Search results for: risks on building from climate change
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12851

Search results for: risks on building from climate change

12401 Assessment of Water Availability and Quality in the Climate Change Context in Urban Areas

Authors: Rose-Michelle Smith, Musandji Fuamba, Salomon Salumu

Abstract:

Water is vital for life. Access to drinking water and sanitation for humans is one of the Sustainable Development Goals (specifically the sixth) approved by United Nations Member States in September 2015. There are various problems identified relating to water: insufficient fresh water, inequitable distribution of water resources, poor water management in certain places on the planet, detection of water-borne diseases due to poor water quality, and the negative impacts of climate change on water. One of the major challenges in the world is finding ways to ensure that people and the environment have enough water resources to sustain and support their existence. Thus, this research project aims to develop a tool to assess the availability, quality and needs of water in current and future situations with regard to climate change. This tool was tested using threshold values for three regions in three countries: the Metropolitan Community of Montreal (Canada), Normandie Region (France) and North Department (Haiti). The WEAP software was used to evaluate the available quantity of water resources. For water quality, two models were performed: the Canadian Council of Ministers of the Environment (CCME) and the Malaysian Water Quality Index (WQI). Preliminary results showed that the ratio of the needs could be estimated at 155, 308 and 644 m3/capita in 2023 for Normandie, Cap-Haitian and CMM, respectively. Then, the Water Quality Index (WQI) varied from one country to another. Other simulations regarding the water availability and quality are still in progress. This tool will be very useful in decision-making on projects relating to water use in the future; it will make it possible to estimate whether the available resources will be able to satisfy the needs.

Keywords: climate change, water needs, balance sheet, water quality

Procedia PDF Downloads 75
12400 Carbon Footprint of Educational Establishments: The Case of the University of Alicante

Authors: Maria R. Mula-Molina, Juan A. Ferriz-Papi

Abstract:

Environmental concerns are increasingly obtaining higher priority in sustainability agenda of educational establishments. This is important not only for its environmental performance in its own right as an organization, but also to present a model for its students. On the other hand, universities play an important role on research and innovative solutions for measuring, analyzing and reducing environmental impacts for different activities. The assessment and decision-making process during the activity of educational establishments is linked to the application of robust indicators. In this way, the carbon footprint is a developing indicator for sustainability that helps understand the direct impact on climate change. But it is not easy to implement. There is a large amount of considering factors involved that increases its complexity, such as different uses at the same time (research, lecturing, administration), different users (students, staff) or different levels of activity (lecturing, exam or holidays periods). The aim of this research is to develop a simplified methodology for calculating and comparing carbon emissions per user at university campus considering two main aspects for carbon accountings: Building operations and transport. Different methodologies applied in other Spanish university campuses are analyzed and compared to obtain a final proposal to be developed in this type of establishments. First, building operation calculation considers the different uses and energy sources consumed. Second, for transport calculation, the different users and working hours are calculated separately, as well as their origin and traveling preferences. For every transport, a different conversion factor is used depending on carbon emissions produced. The final result is obtained as an average of carbon emissions produced per user. A case study is applied to the University of Alicante campus in San Vicente del Raspeig (Spain), where the carbon footprint is calculated. While the building operation consumptions are known per building and month, it does not happen with transport. Only one survey about the habit of transport for users was developed in 2009/2010, so no evolution of results can be shown in this case. Besides, building operations are not split per use, as building services are not monitored separately. These results are analyzed in depth considering all factors and limitations. Besides, they are compared to other estimations in other campuses. Finally, the application of the presented methodology is also studied. The recommendations concluded in this study try to enhance carbon emission monitoring and control. A Carbon Action Plan is then a primary solution to be developed. On the other hand, the application developed in the University of Alicante campus cannot only further enhance the methodology itself, but also render the adoption by other educational establishments more readily possible and yet with a considerable degree of flexibility to cater for their specific requirements.

Keywords: building operations, built environment, carbon footprint, climate change, transport

Procedia PDF Downloads 295
12399 Exploration of Environmental Parameters on the Evolution of Vernacular Building Techniques in East Austria

Authors: Hubert Feiglstorfer

Abstract:

Due to its location in a transition zone from the Pannonian to the pre-Alpine region, the east of Austria shows a small-scale diversity in the regional development of certain vernacular building techniques. In this article the relationship between natural building material resources, topography and climate will be examined. Besides environmental preconditions, social and economic historical factors have developed different construction techniques within certain regions in the Weinviertel and Burgenland, the two eastern federal states of Austria. But even within these regions, varying building techniques were found, due to the locally different use of raw materials like wood, stone, clay, lime, or organic fibres. Within these small-scale regions, building traditions were adapted over the course of time due to changes in the use of the building material, for example from wood to brick or from wood to earth. The processing of the raw materials varies from region to region, for example as rammed earth, cob, log, or brick construction. Environmental preconditions cross national borders. For that reason, developments in the neighbouring countries, the Czech Republic, Slovakia, Hungary and Slovenia are included in this analysis. As an outcome of this research a map was drawn which shows the interrelation between locally available building materials, topography, climate and local building techniques? As a result of this study, which covers the last 300 years, one can see how the local population used natural resources very sensitively adapted to local environmental preconditions. In the case of clay, for example, changes of proportions of lime and particular minerals cause structural changes that differ from region to region. Based on material analyses in the field of clay mineralogy, on ethnographic research, literature and archive research, explanations for certain local structural developments will be given for the first time over the region of East Austria.

Keywords: European crafts, material culture, architectural history, earthen architecture, earth building history

Procedia PDF Downloads 237
12398 Refurbishment Methods to Enhance Energy Efficiency of Brick Veneer Residential Buildings in Victoria

Authors: Hamid Reza Tabatabaiefar, Bita Mansoury, Mohammad Javad Khadivi Zand

Abstract:

The current energy and climate change impacts of the residential building sector in Australia are significant. Thus, the Australian Government has introduced more stringent regulations to improve building energy efficiency. In 2006, the Australian residential building sector consumed about 11% (around 440 Petajoule) of the total primary energy, resulting in total greenhouse gas emissions of 9.65 million tonnes CO2-eq. The gas and electricity consumption of residential dwellings contributed to 30% and 52% respectively, of the total primary energy utilised by this sector. Around 40 percent of total energy consumption of Australian buildings goes to heating and cooling due to the low thermal performance of the buildings. Thermal performance of buildings determines the amount of energy used for heating and cooling of the buildings which profoundly influences energy efficiency. Employing sustainable design principles and effective use of construction materials can play a crucial role in improving thermal performance of new and existing buildings. Even though awareness has been raised, the design phase of refurbishment projects is often problematic. One of the issues concerning the refurbishment of residential buildings is mostly the consumer market, where most work consists of moderate refurbishment jobs, often without assistance of an architect and partly without a building permit. There is an individual and often fragmental approach that results in lack of efficiency. Most importantly, the decisions taken in the early stages of the design determine the final result; however, the assessment of the environmental performance only happens at the end of the design process, as a reflection of the design outcome. Finally, studies have identified the lack of knowledge, experience and best-practice examples as barriers in refurbishment projects. In the context of sustainable development and the need to reduce energy demand, refurbishing the ageing residential building constitutes a necessary action. Not only it does provide huge potential for energy savings, but it is also economically and socially relevant. Although the advantages have been identified, the guidelines come in the form of general suggestions that fail to address the diversity of each project. As a result, it has been recognised that there is a strong need to develop guidelines for optimised retrofitting of existing residential buildings in order to improve their energy performance. The current study investigates the effectiveness of different energy retrofitting techniques and examines the impact of employing those methods on energy consumption of residential brick veneer buildings in Victoria (Australia). Proposing different remedial solutions for improving the energy performance of residential brick veneer buildings, in the simulation stage, annual energy usage analyses have been carried out to determine heating and cooling energy consumptions of the buildings for different proposed retrofitting techniques. Then, the results of employing different retrofitting methods have been examined and compared in order to identify the most efficient and cost-effective remedial solution for improving the energy performance of those buildings with respect to the climate condition in Victoria and construction materials of the studied benchmark building.

Keywords: brick veneer residential buildings, building energy efficiency, climate change impacts, cost effective remedial solution, energy performance, sustainable design principles

Procedia PDF Downloads 291
12397 Energy Performance of Buildings Due to Downscaled Seasonal Models

Authors: Anastasia K. Eleftheriadou, Athanasios Sfetsos, Nikolaos Gounaris

Abstract:

The present work examines the suitability of a seasonal forecasting model downscaled with a very high spatial resolution in order to assess the energy performance and requirements of buildings. The application of the developed model is applied on Greece for a period and with a forecast horizon of 5 months in the future. Greece, as a country in the middle of a financial crisis and facing serious societal challenges, is also very sensitive to climate changes. The commonly used method for the correlation of climate change with the buildings energy consumption is the concept of Degree Days (DD). This method can be applied to heating and cooling systems for a better management of environmental, economic and energy crisis, and can be used as medium (3-6 months) planning tools in order to predict the building needs and country’s requirements for residential energy use.

Keywords: downscaled seasonal models, degree days, energy performance

Procedia PDF Downloads 453
12396 Municipal Action Against Urbanisation-Induced Warming: Case Studies from Jordan, Zambia, and Germany

Authors: Muna Shalan

Abstract:

Climate change is a systemic challenge for cities, with its impacts not happening in isolation but rather intertwined, thus increasing hazards and the vulnerability of the exposed population. The increase in the frequency and intensity of heat waves, for example, is associated with multiple repercussions on the quality of life of city inhabitants, including health discomfort, a rise in mortality and morbidity, increasing energy demand for cooling, and shrinking of green areas due to drought. To address the multi-faceted impact of urbanisation-induced warming, municipalities and local governments are challenged with devising strategies and implementing effective response measures. Municipalities are recognising the importance of guiding urban concepts to drive climate action in the urban environment. An example is climate proofing, which refers to a process of mainstreaming climate change into development strategies and programs, i.e., urban planning is viewed through a climate change lens. There is a multitude of interconnected aspects that are critical to paving the path toward climate-proofing of urban areas and avoiding poor planning of layouts and spatial arrangements. Navigating these aspects through an analysis of the overarching practices governing municipal planning processes, which is the focus of this research, will highlight entry points to improve procedures, methods, and data availability for optimising planning processes and municipal actions. By employing a case study approach, the research investigates how municipalities in different contexts, namely in the city of Sahab in Jordan, Chililabombwe in Zambia, and the city of Dortmund in Germany, are integrating guiding urban concepts to shrink the deficit in adaptation and mitigation and achieve climate proofing goals in their respective local contexts. The analysis revealed municipal strategies and measures undertaken to optimize existing building and urban design regulations by introducing key performance indicators and improving in-house capacity. Furthermore, the analysis revealed that establishing or optimising interdepartmental communication frameworks or platforms is key to strengthening the steering structures governing local climate action. The most common challenge faced by municipalities is related to their role as a regulator and implementers, particularly in budget analysis and instruments for cost recovery of climate action measures. By leading organisational changes related to improving procedures and methods, municipalities can mitigate the various challenges that may emanate from uncoordinated planning and thus promote action against urbanisation-induced warming.

Keywords: urbanisation-induced warming, response measures, municipal planning processes, key performance indicators, interdepartmental communication frameworks, cost recovery

Procedia PDF Downloads 69
12395 Information Technology in Assessing Risks and Threats in the Transition of the Brand to the Digital Environment

Authors: Spanova Yerkezhan, Amantay Ayan, Alimzhanova Laura

Abstract:

This article discusses the concept of rebranding and its relationship to cybersecurity. Rebranding is the process of changing the appearance and image of a company or organization in order to appeal to new customers or change the perception of a company. It can be a powerful tool for businesses looking to renew their reputation or expand into new markets. In today's digital age, companies increasingly rely on technology and the internet to conduct business; rebranding can also present significant cybersecurity risks. This is because a rebranding effort can create new vulnerabilities for companies, particularly in terms of their online presence. This article explores the potential hazards associated with rebranding and provides recommendations for mitigating those risks. It also highlights the importance of considering cybersecurity in the rebranding process and how it can be integrated into the overall strategy for a successful and secure rebranding.

Keywords: rebranding, cybersecurity, cyberattack, logo, vulnerability

Procedia PDF Downloads 166
12394 Fijian Women’s Role in Disaster Risk Management: Climate Change

Authors: Priyatma Singh, Manpreet Kaur

Abstract:

Climate change is progressively being identified as a global crisis and this has immediate repercussions for Fiji Islands due to its geographical location being prone to natural disasters. In the Pacific, it is common to find significant differences between men and women, in terms of their roles and responsibilities. In the pursuit of prudent preparedness before disasters, Fijian women’s engagement is constrained due to socially constructed roles and expectation of women here in Fiji. This vulnerability is aggravated by viewing women as victims, rather than as key people who have vital information of their society, economy, and environment, as well as useful skills, which, when recognized and used, can be effective in disaster risk reduction. The focus of this study on disaster management is to outline ways in which Fijian women can be actively engaged in disaster risk management, articulating in decision-making, negating the perceived ideology of women’s constricted roles in Fiji and unveiling social constraints that limit women’s access to practical disaster management strategic plan. This paper outlines the importance of gender mainstreaming in disaster risk reduction and the ways of mainstreaming gender based on a literature review. It analyses theoretical study of academic literature as well as papers and reports produced by various national and international institutions and explores ways to better inform and engage women for climate change per ser disaster management in Fiji. The empowerment of women is believed to be a critical element in constructing disaster resilience as women are often considered to be the designers of community resilience at the local level. Gender mainstreaming as a way of bringing a gender perspective into climate related disasters can be applied to distinguish the varying needs and capacities of women, and integrate them into climate change adaptation strategies. This study will advocate women articulation in disaster risk management, thus giving equal standing to females in Fiji and also identify the gaps and inform national and local Disaster Risk Management authorities to implement processes that enhance gender equality and women’s empowerment towards a more equitable and effective disaster practice.

Keywords: disaster risk management, climate change, gender mainstreaming, women empowerment

Procedia PDF Downloads 388
12393 Release of Legacy Persistent Organic Pollutants and Mitigating Their Effects in Downstream Communities

Authors: Kimberley Rain Miner, Karl Kreutz, Larry LeBlanc

Abstract:

During the period of 1950-1970 persistent organic pollutants such as DDT, dioxin and PCB were released in the atmosphere and distributed through precipitation into glaciers throughout the world. Recent abrupt climate change is increasing the melt rate of these glaciers, introducing the toxins to the watershed. Studies have shown the existence of legacy pollutants in glacial ice, but neither the impact nor quantity of these toxins on downstream populations has been assessed. If these pollutants are released at toxic levels it will be necessary to create a mitigation plan to lower their impact on the affected communities.

Keywords: climate change, adaptation, mitigation, risk management

Procedia PDF Downloads 361
12392 Impact of Exogenous Risk Factors into Actual Construction Price in PPP Projects

Authors: Saleh Alzahrani, Halim Boussabaine

Abstract:

Many of Public Private Partnership (PPP) are developed based on a public project is to be awarded to a private party within a one contractual framework. PPP project risks typically include the development and construction of a new asset as well as its operation. Certainly the most severe consequences of risks through the construction period are price and time overruns. These events are among the most generally used situation in value for money analysis risks. The sources of risk change during the time in PPP project. In traditional procurement, the public sector usually has to cover all prices suffering from these risks. At least there is plenty to suggest that price suffering is a norm in some of the projects that are delivered under traditional procurement. This paper will find the impact of exogenous risk factors into actual construction price into PPP projects. The paper will present a brief literature review on PPP risk pricing strategies and then using system dynamics (SD) to analyses of the risks associated with the estimated project price. Based on the finding from these analyses a risk pricing association model is presented and discussed. The paper concludes with thoughts for future research.

Keywords: public private partnership (PPP), risk, risk pricing, system dynamics (SD)

Procedia PDF Downloads 557
12391 Managing the Transition from Voluntary to Mandatory Climate Reporting: The Role of Carbon Accounting

Authors: Qingliang Tang

Abstract:

The transition from voluntary to mandatory carbon reporting (also refers to climate reporting) poses serious challenges for accounting professionals aiming to support firms in achieving net-zero goals. The accounting literature addresses the topics that are currently bewildering accounting academics and professional accountants on how to make accounting as a useful tool for the management to achieve a carbon neutral business model. This paper explores the evolving role of carbon accounting within corporate financial reporting systems, emphasizing its integration as a crucial component. Key challenges addressed include data availability, climate risk assessment, defining reporting boundaries, selecting appropriate greenhouse gas (GHG) accounting methodologies, and integrating climate-related events into traditional financial statements. A dynamic, integrated carbon accounting framework is proposed to facilitate this transformative process effectively. Furthermore, the paper identifies critical knowledge gaps and sets forth a research agenda aimed at enhancing transparency and relevance in carbon accounting and reporting systems, thereby empowering informed decision-making. The purpose of the paper is to succinctly capture the essence of carbon accounting practice in the transitional period, focusing on the challenges, proposed solutions, and future research directions in the realm of carbon accounting and mandatory climate reporting.

Keywords: mandatory carbon reporting, carbon management, net zero target, sustainability, climate risks

Procedia PDF Downloads 18
12390 Simplified Linear Regression Model to Quantify the Thermal Resilience of Office Buildings in Three Different Power Outage Day Times

Authors: Nagham Ismail, Djamel Ouahrani

Abstract:

Thermal resilience in the built environment reflects the building's capacity to adapt to extreme climate changes. In hot climates, power outages in office buildings pose risks to the health and productivity of workers. Therefore, it is of interest to quantify the thermal resilience of office buildings by developing a user-friendly simplified model. This simplified model begins with creating an assessment metric of thermal resilience that measures the duration between the power outage and the point at which the thermal habitability condition is compromised, considering different power interruption times (morning, noon, and afternoon). In this context, energy simulations of an office building are conducted for Qatar's summer weather by changing different parameters that are related to the (i) wall characteristics, (ii) glazing characteristics, (iii) load, (iv) orientation and (v) air leakage. The simulation results are processed using SPSS to derive linear regression equations, aiding stakeholders in evaluating the performance of commercial buildings during different power interruption times. The findings reveal the significant influence of glazing characteristics on thermal resilience, with the morning power outage scenario posing the most detrimental impact in terms of the shortest duration before compromising thermal resilience.

Keywords: thermal resilience, thermal envelope, energy modeling, building simulation, thermal comfort, power disruption, extreme weather

Procedia PDF Downloads 74
12389 Adaptation to Climate Change: An Anthropological Study on Changing Livelihood Strategies in South-West Coastal Bangladesh

Authors: Ashik Sarder

Abstract:

Bangladesh is a disaster-prone and one of the most vulnerable countries to climate change. The country has a long coastal area which is frequently being affected by several types of natural disasters due to climate change. The disasters have impacts on the life and livelihood of different natural resources depending on communities living in the coastal areas. The Malo is a Hindu religious traditional fishing community living at Sarafpur Union of Dumuria Upazila of Khulna district of south-west coastal Bangladesh. Fishing is the only means of their livelihood and the community has been engaged in fishing practices inherently in rivers, estuaries, and sea for more than 300 years. and they are totally dependent on this traditional occupation. But, in recent year’s climate change has negative impacts on their only livelihood option. The study aims to examine the impacts of climate change on the livelihood of Malo fishing community in south-west coastal Bangladesh, identify the adaptation strategies undertaken and practiced by Malo fishing community to cope with climate change and sustain their livelihood and explore the changing adaptation strategies undertaken by Malo fishing community and others. The study has been conducted from both qualitative and quantitative perspectives. Data has been collected from both primary and secondary sources. The primary data has been collected in the participatory observation approach following both qualitative and quantitative method. The primary source of data includes village census, face-to-face interview and in-depth case studies using structured questionnaire. The secondary source of the literature includes different national and international documents, policy papers, books and articles; related websites and peer-viewed documents on climate change, vulnerability, adaptation, livelihood, and fisheries. The study has identified different practices of adaption to climate change by Malo fishing community and others in the selected area. Three types of adaption practices have been identified. Firstly, the indigenous adaptation practices by Malo fishing community to cope with climate change have been identified. These identified adaptation practices by Malo fishing community include; ensuring drinking water and sanitation facilities, planting trees to tackle impacts of cyclone, excavating dumps to preserve the valuable assets, growing vegetables and rearing domestic livestock to earn surplus money, taking loans for ensuring continuation of present livelihood and migrating to near city or towns for better livelihood options. Secondly, adaptation initiatives undertaken by the government have provided limited facility to this vulnerable fishing community and made them benefited. And thirdly, some adaptation initiatives commenced by few non-government and community-based organizations have also made the Malo fishing community as beneficiaries. The study has suggested recommendations for Malo fishing community to overcome the challenges and impacts of climate change for retaining their traditional fishing livelihood. The accumulated recommendations would be very useful for the researchers, academicians, policy-makers of Government and non-government organizations to conduct more researches and take initiatives for Malo fishing community to make them more capable to sustain their fishing livelihood.

Keywords: climate change, livelihood, adaptation, anthropology, vulnerability

Procedia PDF Downloads 114
12388 Achieving Net Zero Energy Building in a Hot Climate Using Integrated Photovoltaic and Parabolic Trough Collectors

Authors: Adel A. Ghoneim

Abstract:

In most existing buildings in hot climate, cooling loads lead to high primary energy consumption and consequently high CO2 emissions. These can be substantially decreased with integrated renewable energy systems. Kuwait is characterized by its dry hot long summer and short warm winter. Kuwait receives annual total radiation more than 5280 MJ/m2 with approximately 3347 h of sunshine. Solar energy systems consist of PV modules and parabolic trough collectors are considered to satisfy electricity consumption, domestic water heating, and cooling loads of an existing building. This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules and parabolic trough collectors (PTC). The program conducted on an existing institutional building intending to convert it into a Net-Zero Energy Building (NZEB) or near net Zero Energy Building (nNZEB). The program consists of two phases; the first phase is concerned with energy auditing and energy conservation measures at minimum cost and the second phase considers the installation of photovoltaic modules and parabolic trough collectors. The 2-storey building under consideration is the Applied Sciences Department at the College of Technological Studies, Kuwait. Single effect lithium bromide water absorption chillers are implemented to provide air conditioning load to the building. A numerical model is developed to evaluate the performance of parabolic trough collectors in Kuwait climate. Transient simulation program (TRNSYS) is adapted to simulate the performance of different solar system components. In addition, a numerical model is developed to assess the environmental impacts of building integrated renewable energy systems. Results indicate that efficient energy conservation can play an important role in converting the existing buildings into NZEBs as it saves a significant portion of annual energy consumption of the building. The first phase results in an energy conservation of about 28% of the building consumption. In the second phase, the integrated PV completely covers the lighting and equipment loads of the building. On the other hand, parabolic trough collectors of optimum area of 765 m2 can satisfy a significant portion of the cooling load, i.e about73% of the total building cooling load. The annual avoided CO2 emission is evaluated at the optimum conditions to assess the environmental impacts of renewable energy systems. The total annual avoided CO2 emission is about 680 metric ton/year which confirms the environmental impacts of these systems in Kuwait.

Keywords: building integrated renewable systems, Net-Zero energy building, solar fraction, avoided CO2 emission

Procedia PDF Downloads 611
12387 The Use of Building Energy Simulation Software in Case Studies: A Literature Review

Authors: Arman Ameen, Mathias Cehlin

Abstract:

The use of Building Energy Simulation (BES) software has increased in the last two decades, parallel to the development of increased computing power and easy to use software applications. This type of software is primarily used to simulate the energy use and the indoor environment for a building. The rapid development of these types of software has raised their level of user-friendliness, better parameter input options and the increased possibility of analysis, both for a single building component or an entire building. This, in turn, has led to many researchers utilizing BES software in their research in various degrees. The aim of this paper is to carry out a literature review concerning the use of the BES software IDA Indoor Climate and Energy (IDA ICE) in the scientific community. The focus of this paper will be specifically the use of the software for whole building energy simulation, number and types of articles and publications dates, the area of application, types of parameters used, the location of the studied building, type of building, type of analysis and solution methodology. Another aspect that is examined, which is of great interest, is the method of validations regarding the simulation results. The results show that there is an upgoing trend in the use of IDA ICE and that researchers use the software in their research in various degrees depending on case and aim of their research. The satisfactory level of validation of the simulations carried out in these articles varies depending on the type of article and type of analysis.

Keywords: building simulation, IDA ICE, literature review, validation

Procedia PDF Downloads 135
12386 Adaptation Measures as a Response to Climate Change Impacts and Associated Financial Implications for Construction Businesses by the Application of a Mixed Methods Approach

Authors: Luisa Kynast

Abstract:

It is obvious that buildings and infrastructure are highly impacted by climate change (CC). Both, design and material of buildings need to be resilient to weather events in order to shelter humans, animals, or goods. As well as buildings and infrastructure are exposed to weather events, the construction process itself is generally carried out outdoors without being protected from extreme temperatures, heavy rain, or storms. The production process is restricted by technical limitations for processing materials with machines and physical limitations due to human beings (“outdoor-worker”). In future due to CC, average weather patterns are expected to change as well as extreme weather events are expected to occur more frequently and more intense and therefore have a greater impact on production processes and on the construction businesses itself. This research aims to examine this impact by analyzing an association between responses to CC and financial performance of businesses within the construction industry. After having embedded the above depicted field of research into the resource dependency theory, a literature review was conducted to expound the state of research concerning a contingent relation between climate change adaptation measures (CCAM) and corporate financial performance for construction businesses. The examined studies prove that this field is rarely investigated, especially for construction businesses. Therefore, reports of the Carbon Disclosure Project (CDP) were analyzed by applying content analysis using the software tool MAXQDA. 58 construction companies – located worldwide – could be examined. To proceed even more systematically a coding scheme analogous to findings in literature was adopted. Out of qualitative analysis, data was quantified and a regression analysis containing corporate financial data was conducted. The results gained stress adaptation measures as a response to CC as a crucial proxy to handle climate change impacts (CCI) by mitigating risks and exploiting opportunities. In CDP reports the majority of answers stated increasing costs/expenses as a result of implemented measures. A link to sales/revenue was rarely drawn. Though, CCAM were connected to increasing sales/revenues. Nevertheless, this presumption is supported by the results of the regression analysis where a positive effect of implemented CCAM on construction businesses´ financial performance in the short-run was ascertained. These findings do refer to appropriate responses in terms of the implemented number of CCAM. Anyhow, still businesses show a reluctant attitude for implementing CCAM, which was confirmed by findings in literature as well as by findings in CDP reports. Businesses mainly associate CCAM with costs and expenses rather than with an effect on their corporate financial performance. Mostly companies underrate the effect of CCI and overrate the costs and expenditures for the implementation of CCAM and completely neglect the pay-off. Therefore, this research shall create a basis for bringing CC to the (financial) attention of corporate decision-makers, especially within the construction industry.

Keywords: climate change adaptation measures, construction businesses, financial implication, resource dependency theory

Procedia PDF Downloads 143
12385 A Geospatial Approach to Coastal Vulnerability Using Satellite Imagery and Coastal Vulnerability Index: A Case Study Mauritius

Authors: Manta Nowbuth, Marie Anais Kimberley Therese

Abstract:

The vulnerability of coastal areas to storm surges stands as a critical global concern. The increasing frequency and intensity of extreme weather events have increased the risks faced by communities living along the coastlines Worldwide. Small Island developing states (SIDS) stands out as being exceptionally vulnerable, coastal regions, ecosystems of human habitation and natural forces, bear witness to the frontlines of climate-induced challenges, and the intensification of storm surges underscores the urgent need for a comprehensive understanding of coastal vulnerability. With limited landmass, low-lying terrains, and resilience on coastal resources, SIDS face an amplified vulnerability to the consequences of storm surges, the delicate balance between human activities and environmental dynamics in these island nations increases the urgency of tailored strategies for assessing and mitigating coastal vulnerability. This research uses an approach to evaluate the vulnerability of coastal communities in Mauritius. The Satellite imagery analysis makes use of sentinel satellite imageries, modified normalised difference water index, classification techniques and the DSAS add on to quantify the extent of shoreline erosion or accumulation, providing a spatial perspective on coastal vulnerability. The coastal Vulnerability Index (CVI) is applied by Gonitz et al Formula, this index considers factors such as coastal slope, sea level rise, mean significant wave height, and tidal range. Weighted assessments identify regions with varying levels of vulnerability, ranging from low to high. The study was carried out in a Village Located in the south of Mauritius, namely Rivière des Galets, with a population of about 500 people over an area of 60,000m². The Village of Rivière des Galets being located in the south, and the southern coast of Mauritius being exposed to the open Indian ocean, is vulnerable to swells, The swells generated by the South east trade winds can lead to large waves and rough sea conditions along the Southern Coastline which has an impact on the coastal activities, including fishing, tourism and coastal Infrastructures, hence, On the one hand, the results highlighted that from a stretch of 123km of coastline the linear rate regression for the 5 –year span varies from-24.1m/yr. to 8.2m/yr., the maximum rate of change in terms of eroded land is -24m/yr. and the maximum rate of accretion is 8.2m/yr. On the other hand, the coastal vulnerability index varies from 9.1 to 45.6 and it was categorised into low, moderate, high and very high risks zones. It has been observed that region which lacks protective barriers and are made of sandy beaches are categorised as high risks zone and hence it is imperative to high risk regions for immediate attention and intervention, as they will most likely be exposed to coastal hazards and impacts from climate change, which demands proactive measures for enhanced resilience and sustainable adaptation strategies.

Keywords: climate change, coastal vulnerability, disaster management, remote sensing, satellite imagery, storm surge

Procedia PDF Downloads 8
12384 Characterization of Climatic Drought in the Saiss Plateau (Morocco) Using Statistical Indices

Authors: Abdeghani Qadem

Abstract:

Climate change is now an undeniable reality with increasing impacts on water systems worldwide, especially leading to severe drought episodes. The Southern Mediterranean region is particularly affected by this drought, which can have devastating consequences on water resources. Morocco, due to its geographical location in North Africa and the Southern Mediterranean, is especially vulnerable to these effects of climate change, particularly drought. In this context, this article focuses on the study of climate variability and drought characteristics in the Saiss Plateau region and its adjacent areas with the Middle Atlas, using specific statistical indices. The study begins by analyzing the annual precipitation variation, with a particular emphasis on data homogenization and gap filling using a regional vector. Then, the analysis delves into drought episodes in the region, using the Standardized Precipitation Index (SPI) over a 12-month period. The central objective is to accurately assess significant drought changes between 1980 and 2015, based on data collected from nine meteorological stations located in the study area.

Keywords: climate variability, regional vector, drought, standardized precipitation index, Saiss Plateau, middle atlas

Procedia PDF Downloads 68
12383 Life Cycle Assessment-Based Environmental Assessment of the Production and Maintenance of Wooden Windows

Authors: Pamela Del Rosario, Elisabetta Palumbo, Marzia Traverso

Abstract:

The building sector plays an important role in addressing pressing environmental issues such as climate change and resource scarcity. The energy performance of buildings is considerably affected by the external envelope. In fact, a considerable proportion of the building energy demand is due to energy losses through the windows. Nevertheless, according to literature, to pay attention only to the contribution of windows to the building energy performance, i.e., their influence on energy use during building operation, could result in a partial evaluation. Hence, it is important to consider not only the building energy performance but also the environmental performance of windows, and this not only during the operational stage but along its complete life cycle. Life Cycle Assessment (LCA) according to ISO 14040:2006 and ISO 14044:2006+A1:2018 is one of the most adopted and robust methods to evaluate the environmental performance of products throughout their complete life cycle. This life-cycle based approach avoids the shift of environmental impacts of a life cycle stage to another, allowing to allocate them to the stage in which they originated and to adopt measures that optimize the environmental performance of the product. Moreover, the LCA method is widely implemented in the construction sector to assess whole buildings as well as construction products and materials. LCA is regulated by the European Standards EN 15978:2011, at the building level, and EN 15804:2012+A2:2019, at the level of construction products and materials. In this work, the environmental performance of wooden windows was assessed by implementing the LCA method and adopting primary data. More specifically, the emphasis is given to embedded and operational impacts. Furthermore, correlations are made between these environmental impacts and aspects such as type of wood and window transmittance. In the particular case of the operational impacts, special attention is set on the definition of suitable maintenance scenarios that consider the potential climate influence on the environmental impacts. For this purpose, a literature review was conducted, and expert consultation was carried out. The study underlined the variability of the embedded environmental impacts of wooden windows by considering different wood types and transmittance values. The results also highlighted the need to define appropriate maintenance scenarios for precise assessment results. It was found that both the service life and the window maintenance requirements in terms of treatment and its frequency are highly dependent not only on the wood type and its treatment during the manufacturing process but also on the weather conditions of the place where the window is installed. In particular, it became evident that maintenance-related environmental impacts were the highest for climate regions with the lowest temperatures and the greatest amount of precipitation.

Keywords: embedded impacts, environmental performance, life cycle assessment, LCA, maintenance stage, operational impacts, wooden windows

Procedia PDF Downloads 232
12382 The Politics of Hope in Climate Change Fiction

Authors: Naima Bilal

Abstract:

The contemporary Anthropocene novel, with all the atrocities, man-made and inflicted by Nature (and Supernature), differs from the Horror novel in one main characteristic, that being naively lingering to hope and the notion that all evils, days and people come to an end. The current article explores the psychological dimensions of this optimistic ending that Climate fiction novelists uphold and how does this 'hope' functions as a bait for the reader to act. The primary sources for the research are The Ministry for the Future by Kim Stanley Robinson, Parable of the Sower by Octivia Butller and Amtiv Ghosh’s Gun Island.

Keywords: hope in contemporary anthroprocene literature, Pakistani science fiction novels, science fiction as a remedy to contemporary climate problems, science the new religion

Procedia PDF Downloads 32
12381 Hydrologic Impacts of Climate Change and Urbanization on Quetta Watershed, Pakistan

Authors: Malik Muhammad Akhtar, Tanzeel Khan

Abstract:

Various natural and anthropogenic factors are affecting recharge processes in urban areas due to intense urban expansion; land-use/landcover change (LULC) and climate considerably influence the ecosystem functions. In Quetta, a terrible transformation of LULC has occurred due to an increase in human population and rapid urbanization over the past years; according to the Pakistan Bureau of Statistics, the increase of population from 252,577 in 1972 to 2,275,699 in 2017 shows an abrupt rise which in turn has affected the aquifer recharge capability, vegetation, and precipitation at Quetta. This study focuses on the influence of population growth and LULC on groundwater table level by employing multi-temporal, multispectral satellite data during the selected years, i.e. 2014, 2017, and 2020. The results of land classification showed that barren land had shown a considerable decrease, whereas the urban area has increased over time from 152.4sq/km in 2014 to 195.5sq/km in 2017 to 283.3sq/km in 2020, whereas surface-water area coverage has increased since 2014 because of construction of few dams around the valley. Rapid urbanization stresses limited hydrology resources, and this needs to be addressed to conserve/sustain the resources through educating the local community, awareness regarding water use and climate change, and supporting artificial recharge of the aquifers.

Keywords: climate changes, urbanization, GIS, land use, Quetta, watershed

Procedia PDF Downloads 123
12380 Comparison of Soils of Hungarian Dry and Humid Oak Forests Based on Changes in Nutrient Content

Authors: István Fekete, Imre Berki, Áron Béni, Katalin Juhos, Marianna Makádi, Zsolt Kotroczó

Abstract:

The average annual precipitation significantly influences the moisture content of the soils and, through this, the decomposition of the organic substances in the soils, the leaching of nutrients from the soils, and the pH of the soils. Climate change, together with the lengthening of the vegetation period and the increasing CO₂ level, can increase the amount of biomass that is formed. Degradation processes, which accelerate as the temperature increases and slow down due to the drying climate, and the change in the degree of leaching can cancel out or strengthen each other's effects. In the course of our research, we looked for oak forests with climate-zonal soils where the geological, geographical and ecological background conditions are as similar as possible, apart from the different annual precipitation averages and the differences that can arise from them. We examined 5 dry and 5 humid Hungarian oak soils. Climate change affects the soils of drier and wetter forests differently. The aim of our research was to compare the content of carbon, nitrogen and some other nutrients, as well as the pH of the soils of humid and dry forests. Showing the effects of the drier climate on the tested soil parameters. In the case of the examined forest soils, we found a significant difference between the soils of dry and humid forests: in the case of the annual average precipitation values (p≥ 0.0001, for dry forest soils: 564±5.2 mm; for humid forest soils: 716±3.8 mm) for pH (p= 0.0004, for dry forest soils: 5.49±0.16; for wet forest soils: 5.36±0.21); for C content (p= 0.0054, for dry forest soils: 6.92%±0.59; for humid forest soils 3.09%±0.24), for N content (p= 0.0022, dry forest in the case of soils: 0.44%±0.047; in the case of humid forest soils: 0.23%±0.013), for the K content (p=0.0017, in the case of dry forest soils: 5684±732 (mg/kg); in the case of humid forest soils 2169±196 (mg/kg)), for the Ca content (p= 0.0096, for dry forest soils: 8207±2118 (mg/kg); for wet forest soils 957±320 (mg/kg)). No significant difference was found in the case of Mg. In a wetter environment, especially if the moisture content of the soil is also optimal for the decomposing organisms during the growing season, the decomposition of organic residues accelerates, and the processes of leaching from the soil are also intensified. The different intensity of the leaching processes is also well reflected in the quantitative differences of Ca and K, and in connection with these, it is also reflected in the difference in pH values. The differences in the C and N content can be explained by differences in the intensity of the decomposition processes. In addition to warming, drying is expected in a significant part of Hungary due to climate change. Thus, the comparison of the soils of dry and humid forests allows us to predict the subsequent changes in the case of the examined parameters.

Keywords: soil nutrients, precipitation difference, climate change, organic matter decomposition, leaching

Procedia PDF Downloads 74
12379 The Application of Data Mining Technology in Building Energy Consumption Data Analysis

Authors: Liang Zhao, Jili Zhang, Chongquan Zhong

Abstract:

Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.

Keywords: data mining, data analysis, prediction, optimization, building operational performance

Procedia PDF Downloads 852
12378 Simulation and Study of the Effect of Paint Mineral Coating on Energy Saving

Authors: A. A. Azemati, H. Hosseini

Abstract:

By using an adequate paint in buildings, energy consumption can be decreased. In this research, a range of wall paints in different climatic conditions has been investigated to observe its effect on energy consumption. In the current study, the researchers have investigated the effect of different parameters including climatic condition, absorption coefficient, and thermal loads on paint coating. In order to study these effects, heating and cooling loads of a typical building with different color paints have been calculated. The effect of building paint in different climatic condition was studied and a comparison was drawn between paints and painting coats with inorganic micro particles in temperate climate to obtain optimized energy consumption.

Keywords: climate, energy consumption, inorganic, painting coats

Procedia PDF Downloads 290
12377 Evaluation of the Need for Seismic Retrofitting of the Foundation of a Five Story Steel Building Because of Adding of a New Story

Authors: Mohammadreza Baradaran, F. Hamzezarghani

Abstract:

Every year in different points of the world it occurs with different strengths and thousands of people lose their lives because of this natural phenomenon. One of the reasons for destruction of buildings because of earthquake in addition to the passing of time and the effect of environmental conditions and the wearing-out of a building is changing the uses of the building and change the structure and skeleton of the building. A large number of structures that are located in earthquake bearing areas have been designed according to the old quake design regulations which are out dated. In addition, many of the major earthquakes which have occurred in recent years, emphasize retrofitting to decrease the dangers of quakes. Retrofitting structural quakes available is one of the most effective methods for reducing dangers and compensating lack of resistance caused by the weaknesses existing. In this article the foundation of a five-floor steel building with the moment frame system has been evaluated for quakes and the effect of adding a floor to this five-floor steel building has been evaluated and analyzed. The considered building is with a metallic skeleton and a piled roof and clayed block which after addition of a floor has increased to a six-floor foundation of 1416 square meters, and the height of the sixth floor from ground state has increased 18.95 meters. After analysis of the foundation model, the behavior of the soil under the foundation and also the behavior of the body or element of the foundation has been evaluated and the model of the foundation and its type of change in form and the amount of stress of the soil under the foundation for some of the composition has been determined many times in the SAFE software modeling and finally the need for retrofitting of the building's foundation has been determined.

Keywords: seismic, rehabilitation, steel building, foundation

Procedia PDF Downloads 281
12376 Optimal Diversification and Bank Value Maximization

Authors: Chien-Chih Lin

Abstract:

This study argues that the optimal diversifications for the maximization of bank value are asymmetrical; they depend on the business cycle. During times of expansion, systematic risks are relatively low, and hence there is only a slight effect from raising them with a diversified portfolio. Consequently, the benefit of reducing individual risks dominates any loss from raising systematic risks, leading to a higher value for a bank by holding a diversified portfolio of assets. On the contrary, in times of recession, systematic risks are relatively high. It is more likely that the loss from raising systematic risks surpasses the benefit of reducing individual risks from portfolio diversification. Consequently, more diversification leads to lower bank values. Finally, some empirical evidence from the banks in Taiwan is provided.

Keywords: diversification, default probability, systemic risk, banking, business cycle

Procedia PDF Downloads 437
12375 Simulation of Natural Ventilation Strategies as a Comparison Method for Two Different Climates

Authors: Fulya Ozbey, Ecehan Ozmehmet

Abstract:

Health and living in a healthy environment are important for all the living creatures. Healthy buildings are the part of the healthy environment and the ones that people and sometimes the animals spend most of their times in it. Therefore, healthy buildings are important subject for everybody. There are many elements of the healthy buildings from material choice to the thermal comfort including indoor air quality. The aim of this study is, to simulate two natural ventilation strategies which are used as a cooling method in Mediterranean climate, by applying to a residential building and compare the results for Asian climate. Fulltime natural and night-time ventilation strategies are simulated for three days during the summertime in Mediterranean climate. The results show that one of the chosen passive cooling strategies worked on both climates good enough without using additional shading element and cooling device, however, the other ventilation strategy did not provide comfortable indoor temperature enough. Finally, both of the ventilation strategies worked better on the Asian climate than the Mediterranean in terms of the total overheating hours during the chosen period of year.

Keywords: Asian climate, indoor air quality, Mediterranean climate, natural ventilation simulation, thermal comfort

Procedia PDF Downloads 235
12374 An Overview of Sustainable Development for Greening Roadmap in Asia

Authors: Robby Dwiko Juliardi, Queena K. Qian

Abstract:

Economic, environmental, and human considerations, as sustainable building design principles, are to be balanced and integrated into building design strategy. Building codes often suggest the efficient and sustainable building products, such as energy-efficient fixtures. However, building departments sometimes fail to manage the full range of requirements in the building assessment, such as siting, neighborhood proximity, and public facility, etc. Hence, it shows roadmap develops the future, an extended look at the future of a chosen field of inquiry composed from the collective knowledge and imagination of the brightest drivers of change in that field. This paper is taken from the best practice of green building implementation in a few countries of Asia (China, Malaysia, and India). Sustainable development will be presented on developing the roadmap of sustainability development of a country. Findings on the similarities and dissimilarities of those countries will show: (1) A general knowledge development on the sustainable green roadmap in Asia, (2) What are the components of developing the roadmap, and (3) What affects the government regulation in a political ecology.

Keywords: developing roadmap, green building, political ecology, sustainable development

Procedia PDF Downloads 315
12373 Climate Change Impact on Mortality from Cardiovascular Diseases: Case Study of Bucharest, Romania

Authors: Zenaida Chitu, Roxana Bojariu, Liliana Velea, Roxana Burcea

Abstract:

A number of studies show that extreme air temperature affects mortality related to cardiovascular diseases, particularly among elderly people. In Romania, the summer thermal discomfort expressed by Universal Thermal Climate Index (UTCI) is highest in the Southern part of the country, where Bucharest, the largest Romanian urban agglomeration, is also located. The urban characteristics such as high building density and reduced green areas enhance the increase of the air temperature during summer. In Bucharest, as in many other large cities, the effect of heat urban island is present and determines an increase of air temperature compared to surrounding areas. This increase is particularly important during heat wave periods in summer. In this context, the researchers performed a temperature-mortality analysis based on daily deaths related to cardiovascular diseases, recorded between 2010 and 2019 in Bucharest. The temperature-mortality relationship was modeled by applying distributed lag non-linear model (DLNM) that includes a bi-dimensional cross-basis function and flexible natural cubic spline functions with three internal knots in the 10th, 75th and 90th percentiles of the temperature distribution, for modelling both exposure-response and lagged-response dimensions. Firstly, this study applied this analysis for the present climate. Extrapolation of the exposure-response associations beyond the observed data allowed us to estimate future effects on mortality due to temperature changes under climate change scenarios and specific assumptions. We used future projections of air temperature from five numerical experiments with regional climate models included in the EURO-CORDEX initiative under the relatively moderate (RCP 4.5) and pessimistic (RCP 8.5) concentration scenarios. The results of this analysis show for RCP 8.5 an ensemble-averaged increase with 6.1% of heat-attributable mortality fraction in future in comparison with present climate (2090-2100 vs. 2010-219), corresponding to an increase of 640 deaths/year, while mortality fraction due to the cold conditions will be reduced by 2.76%, corresponding to a decrease by 288 deaths/year. When mortality data is stratified according to the age, the ensemble-averaged increase of heat-attributable mortality fraction for elderly people (> 75 years) in the future is even higher (6.5 %). These findings reveal the necessity to carefully plan urban development in Bucharest to face the public health challenges raised by the climate change. Paper Details: This work is financed by the project URCLIM which is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by Ministry of Environment, Romania with co-funding by the European Union (Grant 690462). A part of this work performed by one of the authors has received funding from the European Union’s Horizon 2020 research and innovation programme from the project EXHAUSTION under grant agreement No 820655.

Keywords: cardiovascular diseases, climate change, extreme air temperature, mortality

Procedia PDF Downloads 128
12372 Evaluating Robustness of Conceptual Rainfall-runoff Models under Climate Variability in Northern Tunisia

Authors: H. Dakhlaoui, D. Ruelland, Y. Tramblay, Z. Bargaoui

Abstract:

To evaluate the impact of climate change on water resources at the catchment scale, not only future projections of climate are necessary but also robust rainfall-runoff models that are able to be fairly reliable under changing climate conditions. This study aims at assessing the robustness of three conceptual rainfall-runoff models (GR4j, HBV and IHACRES) on five basins in Northern Tunisia under long-term climate variability. Their robustness was evaluated according to a differential split sample test based on a climate classification of the observation period regarding simultaneously precipitation and temperature conditions. The studied catchments are situated in a region where climate change is likely to have significant impacts on runoff and they already suffer from scarcity of water resources. They cover the main hydrographical basins of Northern Tunisia (High Medjerda, Zouaraâ, Ichkeul and Cap bon), which produce the majority of surface water resources in Tunisia. The streamflow regime of the basins can be considered as natural since these basins are located upstream from storage-dams and in areas where withdrawals are negligible. A 30-year common period (1970‒2000) was considered to capture a large spread of hydro-climatic conditions. The calibration was based on the Kling-Gupta Efficiency (KGE) criterion, while the evaluation of model transferability is performed according to the Nash-Suttfliff efficiency criterion and volume error. The three hydrological models were shown to have similar behaviour under climate variability. Models prove a better ability to simulate the runoff pattern when transferred toward wetter periods compared to the case when transferred to drier periods. The limits of transferability are beyond -20% of precipitation and +1.5 °C of temperature in comparison with the calibration period. The deterioration of model robustness could in part be explained by the climate dependency of some parameters.

Keywords: rainfall-runoff modelling, hydro-climate variability, model robustness, uncertainty, Tunisia

Procedia PDF Downloads 292