Search results for: simulation modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8110

Search results for: simulation modeling

7660 Far-Field Acoustic Prediction of a Supersonic Expanding Jet Using Large Eddy Simulation

Authors: Jesus Ruano, Asensi Oliva

Abstract:

The hydrodynamic field generated by a jet expansion is computed via three dimensional compressible Large Eddy Simulation (LES). Finite Volume Method (FVM) will be the discretization used during this simulation as well as hybrid schemes based on Kinetic Energy Preserving (KEP) schemes and up-winding Godunov based schemes with instabilities detectors. Velocity and pressure fields will be stored at different surfaces near the jet, but far enough to enclose all the fluctuations, in order to use them as input for the acoustic solver. The acoustic field is obtained in the far-field region at several locations by means of a hybrid method based on Ffowcs-Williams and Hawkings (FWH) equation. This equation will be formulated in the spectral domain, via Fourier Transform of the acoustic sources, which are modeled from the results of the initial simulation. The obtained results will allow the study of the broadband noise generated as well as sound directivities.

Keywords: far-field noise, Ffowcs-Williams and Hawkings, finite volume method, large eddy simulation, jet noise

Procedia PDF Downloads 298
7659 Evaluation of Minimization of Moment Ratio Method by Physical Modeling

Authors: Amin Eslami, Jafar Bolouri Bazaz

Abstract:

Under active stress conditions, a rigid cantilever retaining wall tends to rotate about a pivot point located within the embedded depth of the wall. For purely granular and cohesive soils, a methodology was previously reported called minimization of moment ratio to determine the location of the pivot point of rotation. The usage of this new methodology is to estimate the rotational stability safety factor. Moreover, the degree of improvement required in a backfill to get a desired safety factor can be estimated by the concept of the shear strength demand. In this article, the accuracy of this method for another type of cantilever walls called Contiguous Bored Pile (CBP) retaining wall is evaluated by using physical modeling technique. Based on observations, the results of moment ratio minimization method are in good agreement with the results of the carried out physical modeling.

Keywords: cantilever retaining wall, physical modeling, minimization of moment ratio method, pivot point

Procedia PDF Downloads 332
7658 Ultrasound Mechanical Index as a Parameter Affecting of the Ability of Proliferation of Cells

Authors: Z. Hormozi Moghaddam, M. Mokhtari-Dizaji, M. Movahedin, M. E. Ravari

Abstract:

Mechanical index (MI) is used for quantifying acoustic cavitation and the relationship between acoustic pressure and the frequency. In this study, modeling of the MI was applied to provide treatment protocol and to understand the effective physical processes on reproducibility of stem cells. The acoustic pressure and MI equations are modeled and solved to estimate optimal MI for 28, 40, 150 kHz and 1 MHz frequencies. Radial and axial acoustic pressure distribution was extracted. To validate the results of the modeling, the acoustic pressure in the water and near field depth was measured by a piston hydrophone. Results of modeling and experiments show that the model is consistent well to experimental results with 0.91 and 0.90 correlation of coefficient (p<0.05) for 1 MHz and 40 kHz. Low intensity ultrasound with 0.40 MI is more effective on the proliferation rate of the spermatogonial stem cells during the seven days of culture, in contrast, high MI has a harmful effect on the spermatogonial stem cells. This model provides proper treatment planning in vitro and in vivo by estimating the cavitation phenomenon.

Keywords: ultrasound, mechanical index, modeling, stem cell

Procedia PDF Downloads 334
7657 A Particle Filter-Based Data Assimilation Method for Discrete Event Simulation

Authors: Zhi Zhu, Boquan Zhang, Tian Jing, Jingjing Li, Tao Wang

Abstract:

Data assimilation is a model and data hybrid-driven method that dynamically fuses new observation data with a numerical model to iteratively approach the real system state. It is widely used in state prediction and parameter inference of continuous systems. Because of the discrete event system’s non-linearity and non-Gaussianity, traditional Kalman Filter based on linear and Gaussian assumptions cannot perform data assimilation for such systems, so particle filter has gradually become a technical approach for discrete event simulation data assimilation. Hence, we proposed a particle filter-based discrete event simulation data assimilation method and took the unmanned aerial vehicle (UAV) maintenance service system as a proof of concept to conduct simulation experiments. The experimental results showed that the filtered state data is closer to the real state of the system, which verifies the effectiveness of the proposed method. This research can provide a reference framework for the data assimilation process of other complex nonlinear systems, such as discrete-time and agent simulation.

Keywords: discrete event simulation, data assimilation, particle filter, model and data-driven

Procedia PDF Downloads 14
7656 Simulation of Complex-Shaped Particle Breakage with a Bonded Particle Model Using the Discrete Element Method

Authors: Felix Platzer, Eric Fimbinger

Abstract:

In Discrete Element Method (DEM) simulations, the breakage behavior of particles can be simulated based on different principles. In the case of large, complex-shaped particles that show various breakage patterns depending on the scenario leading to the failure and often only break locally instead of fracturing completely, some of these principles do not lead to realistic results. The reason for this is that in said cases, the methods in question, such as the Particle Replacement Method (PRM) or Voronoi Fracture, replace the initial particle (that is intended to break) into several sub-particles when certain breakage criteria are reached, such as exceeding the fracture energy. That is why those methods are commonly used for the simulation of materials that fracture completely instead of breaking locally. That being the case, when simulating local failure, it is advisable to pre-build the initial particle from sub-particles that are bonded together. The dimensions of these sub-particles consequently define the minimum size of the fracture results. This structure of bonded sub-particles enables the initial particle to break at the location of the highest local loads – due to the failure of the bonds in those areas – with several sub-particle clusters being the result of the fracture, which can again also break locally. In this project, different methods for the generation and calibration of complex-shaped particle conglomerates using bonded particle modeling (BPM) to enable the ability to depict more realistic fracture behavior were evaluated based on the example of filter cake. The method that proved suitable for this purpose and which furthermore allows efficient and realistic simulation of breakage behavior of complex-shaped particles applicable to industrial-sized simulations is presented in this paper.

Keywords: bonded particle model, DEM, filter cake, particle breakage

Procedia PDF Downloads 210
7655 Monomial Form Approach to Rectangular Surface Modeling

Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract:

Geometric modeling plays an important role in the constructions and manufacturing of curve, surface and solid modeling. Their algorithms are critically important not only in the automobile, ship and aircraft manufacturing business, but are also absolutely necessary in a wide variety of modern applications, e.g., robotics, optimization, computer vision, data analytics and visualization. The calculation and display of geometric objects can be accomplished by these six techniques: Polynomial basis, Recursive, Iterative, Coefficient matrix, Polar form approach and Pyramidal algorithms. In this research, the coefficient matrix (simply called monomial form approach) will be used to model polynomial rectangular patches, i.e., Said-Ball, Wang-Ball, DP, Dejdumrong and NB1 surfaces. Some examples of the monomial forms for these surface modeling are illustrated in many aspects, e.g., construction, derivatives, model transformation, degree elevation and degress reduction.

Keywords: monomial forms, rectangular surfaces, CAGD curves, monomial matrix applications

Procedia PDF Downloads 146
7654 3D Modeling of Flow and Sediment Transport in Tanks with the Influence of Cavity

Authors: A. Terfous, Y. Liu, A. Ghenaim, P. A. Garambois

Abstract:

With increasing urbanization worldwide, it is crucial to sustainably manage sediment flows in urban networks and especially in stormwater detention basins. One key aspect is to propose optimized designs for detention tanks in order to best reduce flood peak flows and in the meantime settle particles. It is, therefore, necessary to understand complex flows patterns and sediment deposition conditions in stormwater detention basins. The aim of this paper is to study flow structure and particle deposition pattern for a given tank geometry in view to control and maximize sediment deposition. Both numerical simulation and experimental works were done to investigate the flow and sediment distribution in a storm tank with a cavity. As it can be indicated, the settle distribution of the particle in a rectangular tank is mainly determined by the flow patterns and the bed shear stress. The flow patterns in a rectangular tank differ with different geometry, entrance flow rate and the water depth. With the changing of flow patterns, the bed shear stress will change respectively, which also play an influence on the particle settling. The accumulation of the particle in the bed changes the conditions at the bottom, which is ignored in the investigations, however it worth much more attention, the influence of the accumulation of the particle on the sedimentation should be important. The approach presented here is based on the resolution of the Reynolds averaged Navier-Stokes equations to account for turbulent effects and also a passive particle transport model. An analysis of particle deposition conditions is presented in this paper in terms of flow velocities and turbulence patterns. Then sediment deposition zones are presented thanks to the modeling with particle tracking method. It is shown that two recirculation zones seem to significantly influence sediment deposition. Due to the possible overestimation of particle trap efficiency with standard wall functions and stick conditions, further investigations seem required for basal boundary conditions based on turbulent kinetic energy and shear stress. These observations are confirmed by experimental investigations processed in the laboratory.

Keywords: storm sewers, sediment deposition, numerical simulation, experimental investigation

Procedia PDF Downloads 325
7653 Study on Capability of the Octocopter Configurations in Finite Element Analysis Simulation Environment

Authors: Jeet Shende, Leonid Shpanin, Misko Abramiuk, Mattew Goodwin, Nicholas Pickett

Abstract:

Energy harvesting on board the Unmanned Ariel Vehicle (UAV) is one of the most rapidly growing emerging technologies and consists of the collection of small amounts of energy, for different applications, from unconventional sources that are incidental to the operation of the parent system or device. Different energy harvesting techniques have already been investigated in the multirotor drones, where the energy collected comes from the systems surrounding ambient environment and typically involves the conversion of solar, kinetic, or thermal energies into electrical energy. The energy harvesting from the vibrated propeller using the piezoelectric components inside the propeller has also been proven to be feasible. However, the impact on the UAV flight performance using this technology has not been investigated. In this contribution the impact on the multirotor drone operation has been investigated at different flight control configurations which support the efficient performance of the propeller vibration energy harvesting. The industrially made MANTIS X8-PRO octocopter frame kit was used to explore the octocopter operation which was modelled using SolidWorks 3D CAD package for simulation studies. The octocopter flight control strategy is developed through integration of the SolidWorks 3D CAD software and MATLAB/Simulink simulation environment for evaluation of the octocopter behaviour under different simulated flight modes and octocopter geometries. Analysis of the two modelled octocopter geometries and their flight performance is presented via graphical representation of simulated parameters. The possibility of not using the landing gear in octocopter geometry is demonstrated. The conducted study evaluates the octocopter’s flight control technique and its impact on the energy harvesting mechanism developed on board the octocopter. Finite Element Analysis (FEA) simulation results of the modelled octocopter in operation are presented exploring the performance of the octocopter flight control and structural configurations. Applications of both octocopter structures and their flight control strategy are discussed.

Keywords: energy harvesting, flight control modelling, object modeling, unmanned aerial vehicle

Procedia PDF Downloads 77
7652 Chaotic Electronic System with Lambda Diode

Authors: George Mahalu

Abstract:

The Chua diode has been configured over time in various ways, using electronic structures like operational amplifiers (AOs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paperwork proposed here uses in the modeling a lambda diode type configuration consisting of two junction field effect transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.

Keywords: chua, diode, memristor, chaos

Procedia PDF Downloads 88
7651 The Effectiveness of Video Modeling Procedures on Request an Item Behavior Children with Autism Spectrum Disorders

Authors: Melih Cattik

Abstract:

The present study investigate effectiveness of video modeling procedures on request an item behavior of children with ASD. Two male and a female children with ASD participated in the study. A multiple baseline across participant single-subject design was used to evaluate the effects of the video modeling procedures on request an item behavior. During baseline, no prompts were presented to participants. In the intervention phase, the teacher gave video model to the participant and than created opportunity for request an item to him/her. When the first participant reached to criterion, the second participant began intervention. This procedure continued till all participants completed intervention. Finally, all three participants learned to request an item behavior. Based upon findings of this study, it will make suggestions to future researches.

Keywords: autism spectrum disorders, video modeling procedures, request an item behavior, single subject design

Procedia PDF Downloads 409
7650 Stochastic Simulation of Random Numbers Using Linear Congruential Method

Authors: Melvin Ballera, Aldrich Olivar, Mary Soriano

Abstract:

Digital computers nowadays must be able to have a utility that is capable of generating random numbers. Usually, computer-generated random numbers are not random given predefined values such as starting point and end points, making the sequence almost predictable. There are many applications of random numbers such business simulation, manufacturing, services domain, entertainment sector and other equally areas making worthwhile to design a unique method and to allow unpredictable random numbers. Applying stochastic simulation using linear congruential algorithm, it shows that as it increases the numbers of the seed and range the number randomly produced or selected by the computer becomes unique. If this implemented in an environment where random numbers are very much needed, the reliability of the random number is guaranteed.

Keywords: stochastic simulation, random numbers, linear congruential algorithm, pseudorandomness

Procedia PDF Downloads 316
7649 Simulation Model for Evaluating the Impact of Adaptive E-Learning in the Agricultural Sector

Authors: Maria Nabakooza

Abstract:

Efficient agricultural production is very significant in attaining food sufficiency and security in the world. Many methods are employed by the farmers while attending to their gardens, from manual to mechanized, with Farmers range from subsistence to commercial depending on the motive. This creates a lacuna in the modes of operation in this field as different farmers will take different approaches. This has led to many e-Learning courses being introduced to address this gap. Many e-learning systems use advanced network technologies like Web services, grid computing to promote learning at any time and any place. Many of the existing systems have not inculcated the applicability of the modules in them, the tools to be used and further access whether they are the right tools for the right job. A thorough investigation into the applicability of adaptive eLearning in the agricultural sector has not been taken into account; enabling the assumption that eLearning is the right tool for boosting productivity in this sector. This study comes in to provide an insight and thorough analysis as to whether adaptive eLearning is the right tool for boosting agricultural productivity. The Simulation will adopt a system dynamics modeling approach as a way of examining causality and effect relationship. This study will provide teachers with an insight into which tools they should adopt in designing, and provide students the opportunities to achieve an orderly learning experience through adaptive navigating e-learning services.

Keywords: agriculture, adaptive, e-learning, technology

Procedia PDF Downloads 251
7648 Design of Visual Repository, Constraint and Process Modeling Tool Based on Eclipse Plug-Ins

Authors: Rushiraj Heshi, Smriti Bhandari

Abstract:

Master Data Management requires creation of Central repository, applying constraints on Repository and designing processes to manage data. Designing of Repository, constraints on repository and business processes is very tedious and time consuming task for large Enterprise. Hence Visual Repository, constraints and Process (Workflow) modeling is the most critical step in Master Data Management.In this paper, we realize a Visual Modeling tool for implementing Repositories, Constraints and Processes based on Eclipse Plugin using GMF/EMF which follows principles of Model Driven Engineering (MDE).

Keywords: EMF, GMF, GEF, repository, constraint, process

Procedia PDF Downloads 497
7647 Modeling and Analysis the Effects of Temperature and Pressure on the Gas-Crossover in Polymer Electrolyte Membrane Electrolyzer

Authors: Abdul Hadi Bin Abdol Rahim, Alhassan Salami Tijani

Abstract:

Hydrogen produced by means of polymer electrolyte membrane electrolyzer (PEME) is one of the most promising methods due to clean and renewable energy source. In the process, some energy loss due to mass transfer through a PEM is caused by diffusion, electro-osmotic drag, and the pressure difference between the cathode channel and anode channel. In PEME water molecules and ionic particles transferred between the electrodes from anode to cathode, Extensive mixing of the hydrogen and oxygen at anode channel due to gases cross-over must be avoided. In recent times the consciousness of safety issue in high pressure PEME where the oxygen mix with hydrogen at anode channel could create, explosive conditions have generated a lot of concern. In this paper, the steady state and simulation analysis of gases crossover in PEME on the temperature and pressure effect are presented. The simulations have been analysis in MATLAB based on the well-known Fick’s Law of molecular diffusion. The simulation results indicated that as temperature increases, there is a significant decrease in operating voltage.

Keywords: diffusion, gases crosover, steady state, Fick’s law

Procedia PDF Downloads 330
7646 Dimensioning of Circuit Switched Networks by Using Simulation Code Based On Erlang (B) Formula

Authors: Ali Mustafa Elshawesh, Mohamed Abdulali

Abstract:

The paper presents an approach to dimension circuit switched networks and find the relationship between the parameters of the circuit switched networks on the condition of specific probability of call blocking. Our work is creating a Simulation code based on Erlang (B) formula to draw graphs which show two curves for each graph; one of simulation and the other of calculated. These curves represent the relationships between average number of calls and average call duration with the probability of call blocking. This simulation code facilitates to select the appropriate parameters for circuit switched networks.

Keywords: Erlang B formula, call blocking, telephone system dimension, Markov model, link capacity

Procedia PDF Downloads 612
7645 Double Fourier Series Applied to Supraharmonic Determination: The Specific Cases of a Boost and an Interleaved Boost Converter Used as Active Power Factor Correctors

Authors: Erzen Muharemi, Emmanuel De Jaeger, Jos Knockaert

Abstract:

The work presented here investigates the modeling of power electronics converters in terms of their harmonic production. Specifically, it addresses high-frequency emissions in the range of 2-150 kHz, referred to as supraharmonics. This paper models a conventional converter, namely the boost converter used as an active power factor corrector (APFC). Furthermore, the modeling is extended to the case of the interleaved boost converter, which offers advantages such as halving the emissions. Finally, a comparison between the theoretical, numerical, and experimental results will be provided.

Keywords: APFC, boost converter, converter modeling, double fourier series, supraharmonics

Procedia PDF Downloads 42
7644 Dynamic Process Monitoring of an Ammonia Synthesis Fixed-Bed Reactor

Authors: Bothinah Altaf, Gary Montague, Elaine B. Martin

Abstract:

This study involves the modeling and monitoring of an ammonia synthesis fixed-bed reactor using partial least squares (PLS) and its variants. The process exhibits complex dynamic behavior due to the presence of heat recycling and feed quench. One limitation of static PLS model in this situation is that it does not take account of the process dynamics and hence dynamic PLS was used. Although it showed, superior performance to static PLS in terms of prediction, the monitoring scheme was inappropriate hence adaptive PLS was considered. A limitation of adaptive PLS is that non-conforming observations also contribute to the model, therefore, a new adaptive approach was developed, robust adaptive dynamic PLS. This approach updates a dynamic PLS model and is robust to non-representative data. The developed methodology showed a clear improvement over existing approaches in terms of the modeling of the reactor and the detection of faults.

Keywords: ammonia synthesis fixed-bed reactor, dynamic partial least squares modeling, recursive partial least squares, robust modeling

Procedia PDF Downloads 393
7643 Computational Experiment on Evolution of E-Business Service Ecosystem

Authors: Xue Xiao, Sun Hao, Liu Donghua

Abstract:

E-commerce is experiencing rapid development and evolution, but traditional research methods are difficult to fully demonstrate the relationship between micro factors and macro evolution in the development process of e-commerce, which cannot provide accurate assessment for the existing strategies and predict the future evolution trends. To solve these problems, this paper presents the concept of e-commerce service ecosystem based on the characteristics of e-commerce and business ecosystem theory, describes e-commerce environment as a complex adaptive system from the perspective of ecology, constructs a e-commerce service ecosystem model by using Agent-based modeling method and Java language in RePast simulation platform and conduct experiment through the way of computational experiment, attempt to provide a suitable and effective researching method for the research on e-commerce evolution. By two experiments, it can be found that system model built in this paper is able to show the evolution process of e-commerce service ecosystem and the relationship between micro factors and macro emergence. Therefore, the system model constructed by Agent-based method and computational experiment provides proper means to study the evolution of e-commerce ecosystem.

Keywords: e-commerce service ecosystem, complex system, agent-based modeling, computational experiment

Procedia PDF Downloads 359
7642 Investigation of Dry Ice Mixed Novel Hybrid Lubri-Coolant in Sustainable Machining of Ti-6AL-4V Alloy: A Comparison of Experimental and Modelling

Authors: Muhammad Jamil, Ning He, Aqib Mashood Khan, Munish Kumar Gupta

Abstract:

Ti-6Al-4V has numerous applications in the medical, automobile, and aerospace industries due to corrosion resistivity, structural stability, and chemical inertness to most fluids at room temperature. These peculiar characteristics are beneficial for their application and present formidable challenges during machining. Machining of Ti-6Al-4V produces an elevated cutting temperature above 1000oC at dry conditions. This accelerates tool wear and reduces product quality. Therefore, there is always a need to employ sustainable/effective coolant/lubricant when machining such alloy. In this study, Finite Element Modeling (FEM) and experimental analysis when cutting Ti-6Al-4V under a distinctly developed dry ice mixed hybrid lubri-coolant are presented. This study aims to model the milling process of Ti-6Al-4V under a proposed novel hybrid lubri-coolant using different cutting speeds and feed per tooth DEFORM® software package was used to conduct the FEM and the numerical model was experimentally validated. A comparison of experimental and simulation results showed a maximum error of no more than 6% for all experimental conditions. In a nutshell, it can be said that the proposed model is effective in predicting the machining temperature precisely.

Keywords: friction coefficient, heat transfer, finite element modeling (FEM), milling Ti-6Al-4V

Procedia PDF Downloads 58
7641 Parking Service Effectiveness at Commercial Malls

Authors: Ahmad AlAbdullah, Ali AlQallaf, Mahdi Hussain, Mohammed AlAttar, Salman Ashknani, Magdy Helal

Abstract:

We study the effectiveness of the parking service provided at Kuwaiti commercial malls and explore potential problems and feasible improvements. Commercial malls are important to Kuwaitis as the entertainment and shopping centers due to the lack of other alternatives. The difficulty and relatively long times wasted in finding a parking spot at the mall are real annoyances. We applied queuing analysis to one of the major malls that offer paid-parking (1040 parking spots) in addition to free parking. Patrons of the mall usually complained of the traffic jams and delays at entering the paid parking (average delay to park exceeds 15 min for about 62% of the patrons, while average time spent in the mall is about 2.6 hours). However, the analysis showed acceptable service levels at the check-in gates of the parking garage. Detailed review of the vehicle movement at the gateways indicated that arriving and departing cars both had to share parts of the gateway to the garage, which caused the traffic jams and delays. A simple comparison we made indicated that the largest commercial mall in Kuwait does not suffer such parking issues, while other smaller, yet important malls do, including the one we studied. It was suggested that well-designed inlets and outlets of that gigantic mall permitted smooth parking despite being totally free and mall is the first choice for most people for entertainment and shopping. A simulation model is being developed for further analysis and verification. Simulation can overcome the mathematical difficulty in using non-Poisson queuing models. The simulation model is used to explore potential changes to the parking garage entrance layout. And with the inclusion of the drivers’ behavior inside the parking, effectiveness indicators can be derived to address the economic feasibility of extending the parking capacity and increasing service levels. Outcomes of the study are planned to be generalized as appropriate to other commercial malls in Kuwait

Keywords: commercial malls, parking service, queuing analysis, simulation modeling

Procedia PDF Downloads 340
7640 Decision Tree Modeling in Emergency Logistics Planning

Authors: Yousef Abu Nahleh, Arun Kumar, Fugen Daver, Reham Al-Hindawi

Abstract:

Despite the availability of natural disaster related time series data for last 110 years, there is no forecasting tool available to humanitarian relief organizations to determine forecasts for emergency logistics planning. This study develops a forecasting tool based on identifying probability of disaster for each country in the world by using decision tree modeling. Further, the determination of aggregate forecasts leads to efficient pre-disaster planning. Based on the research findings, the relief agencies can optimize the various resources allocation in emergency logistics planning.

Keywords: decision tree modeling, forecasting, humanitarian relief, emergency supply chain

Procedia PDF Downloads 483
7639 Modeling and Simulation of Secondary Breakup and Its Influence on Fuel Spray in High Torque Low Speed Diesel Engine

Authors: Mohsin Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi

Abstract:

High torque low-speed diesel engine has a wide range of industrial and commercial applications. In literature, it’s found that lot of work has been done for the high-speed diesel engine and research on High Torque low-speed is rare. The fuel injection plays a key role in the efficiency of engine and reduction in exhaust emission. The fuel breakup plays a critical role in air-fuel mixture and spray combustion. The current study explains numerically an important phenomenon in spray combustion which is deformation and breakup of liquid drops in compression ignition internal combustion engine. The secondary breakup and its influence on spray and characteristics of compressed gas in-cylinder have been calculated by using simulation software in the backdrop of high torque low-speed diesel like conditions. The secondary spray breakup is modeled with KH - RT instabilities. The continuous field is described by turbulence model and dynamics of the dispersed droplet is modeled by Lagrangian tracking scheme. The results by using KH - RT model are compared against other default methods in OpenFOAM and published experimental data from research and implemented in CFD (Computational Fluid Dynamics). These numerical simulation, done in OpenFoam and Matlab, results are analyzed for the complete 720- degree 4 stroke engine cycle at a low engine speed, for favorable agreement to be achieved. Results thus obtained will be analyzed for better evaporation in near nozzle region. The proposed analyses will further help in better engine efficiency, low emission and improved fuel economy.

Keywords: diesel fuel, KH-RT, Lagrangian , Open FOAM, secondary breakup

Procedia PDF Downloads 265
7638 Finite Element Modeling of Ultrasonic Shot Peening Process using Multiple Pin Impacts

Authors: Chao-xun Liu, Shi-hong Lu

Abstract:

In spite of its importance to the aerospace and automobile industries, little or no attention has been devoted to the accurate modeling of the ultrasonic shot peening (USP) process. It is therefore the purpose of this study to conduct finite element analysis of the process using a realistic multiple pin impacts model with the explicit solver of ABAQUS. In this paper, we research the effect of several key parameters on the residual stress distribution within the target, including impact velocity, incident angle, friction coefficient between pins and target and impact number of times were investigated. The results reveal that the impact velocity and impact number of times have obvious effect and impacting vertically could produce the most perfect residual stress distribution. Then we compare the results with the date in USP experiment and verify the exactness of the model. The analysis of the multiple pin impacts date reveal the relationships between peening process parameters and peening quality, which are useful for identifying the parameters which need to be controlled and regulated in order to produce a more beneficial compressive residual stress distribution within the target.

Keywords: ultrasonic shot peening, finite element, multiple pins, residual stress, numerical simulation

Procedia PDF Downloads 448
7637 Fault Diagnosis in Induction Motor

Authors: Kirti Gosavi, Anita Bhole

Abstract:

The paper demonstrates simulation and steady-state performance of three phase squirrel cage induction motor and detection of rotor broken bar fault using MATLAB. This simulation model is successfully used in the fault detection of rotor broken bar for the induction machines. A dynamic model using PWM inverter and mathematical modelling of the motor is developed. The dynamic simulation of the small power induction motor is one of the key steps in the validation of the design process of the motor drive system and it is needed for eliminating advertent design errors and the resulting error in the prototype construction and testing. The simulation model will be helpful in detecting the faults in three phase induction motor using Motor current signature analysis.

Keywords: squirrel cage induction motor, pulse width modulation (PWM), fault diagnosis, induction motor

Procedia PDF Downloads 633
7636 Simulation of a Pressure Driven Based Subsonic Steady Gaseous Flow inside a Micro Channel Using Direct Simulation Monte-Carlo Method

Authors: Asghar Ebrahimi, Elyas Lakzian

Abstract:

For the analysis of flow inside micro geometries, classical CFD methods can not accurately predict the behavior of flow. Alternatively, the gas flow through micro geometries can be investigated precisely using the direct simulation Monte Carlo (DSMC) method. In the present paper, a pressure boundary condition is utilized to simulate a gaseous flow inside a micro channel using the DSMC method. Accuracy of simulation is guaranteed by choosing proper cell dimension and number of particle per cell analysis. Also, results of simulation are compared with the results of reliable references. Good agreement with results certifies the correctness of new boundary condition implemented on the micro channel.

Keywords: pressure boundary condition, DSMC, micro channel, cell dimension, particle per cell

Procedia PDF Downloads 478
7635 Comparison of Johnson-Cook and Barlat Material Model for 316L Stainless Steel

Authors: Yiğit Gürler, İbrahim Şimşek, Müge Savaştaer, Ayberk Karakuş, Alper Taşdemirci

Abstract:

316L steel is frequently used in the industry due to its easy formability and accessibility in sheet metal forming processes. Numerical and experimental studies are frequently encountered in the literature to examine the mechanical behavior of 316L stainless steel during the forming process. 316L stainless steel is the most common material used in the production of plate heat exchangers and plate heat exchangers are produced by plastic deformation of the stainless steel. The motivation in this study is to determine the appropriate material model during the simulation of the sheet metal forming process. For this reason, two different material models were examined and Ls-Dyna material cards were created using material test data. These are MAT133_BARLAT_YLD2000 and MAT093_SIMPLIFIED_JOHNSON_COOK. In order to compare results of the tensile test & hydraulic bulge test performed both numerically and experimentally. The obtained results were evaluated comparatively and the most suitable material model was selected for the forming simulation. In future studies, this material model will be used in the numerical modeling of the sheet metal forming process.

Keywords: 316L, mechanical characterization, metal forming, Ls-Dyna

Procedia PDF Downloads 334
7634 A Finite Element Method Simulation for Rocket Motor Material Selection

Authors: T. Kritsana, P. Sawitri, P. Teeratas

Abstract:

This article aims to study the effect of pressure on rocket motor case by Finite Element Method simulation to select optimal material in rocket motor manufacturing process. In this study, cylindrical tubes with outside diameter of 122 mm and thickness of 3 mm are used for simulation. Defined rocket motor case materials are AISI4130, AISI1026, AISI1045, AL2024 and AL7075. Internal pressure used for the simulation is 22 MPa. The result from Finite Element Method shows that at a pressure of 22 MPa rocket motor case produced by AISI4130, AISI1045 and AL7075 can be used. A comparison of the result between AISI4130, AISI1045 and AL7075 shows that AISI4130 has minimum principal stress and confirm the results of Finite Element Method by the used of calculation method found that, the results from Finite Element Method has good reliability.

Keywords: rocket motor case, finite element method, principal stress, simulation

Procedia PDF Downloads 449
7633 Multiple Relaxation Times in the Gibbs Ensemble Monte Carlo Simulation of Phase Separation

Authors: Bina Kumari, Subir K. Sarkar, Pradipta Bandyopadhyay

Abstract:

The autocorrelation function of the density fluctuation is studied in each of the two phases in a Gibbs Ensemble Monte Carlo (GEMC) simulation of the problem of phase separation for a square well potential with various values of its range. We find that the normalized autocorrelation function is described very well as a linear combination of an exponential function with a time scale τ₂ and a stretched exponential function with a time scale τ₁ and an exponent α. Dependence of (α, τ₁, τ₂) on the parameters of the GEMC algorithm and the range of the square well potential is investigated and interpreted. We also analyse the issue of how to choose the parameters of the GEMC simulation optimally.

Keywords: autocorrelation function, density fluctuation, GEMC, simulation

Procedia PDF Downloads 189
7632 A Study of Recent Contribution on Simulation Tools for Network-on-Chip

Authors: Muthana Saleh Alalaki, Michael Opoku Agyeman

Abstract:

The growth in the number of Intellectual Properties (IPs) or the number of cores on the same chip becomes a critical issue in System-on-Chip (SoC) due to the intra-communication problem between the chip elements. As a result, Network-on-Chip (NoC) has emerged as a system architecture to overcome intra-communication issues. This paper presents a study of recent contributions on simulation tools for NoC. Furthermore, an overview of NoC is covered as well as a comparison between some NoC simulators to help facilitate research in on-chip communication.

Keywords: WiNoC, simulation tool, network-on-chip, SoC

Procedia PDF Downloads 498
7631 A Modeling Approach for Blockchain-Oriented Information Systems Design

Authors: Jiaqi Yan, Yani Shi

Abstract:

The blockchain technology is regarded as the most promising technology that has the potential to trigger a technological revolution. However, besides the bitcoin industry, we have not yet seen a large-scale application of blockchain in those domains that are supposed to be impacted, such as supply chain, financial network, and intelligent manufacturing. The reasons not only lie in the difficulties of blockchain implementation, but are also root in the challenges of blockchain-oriented information systems design. As the blockchain members are self-interest actors that belong to organizations with different existing information systems. As they expect different information inputs and outputs of the blockchain application, a common language protocol is needed to facilitate communications between blockchain members. Second, considering the decentralization of blockchain organization, there is not any central authority to organize and coordinate the business processes. Thus, the information systems built on blockchain should support more adaptive business process. This paper aims to address these difficulties by providing a modeling approach for blockchain-oriented information systems design. We will investigate the information structure of distributed-ledger data with conceptual modeling techniques and ontology theories, and build an effective ontology mapping method for the inter-organization information flow and blockchain information records. Further, we will study the distributed-ledger-ontology based business process modeling to support adaptive enterprise on blockchain.

Keywords: blockchain, ontology, information systems modeling, business process

Procedia PDF Downloads 449