection for VQ image. We have used the Reed Solomon (RS) Codes as Channel coding because they offer better performance in terms of channel error correction over a binary output channel. One such channel (binary input and output) should be considered if it is the case of the application layer, because it includes all the features of the layers located below and on the what it is usually not feasible to make changes.Keywords: vector quantization, channel error correction, Reed-Solomon channel coding, application
Procedia PDF Downloads 363742 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery
Authors: Forouzan Salehi Fergeni
Abstract:
Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine
Procedia PDF Downloads 47741 Kalman Filter for Bilinear Systems with Application
Authors: Abdullah E. Al-Mazrooei
Abstract:
In this paper, we present a new kind of the bilinear systems in the form of state space model. The evolution of this system depends on the product of state vector by its self. The well known Lotak Volterra and Lorenz models are special cases of this new model. We also present here a generalization of Kalman filter which is suitable to work with the new bilinear model. An application to real measurements is introduced to illustrate the efficiency of the proposed algorithm.Keywords: bilinear systems, state space model, Kalman filter, application, models
Procedia PDF Downloads 439740 Asymmetric Price Transmission in Rice: A Regional Analysis in Peru
Authors: Renzo Munoz-Najar, Cristina Wong, Daniel De La Torre Ugarte
Abstract:
The literature on price transmission usually deals with asymmetries related to different commodities and/or the short and long term. The role of domestic regional differences and the relationship with asymmetries within a country are usually left out. This paper looks at the asymmetry in the transmission of rice prices from the international price to the farm gate prices in four northern regions of Peru for the last period 2001-2016. These regions are San Martín, Piura, Lambayeque and La Libertad. The relevance of the study lies in its ability to assess the need for policies aimed at improving the competitiveness of the market and ensuring the benefit of producers. There are differences in planting and harvesting dates, as well as in geographic location that justify the hypothesis of the existence of differences in the price transition asymmetries between these regions. Those differences are due to at least three factors geography, infrastructure development, and distribution systems. For this, the Threshold Vector Error Correction Model and the Autoregressive Vector Model with Threshold are used. Both models, collect asymmetric effects in the price adjustments. In this way, it is sought to verify that farm prices react more to falls than increases in international prices due to the high bargaining power of intermediaries. The results of the investigation suggest that the transmission of prices is significant only for Lambayeque and La Libertad. Likewise, the asymmetry in the transmission of prices for these regions is checked. However, these results are not met for San Martin and Piura, the main rice producers nationwide. A significant price transmission is verified only in the Lambayeque and La Libertad regions. San Martin and Piura, in spite of being the main rice producing regions of Peru, do not present a significant transmission of international prices; a high degree of self-sufficient supply might be at the center of the logic for this result. An additional finding is the short-term adjustment with respect to international prices, it is higher in La Libertad compared to Lambayeque, which could be explained by the greater bargaining power of intermediaries in the last-mentioned region due to the greater technological development in the mills.Keywords: asymmetric price transmission, rice prices, price transmission, regional economics
Procedia PDF Downloads 224739 Early Diagnosis of Myocardial Ischemia Based on Support Vector Machine and Gaussian Mixture Model by Using Features of ECG Recordings
Authors: Merve Begum Terzi, Orhan Arikan, Adnan Abaci, Mustafa Candemir
Abstract:
Acute myocardial infarction is a major cause of death in the world. Therefore, its fast and reliable diagnosis is a major clinical need. ECG is the most important diagnostic methodology which is used to make decisions about the management of the cardiovascular diseases. In patients with acute myocardial ischemia, temporary chest pains together with changes in ST segment and T wave of ECG occur shortly before the start of myocardial infarction. In this study, a technique which detects changes in ST/T sections of ECG is developed for the early diagnosis of acute myocardial ischemia. For this purpose, a database of real ECG recordings that contains a set of records from 75 patients presenting symptoms of chest pain who underwent elective percutaneous coronary intervention (PCI) is constituted. 12-lead ECG’s of the patients were recorded before and during the PCI procedure. Two ECG epochs, which are the pre-inflation ECG which is acquired before any catheter insertion and the occlusion ECG which is acquired during balloon inflation, are analyzed for each patient. By using pre-inflation and occlusion recordings, ECG features that are critical in the detection of acute myocardial ischemia are identified and the most discriminative features for the detection of acute myocardial ischemia are extracted. A classification technique based on support vector machine (SVM) approach operating with linear and radial basis function (RBF) kernels to detect ischemic events by using ST-T derived joint features from non-ischemic and ischemic states of the patients is developed. The dataset is randomly divided into training and testing sets and the training set is used to optimize SVM hyperparameters by using grid-search method and 10fold cross-validation. SVMs are designed specifically for each patient by tuning the kernel parameters in order to obtain the optimal classification performance results. As a result of implementing the developed classification technique to real ECG recordings, it is shown that the proposed technique provides highly reliable detections of the anomalies in ECG signals. Furthermore, to develop a detection technique that can be used in the absence of ECG recording obtained during healthy stage, the detection of acute myocardial ischemia based on ECG recordings of the patients obtained during ischemia is also investigated. For this purpose, a Gaussian mixture model (GMM) is used to represent the joint pdf of the most discriminating ECG features of myocardial ischemia. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute myocardial ischemia. Neyman – Pearson decision strategy is used by computing the average log likelihood values of ECG segments and comparing them with a range of different threshold values. For different discrimination threshold values and number of ECG segments, probability of detection and probability of false alarm values are computed, and the corresponding ROC curves are obtained. The results indicate that increasing number of ECG segments provide higher performance for GMM based classification. Moreover, the comparison between the performances of SVM and GMM based classification showed that SVM provides higher classification performance results over ECG recordings of considerable number of patients.Keywords: ECG classification, Gaussian mixture model, Neyman–Pearson approach, support vector machine
Procedia PDF Downloads 160738 Smartphone-Based Human Activity Recognition by Machine Learning Methods
Authors: Yanting Cao, Kazumitsu Nawata
Abstract:
As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.Keywords: smart sensors, human activity recognition, artificial intelligence, SVM
Procedia PDF Downloads 141737 The Biosphere as a Supercomputer Directing and Controlling Evolutionary Processes
Authors: Igor A. Krichtafovitch
Abstract:
The evolutionary processes are not linear. Long periods of quiet and slow development turn to rather rapid emergences of new species and even phyla. During Cambrian explosion, 22 new phyla were added to the previously existed 3 phyla. Contrary to the common credence the natural selection or a survival of the fittest cannot be accounted for the dominant evolution vector which is steady and accelerated advent of more complex and more intelligent living organisms. Neither Darwinism nor alternative concepts including panspermia and intelligent design propose a satisfactory solution for these phenomena. The proposed hypothesis offers a logical and plausible explanation of the evolutionary processes in general. It is based on two postulates: a) the Biosphere is a single living organism, all parts of which are interconnected, and b) the Biosphere acts as a giant biological supercomputer, storing and processing the information in digital and analog forms. Such supercomputer surpasses all human-made computers by many orders of magnitude. Living organisms are the product of intelligent creative action of the biosphere supercomputer. The biological evolution is driven by growing amount of information stored in the living organisms and increasing complexity of the biosphere as a single organism. Main evolutionary vector is not a survival of the fittest but an accelerated growth of the computational complexity of the living organisms. The following postulates may summarize the proposed hypothesis: biological evolution as a natural life origin and development is a reality. Evolution is a coordinated and controlled process. One of evolution’s main development vectors is a growing computational complexity of the living organisms and the biosphere’s intelligence. The intelligent matter which conducts and controls global evolution is a gigantic bio-computer combining all living organisms on Earth. The information is acting like a software stored in and controlled by the biosphere. Random mutations trigger this software, as is stipulated by Darwinian Evolution Theories, and it is further stimulated by the growing demand for the Biosphere’s global memory storage and computational complexity. Greater memory volume requires a greater number and more intellectually advanced organisms for storing and handling it. More intricate organisms require the greater computational complexity of biosphere in order to keep control over the living world. This is an endless recursive endeavor with accelerated evolutionary dynamic. New species emerge when two conditions are met: a) crucial environmental changes occur and/or global memory storage volume comes to its limit and b) biosphere computational complexity reaches critical mass capable of producing more advanced creatures. The hypothesis presented here is a naturalistic concept of life creation and evolution. The hypothesis logically resolves many puzzling problems with the current state evolution theory such as speciation, as a result of GM purposeful design, evolution development vector, as a need for growing global intelligence, punctuated equilibrium, happening when two above conditions a) and b) are met, the Cambrian explosion, mass extinctions, happening when more intelligent species should replace outdated creatures.Keywords: supercomputer, biological evolution, Darwinism, speciation
Procedia PDF Downloads 164736 PolyScan: Comprehending Human Polymicrobial Infections for Vector-Borne Disease Diagnostic Purposes
Authors: Kunal Garg, Louise Theusen Hermansan, Kanoktip Puttaraska, Oliver Hendricks, Heidi Pirttinen, Leona Gilbert
Abstract:
The Germ Theory (one infectious determinant is equal to one disease) has unarguably evolved our capability to diagnose and treat infectious diseases over the years. Nevertheless, the advent of technology, climate change, and volatile human behavior has brought about drastic changes in our environment, leading us to question the relevance of the Germ Theory in our day, i.e. will vector-borne disease (VBD) sufferers produce multiple immune responses when tested for multiple microbes? Vector diseased patients producing multiple immune responses to different microbes would evidently suggest human polymicrobial infections (HPI). Ongoing diagnostic tools are exceedingly unequipped with the current research findings that would aid in diagnosing patients for polymicrobial infections. This shortcoming has caused misdiagnosis at very high rates, consequently diminishing the patient’s quality of life due to inadequate treatment. Equipped with the state-of-art scientific knowledge, PolyScan intends to address the pitfalls in current VBD diagnostics. PolyScan is a multiplex and multifunctional enzyme linked Immunosorbent assay (ELISA) platform that can test for numerous VBD microbes and allow simultaneous screening for multiple types of antibodies. To validate PolyScan, Lyme Borreliosis (LB) and spondyloarthritis (SpA) patient groups (n = 54 each) were tested for Borrelia burgdorferi, Borrelia burgdorferi Round Body (RB), Borrelia afzelii, Borrelia garinii, and Ehrlichia chaffeensis against IgM and IgG antibodies. LB serum samples were obtained from Germany and SpA serum samples were obtained from Denmark under relevant ethical approvals. The SpA group represented chronic LB stage because reactive arthritis (SpA subtype) in the form of Lyme arthritis links to LB. It was hypothesized that patients from both the groups will produce multiple immune responses that as a consequence would evidently suggest HPI. It was also hypothesized that the multiple immune response proportion in SpA patient group would be significantly larger when compared to the LB patient group across both antibodies. It was observed that 26% LB patients and 57% SpA patients produced multiple immune responses in contrast to 33% LB patients and 30% SpA patients that produced solitary immune responses when tested against IgM. Similarly, 52% LB patients and an astounding 73% SpA patients produced multiple immune responses in contrast to 30% LB patients and 8% SpA patients that produced solitary immune responses when tested against IgG. Interestingly, IgM immune dysfunction in both the patient groups was also recorded. Atypically, 6% of the unresponsive 18% LB with IgG antibody was recorded producing multiple immune responses with the IgM antibody. Similarly, 12% of the unresponsive 19% SpA with IgG antibody was recorded producing multiple immune responses with the IgM antibody. Thus, results not only supported hypothesis but also suggested that IgM may atypically prevail longer than IgG. The PolyScan concept will aid clinicians to detect patients for early, persistent, late, polymicrobial, & immune dysfunction conditions linked to different VBD. PolyScan provides a paradigm shift for the VBD diagnostic industry to follow that will drastically shorten patient’s time to receive adequate treatment.Keywords: diagnostics, immune dysfunction, polymicrobial, TICK-TAG
Procedia PDF Downloads 327735 Prediction of Formation Pressure Using Artificial Intelligence Techniques
Authors: Abdulmalek Ahmed
Abstract:
Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)
Procedia PDF Downloads 149734 Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms
Authors: Seulki Lee, Seoung Bum Kim
Abstract:
Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing.Keywords: multivariate control chart, nonparametric method, support vector data description, time-varying process
Procedia PDF Downloads 298733 Communicative Strategies in Colombian Political Speech: On the Example of the Speeches of Francia Marquez
Authors: Danila Arbuzov
Abstract:
In this article the author examines the communicative strategies used in the Colombian political discourse, following the example of the speeches of the Vice President of Colombia Francia Marquez, who took office in 2022 and marked a new development vector for the Colombian nation. The lexical and syntactic means are analyzed to achieve the communicative objectives. The material presented may be useful for those who are interested in investigating various aspects of discursive linguistics, particularly political discourse, as well as the implementation of communicative strategies in certain types of discourse.Keywords: political discourse, communication strategies, Colombian political discourse, Colombia, manipulation
Procedia PDF Downloads 111732 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK
Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick
Abstract:
The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest
Procedia PDF Downloads 119731 Comparing SVM and Naïve Bayes Classifier for Automatic Microaneurysm Detections
Authors: A. Sopharak, B. Uyyanonvara, S. Barman
Abstract:
Diabetic retinopathy is characterized by the development of retinal microaneurysms. The damage can be prevented if disease is treated in its early stages. In this paper, we are comparing Support Vector Machine (SVM) and Naïve Bayes (NB) classifiers for automatic microaneurysm detection in images acquired through non-dilated pupils. The Nearest Neighbor classifier is used as a baseline for comparison. Detected microaneurysms are validated with expert ophthalmologists’ hand-drawn ground-truths. The sensitivity, specificity, precision and accuracy of each method are also compared.Keywords: diabetic retinopathy, microaneurysm, naive Bayes classifier, SVM classifier
Procedia PDF Downloads 327730 The Impact of Geopolitical Risks and the Oil Price Fluctuations on the Kuwaiti Financial Market
Authors: Layal Mansour
Abstract:
The aim of this paper is to identify whether oil price volatility or geopolitical risks can predict future financial stress periods or economic recessions in Kuwait. We construct the first Financial Stress Index for Kuwait (FSIK) that includes informative vulnerable indicators of the main financial sectors: the banking sector, the equities market, and the foreign exchange market. The study covers the period from 2000 to 2020, so it includes the two recent most devastating world economic crises with oil price fluctuation: the Covid-19 pandemic crisis and Ukraine-Russia War. All data are taken by the central bank of Kuwait, the World Bank, IMF, DataStream, and from Federal Reserve System St Louis. The variables are computed as the percentage growth rate, then standardized and aggregated into one index using the variance equal weights method, the most frequently used in the literature. The graphical FSIK analysis provides detailed information (by dates) to policymakers on how internal financial stability depends on internal policy and events such as government elections or resignation. It also shows how monetary authorities or internal policymakers’ decisions to relieve personal loans or increase/decrease the public budget trigger internal financial instability. The empirical analysis under vector autoregression (VAR) models shows the dynamic causal relationship between the oil price fluctuation and the Kuwaiti economy, which relies heavily on the oil price. Similarly, using vector autoregression (VAR) models to assess the impact of the global geopolitical risks on Kuwaiti financial stability, results reveal whether Kuwait is confronted with or sheltered from geopolitical risks. The Financial Stress Index serves as a guide for macroprudential regulators in order to understand the weakness of the overall Kuwaiti financial market and economy regardless of the Kuwaiti dinar strength and exchange rate stability. It helps policymakers predict future stress periods and, thus, address alternative cushions to confront future possible financial threats.Keywords: Kuwait, financial stress index, causality test, VAR, oil price, geopolitical risks
Procedia PDF Downloads 81729 Monitoring Systemic Risk in the Hedge Fund Sector
Authors: Frank Hespeler, Giuseppe Loiacono
Abstract:
We propose measures for systemic risk generated through intra-sectorial interdependencies in the hedge fund sector. These measures are based on variations in the average cross-effects of funds showing significant interdependency between their individual returns and the moments of the sector’s return distribution. The proposed measures display a high ability to identify periods of financial distress, are robust to modifications in the underlying econometric model and are consistent with intuitive interpretation of the results.Keywords: hedge funds, systemic risk, vector autoregressive model, risk monitoring
Procedia PDF Downloads 324728 Molecular Characterisation and Expression of Glutathione S-Transferase of Fasciola Gigantica
Authors: J. Adeppa, S. Samanta, O. K. Raina
Abstract:
Fasciolosis is a widespread economically important parasitic infection throughout the world caused by Fasciola hepatica and F. gigantica. In order to identify novel immunogen conferring significant protection against fasciolosis, currently, research has been focused on the defined antigens viz. glutathione S-transferase, fatty acid binding protein, cathepsin-L, fluke hemoglobin, paramyosin, myosin and F. hepatica- Kunitz Type Molecule. Among various antigens, GST which plays a crucial role in detoxification processes, i.e. phase II defense mechanism of this parasite, has a unique position as a novel vaccine candidate and a drug target in the control of this disease. For producing the antigens in large quantities and their purification to complete homogeneity, the recombinant DNA technology has become an important tool to achieve this milestone. RT- PCR was carried out using F. gigantica total RNA as template, and an amplicon of 657 bp GST gene was obtained. TA cloning vector was used for cloning of this gene, and the presence of insert was confirmed by blue-white selection for recombinant colonies. Sequence analysis of the present isolate showed 99.1% sequence homology with the published sequence of the F. gigantica GST gene of cattle origin (accession no. AF112657), with six nucleotide changes at 72, 74, 423, 513, 549 and 627th bp found in the present isolate, causing an overall change of 4 amino acids. The 657 bp GST gene was cloned at BamH1 and HindIII restriction sites of the prokaryotic expression vector pPROEXHTb in frame with six histidine residues and expressed in E. coli DH5α. Recombinant protein was purified from the bacterial lysate under non-denaturing conditions by the process of sonication after lysozyme treatment and subjecting the soluble fraction of the bacterial lysate to Ni-NTA affinity chromatography. Western blotting with rabbit hyper-immune serum showed immuno-reactivity with 25 kDa recombinant GST. Recombinant protein detected F. gigantica experimental as well as field infection in buffaloes by dot-ELISA. However, cross-reactivity studies on Fasciola gigantica GST antigen are needed to evaluate the utility of this protein in the serodiagnosis of fasciolosis.Keywords: fasciola gigantic, fasciola hepatica, GST, RT- PCR
Procedia PDF Downloads 184727 Impact of Urbanization Growth on Disease Spread and Outbreak Response: Exploring Strategies for Enhancing Resilience
Authors: Raquel Vianna Duarte Cardoso, Eduarda Lobato Faria, José Jorge Boueri
Abstract:
Rapid urbanization has transformed the global landscape, presenting significant challenges to public health. This article delves into the impact of urbanization on the spread of infectious diseases in cities and identifies crucial strategies to enhance urban community resilience. Massive urbanization over recent decades has created conducive environments for the rapid spread of diseases due to population density, mobility, and unequal living conditions. Urbanization has been observed to increase exposure to pathogens and foster conditions conducive to disease outbreaks, including seasonal flu, vector-borne diseases, and respiratory infections. In order to tackle these issues, a range of cross-disciplinary approaches are suggested. These encompass the enhancement of urban healthcare infrastructure, emphasizing the need for robust investments in hospitals, clinics, and healthcare systems to keep pace with the burgeoning healthcare requirements in urban environments. Moreover, the establishment of disease monitoring and surveillance mechanisms is indispensable, as it allows for the timely detection of outbreaks, enabling swift responses. Additionally, community engagement and education play a pivotal role in advocating for personal hygiene, vaccination, and preventive measures, thus playing a pivotal role in diminishing disease transmission. Lastly, the promotion of sustainable urban planning, which includes the creation of cities with green spaces, access to clean water, and proper sanitation, can significantly mitigate the risks associated with waterborne and vector-borne diseases. The article is based on a review of scientific literature, and it offers a comprehensive insight into the complexities of the relationship between urbanization and health. It places a strong emphasis on the urgent need for integrated approaches to improve urban resilience in the face of health challenges.Keywords: infectious diseases dissemination, public health, urbanization impacts, urban resilience
Procedia PDF Downloads 76