Search results for: integrating sensing and modeling system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21914

Search results for: integrating sensing and modeling system

21464 Finite Element Simulation for Preliminary Study on Microorganism Detection System

Authors: Muhammad Rosli Abdullah, Noor Hasmiza Harun

Abstract:

A microorganism detection system has a potential to be used with the advancement in a biosensor development. The detection system requires an optical sensing system, microfluidic device and biological reagent. Although, the biosensors are available in the market, a label free and a lab-on-chip approach will promote a flexible solution. As a preliminary study of microorganism detection, three mechanisms such as Total Internal Reflection (TIR), Micro Fluidic Channel (MFC) and magnetic-electric field propagation were study and simulated. The objective are to identify the TIR angle, MFC parabolic flow and the wavelength for the microorganism detection. The simulation result indicates that evanescent wave is achieved when TIR angle > 42°, the corner and centre of a parabolic velocity are 0.02 m/s and 0.06 m/s respectively, and a higher energy distribution of a perfect electromagnetic scattering with dipole resonance radiation occurs at 500 nm. This simulation is beneficial to determine the components of the microorganism detection system that does not rely on classical microbiological, immunological and genetic methods which are laborious, time-consuming procedures and confined to specialized laboratories with expensive instrumentation equipment.

Keywords: microorganism, microfluidic, total internal reflection, lab on chip

Procedia PDF Downloads 277
21463 Stability Analysis for an Extended Model of the Hypothalamus-Pituitary-Thyroid Axis

Authors: Beata Jackowska-Zduniak

Abstract:

We formulate and analyze a mathematical model describing dynamics of the hypothalamus-pituitary-thyroid homoeostatic mechanism in endocrine system. We introduce to this system two types of couplings and delay. In our model, feedback controls the secretion of thyroid hormones and delay reflects time lags required for transportation of the hormones. The influence of delayed feedback on the stability behaviour of the system is discussed. Analytical results are illustrated by numerical examples of the model dynamics. This system of equations describes normal activity of the thyroid and also a couple of types of malfunctions (e.g. hyperthyroidism).

Keywords: mathematical modeling, ordinary differential equations, endocrine system, delay differential equation

Procedia PDF Downloads 336
21462 Queueing Modeling of M/G/1 Fault Tolerant System with Threshold Recovery and Imperfect Coverage

Authors: Madhu Jain, Rakesh Kumar Meena

Abstract:

This paper investigates a finite M/G/1 fault tolerant multi-component machining system. The system incorporates the features such as standby support, threshold recovery and imperfect coverage make the study closer to real time systems. The performance prediction of M/G/1 fault tolerant system is carried out using recursive approach by treating remaining service time as a supplementary variable. The numerical results are presented to illustrate the computational tractability of analytical results by taking three different service time distributions viz. exponential, 3-stage Erlang and deterministic. Moreover, the cost function is constructed to determine the optimal choice of system descriptors to upgrading the system.

Keywords: fault tolerant, machine repair, threshold recovery policy, imperfect coverage, supplementary variable technique

Procedia PDF Downloads 292
21461 Innovative Approaches to Water Resources Management: Addressing Challenges through Machine Learning and Remote Sensing

Authors: Abdelrahman Elsehsah, Abdelazim Negm, Eid Ashour, Mohamed Elsahabi

Abstract:

Water resources management is a critical field that encompasses the planning, development, conservation, and allocation of water resources to meet societal needs while ensuring environmental sustainability. This paper reviews the key concepts and challenges in water resources management, emphasizing the significance of a holistic approach that integrates social, economic, and environmental factors. Traditional water management practices, characterized by supply-oriented strategies and centralized control, are increasingly inadequate in addressing contemporary challenges such as water scarcity, climate change impacts, and ecosystem degradation. Emerging technologies, particularly machine learning and remote sensing, offer innovative solutions to enhance decision-making processes in water management. Machine learning algorithms facilitate accurate water demand forecasting, quality monitoring, and leak detection, while remote sensing technologies provide vital data for assessing water availability and quality. This review highlights the need for integrated water management strategies that leverage these technologies to promote sustainable practices and foster resilience in water systems. Future research should focus on improving data quality, accessibility, and the integration of diverse datasets to optimize the benefits of these technological advancements.

Keywords: water resources management, water scarcity, climate change, machine learning, remote sensing, water quality, water governance, sustainable practices, ecosystem management

Procedia PDF Downloads 6
21460 Modeling Sorption and Permeation in the Separation of Benzene/ Cyclohexane Mixtures through Styrene-Butadiene Rubber Crosslinked Membranes

Authors: Hassiba Benguergoura, Kamal Chanane, Sâad Moulay

Abstract:

Pervaporation (PV), a membrane-based separation technology, has gained much attention because of its energy saving capability and low-cost, especially for separation of azeotropic or close-boiling liquid mixtures. There are two crucial issues for industrial application of pervaporation process. The first is developing membrane material and tailoring membrane structure to obtain high pervaporation performances. The second is modeling pervaporation transport to better understand of the above-mentioned structure–pervaporation relationship. Many models were proposed to predict the mass transfer process, among them, solution-diffusion model is most widely used in describing pervaporation transport including preferential sorption, diffusion and evaporation steps. For modeling pervaporation transport, the permeation flux, which depends on the solubility and diffusivity of components in the membrane, should be obtained first. Traditionally, the solubility was calculated according to the Flory–Huggins theory. Separation of the benzene (Bz)/cyclohexane (Cx) mixture is industrially significant. Numerous papers have been focused on the Bz/Cx system to assess the PV properties of membrane materials. Membranes with both high permeability and selectivity are desirable for practical application. Several new polymers have been prepared to get both high permeability and selectivity. Styrene-butadiene rubbers (SBR), dense membranes cross-linked by chloromethylation were used in the separation of benzene/cyclohexane mixtures. The impact of chloromethylation reaction as a new method of cross-linking SBR on the pervaporation performance have been reported. In contrast to the vulcanization with sulfur, the cross-linking takes places on styrene units of polymeric chains via a methylene bridge. The partial pervaporative (PV) fluxes of benzene/cyclohexane mixtures in styrene-butadiene rubber (SBR) were predicted using Fick's first law. The predicted partial fluxes and the PV separation factor agreed well with the experimental data by integrating Fick's law over the benzene concentration. The effects of feed concentration and operating temperature on the predicted permeation flux by this proposed model are investigated. The predicted permeation fluxes are in good agreement with experimental data at lower benzene concentration in feed, but at higher benzene concentration, the model overestimated permeation flux. The predicted and experimental permeation fluxes all increase with operating temperature increasing. Solvent sorption levels for benzene/ cyclohexane mixtures in a SBR membrane were determined experimentally. The results showed that the solvent sorption levels were strongly affected by the feed composition. The Flory- Huggins equation generates higher R-square coefficient for the sorption selectivity.

Keywords: benzene, cyclohexane, pervaporation, permeation, sorption modeling, SBR

Procedia PDF Downloads 326
21459 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models

Authors: Benbiao Song, Yan Gao, Zhuo Liu

Abstract:

Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.

Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram

Procedia PDF Downloads 264
21458 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor

Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli

Abstract:

Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.

Keywords: acoustic sensor, diaphragm based, lumped element modeling (LEM), natural frequency, piezoelectric

Procedia PDF Downloads 442
21457 Vision-Based Hand Segmentation Techniques for Human-Computer Interaction

Authors: M. Jebali, M. Jemni

Abstract:

This work is the part of vision based hand gesture recognition system for Natural Human Computer Interface. Hand tracking and segmentation are the primary steps for any hand gesture recognition system. The aim of this paper is to develop robust and efficient hand segmentation algorithm such as an input to another system which attempt to bring the HCI performance nearby the human-human interaction, by modeling an intelligent sign language recognition system based on prediction in the context of dialogue between the system (avatar) and the interlocutor. For the purpose of hand segmentation, an overcoming occlusion approach has been proposed for superior results for detection of hand from an image.

Keywords: HCI, sign language recognition, object tracking, hand segmentation

Procedia PDF Downloads 412
21456 Understanding the Classification of Rain Microstructure and Estimation of Z-R Relationship using a Micro Rain Radar in Tropical Region

Authors: Tomiwa, Akinyemi Clement

Abstract:

Tropical regions experience diverse and complex precipitation patterns, posing significant challenges for accurate rainfall estimation and forecasting. This study addresses the problem of effectively classifying tropical rain types and refining the Z-R (Reflectivity-Rain Rate) relationship to enhance rainfall estimation accuracy. Through a combination of remote sensing, meteorological analysis, and machine learning, the research aims to develop an advanced classification framework capable of distinguishing between different types of tropical rain based on their unique characteristics. This involves utilizing high-resolution satellite imagery, radar data, and atmospheric parameters to categorize precipitation events into distinct classes, providing a comprehensive understanding of tropical rain systems. Additionally, the study seeks to improve the Z-R relationship, a crucial aspect of rainfall estimation. One year of rainfall data was analyzed using a Micro Rain Radar (MRR) located at The Federal University of Technology Akure, Nigeria, measuring rainfall parameters from ground level to a height of 4.8 km with a vertical resolution of 0.16 km. Rain rates were classified into low (stratiform) and high (convective) based on various microstructural attributes such as rain rates, liquid water content, Drop Size Distribution (DSD), average fall speed of the drops, and radar reflectivity. By integrating diverse datasets and employing advanced statistical techniques, the study aims to enhance the precision of Z-R models, offering a more reliable means of estimating rainfall rates from radar reflectivity data. This refined Z-R relationship holds significant potential for improving our understanding of tropical rain systems and enhancing forecasting accuracy in regions prone to heavy precipitation.

Keywords: remote sensing, precipitation, drop size distribution, micro rain radar

Procedia PDF Downloads 34
21455 Structural Equation Modeling Semiparametric in Modeling the Accuracy of Payment Time for Customers of Credit Bank in Indonesia

Authors: Adji Achmad Rinaldo Fernandes

Abstract:

The research was conducted to apply semiparametric SEM modeling to the timeliness of paying credit. Semiparametric SEM is structural modeling in which two combined approaches of parametric and nonparametric approaches are used. The analysis method in this research is semiparametric SEM with a nonparametric approach using a truncated spline. The data in the study were obtained through questionnaires distributed to Bank X mortgage debtors and are confidential. The study used 3 variables consisting of one exogenous variable, one intervening endogenous variable, and one endogenous variable. The results showed that (1) the effect of capacity and willingness to pay variables on timeliness of payment is significant, (2) modeling the capacity variable on willingness to pay also produces a significant estimate, (3) the effect of the capacity variable on the timeliness of payment variable is not influenced by the willingness to pay variable as an intervening variable, (4) the R^2 value of 0.763 or 76.33% indicates that the model has good predictive relevance.

Keywords: structural equation modeling semiparametric, credit bank, accuracy of payment time, willingness to pay

Procedia PDF Downloads 44
21454 The Importance of Clinical Pharmacy and Computer Aided Drug Design

Authors: Mario Hanna Louis Hanna

Abstract:

The use of CAD (pc Aided layout) generation is ubiquitous inside the structure, engineering and construction (AEC) industry. This has led to its inclusion in the curriculum of structure faculties in Nigeria as an important part of the training module. This newsletter examines the moral troubles involved in implementing CAD (pc Aided layout) content into the architectural training curriculum. Using current literature, this study begins with the advantages of integrating CAD into architectural education and the responsibilities of various stakeholders in the implementation process. It also examines issues related to the terrible use of records generation and the perceived bad effect of CAD use on design creativity. The use of a survey technique, information from the architecture department of Chukwuemeka Odumegwu Ojukwu Uli college changed into accumulated to serve as a case observe on how the problems raised have been being addressed. The object draws conclusions on what guarantees a hit moral implementation. Tens of millions of human beings around the sector suffer from hepatitis C, one of the international's deadliest sicknesses. Interferon (IFN) is a remedy alternative for patients with hepatitis C, but these treatments have their aspect outcomes. Our research targeted growing an oral small molecule drug that goals hepatitis C virus (HCV) proteins and has fewer facet effects. Our contemporary study targets to broaden a drug primarily based on a small molecule antiviral drug precise for the hepatitis C virus (HCV). Drug improvement and the use of laboratory experiments isn't always best high-priced, however also time-eating to behavior those experiments. instead, on this in silicon have a look at, we used computational strategies to recommend a particular antiviral drug for the protein domain names of discovered in the hepatitis C virus. This examines used homology modeling and abs initio modeling to generate the 3-D shape of the proteins, then figuring out pockets within the proteins. Proper lagans for pocket pills were advanced the usage of the de novo drug design method. Pocket geometry is taken into consideration while designing ligands. A few of the various lagans generated, a different for each of the HCV protein domains has been proposed.

Keywords: drug design, anti-viral drug, in-silicon drug design, Hepatitis C virus (HCV) CAD (Computer Aided Design), CAD education, education improvement, small-size contractor automatic pharmacy, PLC, control system, management system, communication.

Procedia PDF Downloads 27
21453 Stochastic Richelieu River Flood Modeling and Comparison of Flood Propagation Models: WMS (1D) and SRH (2D)

Authors: Maryam Safrai, Tewfik Mahdi

Abstract:

This article presents the stochastic modeling of the Richelieu River flood in Quebec, Canada, occurred in the spring of 2011. With the aid of the one-dimensional Watershed Modeling System (WMS (v.10.1) and HEC-RAS (v.4.1) as a flood simulator, the delineation of the probabilistic flooded areas was considered. Based on the Monte Carlo method, WMS (v.10.1) delineated the probabilistic flooded areas with corresponding occurrence percentages. Furthermore, results of this one-dimensional model were compared with the results of two-dimensional model (SRH-2D) for the evaluation of efficiency and precision of each applied model. Based on this comparison, computational process in two-dimensional model is longer and more complicated versus brief one-dimensional one. Although, two-dimensional models are more accurate than one-dimensional method, but according to existing modellers, delineation of probabilistic flooded areas based on Monte Carlo method is achievable via one-dimensional modeler. The applied software in this case study greatly responded to verify the research objectives. As a result, flood risk maps of the Richelieu River with the two applied models (1d, 2d) could elucidate the flood risk factors in hydrological, hydraulic, and managerial terms.

Keywords: flood modeling, HEC-RAS, model comparison, Monte Carlo simulation, probabilistic flooded area, SRH-2D, WMS

Procedia PDF Downloads 140
21452 Color Fusion of Remote Sensing Images for Imparting Fluvial Geomorphological Features of River Yamuna and Ganga over Doon Valley

Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, Rebecca K. Rossi, Yanmin Yuan, Xianpei Li

Abstract:

The fiscal growth of any country hinges on the prudent administration of water resources. The river Yamuna and Ganga are measured as the life line of India as it affords the needs for life to endure. Earth observation over remote sensing images permits the precise description and identification of ingredients on the superficial from space and airborne platforms. Multiple and heterogeneous image sources are accessible for the same geographical section; multispectral, hyperspectral, radar, multitemporal, and multiangular images. In this paper, a taxonomical learning of the fluvial geomorphological features of river Yamuna and Ganga over doon valley using color fusion of multispectral remote sensing images was performed. Experimental results exhibited that the segmentation based colorization technique stranded on pattern recognition, and color mapping fashioned more colorful and truthful colorized images for geomorphological feature extraction.

Keywords: color fusion, geomorphology, fluvial processes, multispectral images, pattern recognition

Procedia PDF Downloads 306
21451 MXene-Based Self-Sensing of Damage in Fiber Composites

Authors: Latha Nataraj, Todd Henry, Micheal Wallock, Asha Hall, Christine Hatter, Babak Anasori, Yury Gogotsi

Abstract:

Multifunctional composites with enhanced strength and toughness for superior damage tolerance are essential for advanced aerospace and military applications. Detection of structural changes prior to visible damage may be achieved by incorporating fillers with tunable properties such as two-dimensional (2D) nanomaterials with high aspect ratios and more surface-active sites. While 2D graphene with large surface areas, good mechanical properties, and high electrical conductivity seems ideal as a filler, the single-atomic thickness can lead to bending and rolling during processing, requiring post-processing to bond to polymer matrices. Lately, an emerging family of 2D transition metal carbides and nitrides, MXenes, has attracted much attention since their discovery in 2011. Metallic electronic conductivity and good mechanical properties, even with increased polymer content, coupled with hydrophilicity make MXenes a good candidate as a filler material in polymer composites and exceptional as multifunctional damage indicators in composites. Here, we systematically study MXene-based (Ti₃C₂) coated on glass fibers for fiber reinforced polymer composite for self-sensing using microscopy and micromechanical testing. Further testing is in progress through the investigation of local variations in optical, acoustic, and thermal properties within the damage sites in response to strain caused by mechanical loading.

Keywords: damage sensing, fiber composites, MXene, self-sensing

Procedia PDF Downloads 121
21450 Irrigation Potential Assessment for Eastern Ganga Canal, India Using Geographic Information System

Authors: Deepak Khare, Radha Krishan, Bhaskar Nikam

Abstract:

The present study deals with the results of the Ortho-rectified Cartosat-1 PAN (2.5 m resolution) satellite data analysis for the extraction of canal networks under the Eastern Ganga Canal (EGC) command. Based on the information derived through the remote sensing data, in terms of the number of canals, their physical status and hydraulic connectivity from the source, irrigation potential (IP) created in the command was assessed by comparing with planned/design canal-wise irrigation potentials. All the geospatial information generated in the study is organized in a geodatabase. The EGC project irrigates the command through one main canal, five branch canals, 36 distributaries and 186 minors. The study was conducted with the main objectives of inventory and mapping of irrigation infrastructure using geographic information system (GIS), remote sensing and field data. Likewise, the assessment of irrigation potential created using the mapped infrastructure was performed as on March 2017. Results revealed that the canals were not only pending but were also having gap/s, and hydraulically disconnected in each branch canal and also in minors of EGC. A total of 16622.3 ha of commands were left untouched with canal water just due to the presence of gaps in the EGC project. The sum of all the gaps present in minor canals was 11.92 km, while in distributary, it was 2.63 km. This is a very good scenario that balances IP can be achieved by working on the gaps present in minor canals. Filling the gaps in minor canals can bring most of the area under irrigation, especially the tail reaches command.

Keywords: canal command, GIS, hydraulic connectivity, irrigation potential

Procedia PDF Downloads 147
21449 Assessment of a Coupled Geothermal-Solar Thermal Based Hydrogen Production System

Authors: Maryam Hamlehdar, Guillermo A. Narsilio

Abstract:

To enhance the feasibility of utilising geothermal hot sedimentary aquifers (HSAs) for clean hydrogen production, one approach is the implementation of solar-integrated geothermal energy systems. This detailed modelling study conducts a thermo-economic assessment of an advanced Organic Rankine Cycle (ORC)-based hydrogen production system that uses low-temperature geothermal reservoirs, with a specific focus on hot sedimentary aquifers (HSAs) over a 30-year period. In the proposed hybrid system, solar-thermal energy is used to raise the water temperature extracted from the geothermal production well. This temperature increase leads to a higher steam output, powering the turbine and subsequently enhancing the electricity output for running the electrolyser. Thermodynamic modeling of a parabolic trough solar (PTS) collector is developed and integrated with modeling for a geothermal-based configuration. This configuration includes a closed regenerator cycle (CRC), proton exchange membrane (PEM) electrolyser, and thermoelectric generator (TEG). Following this, the study investigates the impact of solar energy use on the temperature enhancement of the geothermal reservoir. It assesses the resulting consequences on the lifecycle performance of the hydrogen production system in comparison with a standalone geothermal system. The results indicate that, with the appropriate solar collector area, a combined solar-geothermal hydrogen production system outperforms a standalone geothermal system in both cost and rate of production. These findings underscore a solar-assisted geothermal hybrid system holds the potential to generate lower-cost hydrogen with enhanced efficiency, thereby boosting the appeal of numerous low to medium-temperature geothermal sources for hydrogen production.

Keywords: clean hydrogen production, integrated solar-geothermal, low-temperature geothermal energy, numerical modelling

Procedia PDF Downloads 69
21448 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System

Authors: Ben Soltane Cheima, Ittansa Yonas Kelbesa

Abstract:

Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.

Keywords: feature extraction, speaker modeling, feature matching, Mel frequency cepstrum coefficient (MFCC), Gaussian mixture model (GMM), vector quantization (VQ), Linde-Buzo-Gray (LBG), expectation maximization (EM), pre-processing, voice activity detection (VAD), short time energy (STE), background noise statistical modeling, closed-set tex-independent speaker identification system (CISI)

Procedia PDF Downloads 309
21447 Analysis of Maintenance Operations in an Industrial Bakery Line

Authors: Mehmet Savsar

Abstract:

This paper presents a practical case application of simulation modeling and analysis in a specific industrial setting. Various maintenance related parameters of the equipment in the system under consideration are determined and a simulation model is developed to study system behavior. System performance is determined based on established parameters and operational policies, which included system operation with and without preventive maintenance implementation. The results show that preventive maintenance practice has significant effects on improving system productivity. The simulation procedures outlined in this paper can be used by operation managers to perform production line analysis under different maintenance policies in various industrial settings.

Keywords: simulation, production line, machine failures, maintenance, industrial bakery

Procedia PDF Downloads 487
21446 Comparative Exergy Analysis of Vapor Compression Refrigeration System Using Alternative Refrigerants

Authors: Gulshan Sachdeva, Vaibhav Jain

Abstract:

In present paper, the performance of various alternative refrigerants is compared to find the substitute of R22, the widely used hydrochlorofluorocarbon refrigerant in developing countries. These include the environmentally friendly hydrofluorocarbon (HFC) refrigerants such as R134A, R410A, R407C and M20. In the present study, a steady state thermodynamic model (includes both first and second law analysis) which simulates the working of an actual vapor-compression system is developed. The model predicts the performance of system with alternative refrigerants. Considering the recent trends of replacement of ozone depleting refrigerants and improvement in system efficiency, R407C is found to be potential candidate to replace R22 refrigerant in the present study.

Keywords: refrigeration, compression system, performance study, modeling, R407C

Procedia PDF Downloads 315
21445 Spatio-Temporal Assessment of Urban Growth and Land Use Change in Islamabad Using Object-Based Classification Method

Authors: Rabia Shabbir, Sheikh Saeed Ahmad, Amna Butt

Abstract:

Rapid land use changes have taken place in Islamabad, the capital city of Pakistan, over the past decades due to accelerated urbanization and industrialization. In this study, land use changes in the metropolitan area of Islamabad was observed by the combined use of GIS and satellite remote sensing for a time period of 15 years. High-resolution Google Earth images were downloaded from 2000-2015, and object-based classification method was used for accurate classification using eCognition software. The information regarding urban settlements, industrial area, barren land, agricultural area, vegetation, water, and transportation infrastructure was extracted. The results showed that the city experienced a spatial expansion, rapid urban growth, land use change and expanding transportation infrastructure. The study concluded the integration of GIS and remote sensing as an effective approach for analyzing the spatial pattern of urban growth and land use change.

Keywords: land use change, urban growth, Islamabad, object-based classification, Google Earth, remote sensing, GIS

Procedia PDF Downloads 151
21444 Stochastic Modeling and Productivity Analysis of a Flexible Manufacturing System

Authors: Mehmet Savsar, Majid Aldaihani

Abstract:

Flexible Manufacturing Systems (FMS) are used to produce a variety of parts on the same equipment. Therefore, their utilization is higher than traditional machining systems. Higher utilization, on the other hand, results in more frequent equipment failures and additional need for maintenance. Therefore, it is necessary to carefully analyze operational characteristics and productivity of FMS or Flexible Manufacturing Cells (FMC), which are smaller configuration of FMS, before installation or during their operation. Appropriate models should be developed to determine production rates based on operational conditions, including equipment reliability, availability, and repair capacity. In this paper, a stochastic model is developed for an automated FMC system, which consists of two machines served by two robots and a single repairman. The model is used to determine system productivity and equipment utilization under different operational conditions, including random machine failures, random repairs, and limited repair capacity. The results are compared to previous study results for FMC system with sufficient repair capacity assigned to each machine. The results show that the model will be useful for design engineers and operational managers to analyze performance of manufacturing systems at the design or operational stages.

Keywords: flexible manufacturing, FMS, FMC, stochastic modeling, production rate, reliability, availability

Procedia PDF Downloads 516
21443 Unsupervised Detection of Burned Area from Remote Sensing Images Using Spatial Correlation and Fuzzy Clustering

Authors: Tauqir A. Moughal, Fusheng Yu, Abeer Mazher

Abstract:

Land-cover and land-use change information are important because of their practical uses in various applications, including deforestation, damage assessment, disasters monitoring, urban expansion, planning, and land management. Therefore, developing change detection methods for remote sensing images is an important ongoing research agenda. However, detection of change through optical remote sensing images is not a trivial task due to many factors including the vagueness between the boundaries of changed and unchanged regions and spatial dependence of the pixels to its neighborhood. In this paper, we propose a binary change detection technique for bi-temporal optical remote sensing images. As in most of the optical remote sensing images, the transition between the two clusters (change and no change) is overlapping and the existing methods are incapable of providing the accurate cluster boundaries. In this regard, a methodology has been proposed which uses the fuzzy c-means clustering to tackle the problem of vagueness in the changed and unchanged class by formulating the soft boundaries between them. Furthermore, in order to exploit the neighborhood information of the pixels, the input patterns are generated corresponding to each pixel from bi-temporal images using 3×3, 5×5 and 7×7 window. The between images and within image spatial dependence of the pixels to its neighborhood is quantified by using Pearson product moment correlation and Moran’s I statistics, respectively. The proposed technique consists of two phases. At first, between images and within image spatial correlation is calculated to utilize the information that the pixels at different locations may not be independent. Second, fuzzy c-means technique is used to produce two clusters from input feature by not only taking care of vagueness between the changed and unchanged class but also by exploiting the spatial correlation of the pixels. To show the effectiveness of the proposed technique, experiments are conducted on multispectral and bi-temporal remote sensing images. A subset (2100×1212 pixels) of a pan-sharpened, bi-temporal Landsat 5 thematic mapper optical image of Los Angeles, California, is used in this study which shows a long period of the forest fire continued from July until October 2009. Early forest fire and later forest fire optical remote sensing images were acquired on July 5, 2009 and October 25, 2009, respectively. The proposed technique is used to detect the fire (which causes change on earth’s surface) and compared with the existing K-means clustering technique. Experimental results showed that proposed technique performs better than the already existing technique. The proposed technique can be easily extendable for optical hyperspectral images and is suitable for many practical applications.

Keywords: burned area, change detection, correlation, fuzzy clustering, optical remote sensing

Procedia PDF Downloads 169
21442 Review of Transportation Modeling Software

Authors: Hassan M. Al-Ahmadi, Hamad Bader Almobayedh

Abstract:

Planning for urban transportation is essential for developing effective and sustainable transportation networks that meet the needs of various communities. Advanced modeling software is required for effective transportation planning, management, and optimization. This paper compares PTV VISUM, Aimsun, TransCAD, and Emme, four industry-leading software tools for transportation planning and modeling. Each software has strengths and limitations, and the project's needs, financial constraints, and level of technical expertise influence the choice of software. Transportation experts can design and improve urban transportation systems that are effective, sustainable, and meet the changing needs of their communities by utilizing these software tools.

Keywords: PTV VISUM, Aimsun, TransCAD, transportation modeling software

Procedia PDF Downloads 31
21441 Comparison of the Performance of a Brake Energy Regeneration System in Hybrid Vehicles

Authors: Miguel Arlenzo Duran Sarmiento, Luis Alfonso Del Portillo Valdés, Carlos Borras Pinilla

Abstract:

Brake energy regeneration systems have the capacity to transform part of the vehicle's kinetic energy during deceleration into useful energy. These systems can be implemented in hybrid vehicles, which can be electric or hydraulic in type, and contribute to reducing the energy required to propel the vehicle thanks to the accumulation of energy. This paper presents the modeling and simulation of a braking energy regeneration system applied in hydraulic hybrid vehicles configured in parallel, the modeling and simulation were performed in Simulink of Matlab, where a performance comparison of the regenerated torque as a function of vehicle load, the displacement of the hydraulic regeneration device and the vehicle speed profile. The speed profiles used in the simulation are standard profiles such as the NEDC and WLTP profiles. The vehicle loads range from 1500 kg to 12000 kg. The results show the comparison of the torque required by the vehicle, the torque regenerated by the system subjected to the different speed and load conditions.

Keywords: braking energy, energy regeneration, hybrid vehicles, kinetic energy, torque

Procedia PDF Downloads 124
21440 Detection of Muscle Swelling Using the Cnts-Based Poc Wearable Strain Sensor

Authors: Nadeem Qaiser, Sherjeel Munsif Khan, Muhammad Mustafa Hussian, Vincent Tung

Abstract:

One of the emerging fields in the detection of chronic diseases is based on the point-of-care (POC) early monitoring of the symptoms and thus provides a state-of-the-art personalized healthcare system. Nowadays, wearable and flexible sensors are being used for analyzing sweat, glucose, blood pressure, and other skin conditions. However, localized jaw-bone swelling called parotid-swelling caused by some viruses has never been tracked before. To track physical motion or deformations, strain sensors, especially piezoresistive ones, are widely used. This work, for the first time, reports carbon nanotubes (CNTs)-based piezoresistive sensing patch that is highly flexible and stretchable and can record muscle deformations in real-time. The developed patch offers an excellent gauge factor for in-plane stretching and spatial expansion with low hysteresis. To calibrate the volumetric muscle expansion, we fabricated the pneumatic actuator that experienced volumetric expansion and thus redefined the gauge factor. Moreover, we employ a Bluetooth-low-energy system that can send information about muscle activity in real-time to a smartphone app. We utilized COMSOL calculations to reveal the mechanical robustness of the patch. The experiments showed the sensing patch's greater cyclability, making it a patch for personal healthcare and an excellent choice for monitoring the real-time POC monitoring of the human muscle swelling.

Keywords: piezoresistive strain sensor, FEM simulations, CNTs sensor, flexible

Procedia PDF Downloads 88
21439 The MHz Frequency Range EM Induction Device Development and Experimental Study for Low Conductive Objects Detection

Authors: D. Kakulia, L. Shoshiashvili, G. Sapharishvili

Abstract:

The results of the study are related to the direction of plastic mine detection research using electromagnetic induction, the development of appropriate equipment, and the evaluation of expected results. Electromagnetic induction sensing is effectively used in the detection of metal objects in the soil and in the discrimination of unexploded ordnances. Metal objects interact well with a low-frequency alternating magnetic field. Their electromagnetic response can be detected at the low-frequency range even when they are placed in the ground. Detection of plastic things such as plastic mines by electromagnetic induction is associated with difficulties. The interaction of non-conducting bodies or low-conductive objects with a low-frequency alternating magnetic field is very weak. At the high-frequency range where already wave processes take place, the interaction increases. Interactions with other distant objects also increase. A complex interference picture is formed, and extraction of useful information also meets difficulties. Sensing by electromagnetic induction at the intermediate MHz frequency range is the subject of research. The concept of detecting plastic mines in this range can be based on the study of the electromagnetic response of non-conductive cavity in a low-conductivity environment or the detection of small metal components in plastic mines, taking into account constructive features. The detector node based on the amplitude and phase detector 'Analog Devices ad8302' has been developed for experimental studies. The node has two inputs. At one of the inputs, the node receives a sinusoidal signal from the generator, to which a transmitting coil is also connected. The receiver coil is attached to the second input of the node. The additional circuit provides an option to amplify the signal output from the receiver coil by 20 dB. The node has two outputs. The voltages obtained at the output reflect the ratio of the amplitudes and the phase difference of the input harmonic signals. Experimental measurements were performed in different positions of the transmitter and receiver coils at the frequency range 1-20 MHz. Arbitrary/Function Generator Tektronix AFG3052C and the eight-channel high-resolution oscilloscope PICOSCOPE 4824 were used in the experiments. Experimental measurements were also performed with a low-conductive test object. The results of the measurements and comparative analysis show the capabilities of the simple detector node and the prospects for its further development in this direction. The results of the experimental measurements are compared and analyzed with the results of appropriate computer modeling based on the method of auxiliary sources (MAS). The experimental measurements are driven using the MATLAB environment. Acknowledgment -This work was supported by Shota Rustaveli National Science Foundation (SRNSF) (Grant number: NFR 17_523).

Keywords: EM induction sensing, detector, plastic mines, remote sensing

Procedia PDF Downloads 149
21438 Two-Channels Thermal Energy Storage Tank: Experiments and Short-Cut Modelling

Authors: M. Capocelli, A. Caputo, M. De Falco, D. Mazzei, V. Piemonte

Abstract:

This paper presents the experimental results and the related modeling of a thermal energy storage (TES) facility, ideated and realized by ENEA and realizing the thermocline with an innovative geometry. Firstly, the thermal energy exchange model of an equivalent shell & tube heat exchanger is described and tested to reproduce the performance of the spiral exchanger installed in the TES. Through the regression of the experimental data, a first-order thermocline model was also validated to provide an analytical function of the thermocline, useful for the performance evaluation and the comparison with other systems and implementation in simulations of integrated systems (e.g. power plants). The experimental data obtained from the plant start-up and the short-cut modeling of the system can be useful for the process analysis, for the scale-up of the thermal storage system and to investigate the feasibility of its implementation in actual case-studies.

Keywords: CSP plants, thermal energy storage, thermocline, mathematical modelling, experimental data

Procedia PDF Downloads 329
21437 The Geometry of Natural Formation: an Application of Geometrical Analysis for Complex Natural Order of Pomegranate

Authors: Anahita Aris

Abstract:

Geometry always plays a key role in natural structures, which can be a source of inspiration for architects and urban designers to create spaces. By understanding formative principles in nature, a variety of options can be provided that lead to freedom of formation. The main purpose of this paper is to analyze the geometrical order found in pomegranate to find formative principles explaining its complex structure. The point is how spherical arils of pomegranate pressed together inside the fruit and filled the space as they expand in the growing process, which made a self-organized system leads to the formation of each of the arils are unique in size, topology and shape. The main challenge of this paper would be using advanced architectural modeling techniques to discover these principles.

Keywords: advanced modeling techniques, architectural modeling, computational design, the geometry of natural formation, geometrical analysis, the natural order of pomegranate, voronoi diagrams

Procedia PDF Downloads 220
21436 The Fuzzy Logic Modeling of Performance Driver Seat’s Localised Cooling and Heating in Standard Car Air Conditioning System

Authors: Ali Ates, Sadık Ata, Kevser Dincer

Abstract:

In this study, performance of the driver seat‘s localized cooling and heating in a standard car air conditioning system was experimentally investigated and modeled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modeling technique. Climate function at automobile is an important variable for thermal comfort. In the experimental study localized heating and cooling performances have been examined with the aid of a mechanism established to a vehicle. The equipment’s used in the experimental setup/mechanism have been provided and assembled. During the measurement, the status of the performance level has been determined. Input parameters revolutions per minute and time; output parameters car seat cooling temperature, car back cooling temperature, car seat heating temperature, car back heating temperature were described by RBMTF if-the rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF could be successfully used in standard car air conditioning system.

Keywords: air conditioning system, cooling-heating, RMBTF modelling, car seat

Procedia PDF Downloads 353
21435 Established Novel Approach for Chemical Oxygen Demand Concentrations Measurement Based Mach-Zehner Interferometer Sensor

Authors: Su Sin Chong, Abdul Aziz Abdul Raman, Sulaiman Wadi Harun, Hamzah Arof

Abstract:

Chemical Oxygen Demand (COD) plays a vital role determination of an appropriate strategy for wastewater treatment including the control of the quality of an effluent. In this study, a new sensing method was introduced for the first time and developed to investigate chemical oxygen demand (COD) using a Mach-Zehner Interferometer (MZI)-based dye sensor. The sensor is constructed by bridging two single mode fibres (SMF1 and SMF2) with a short section (~20 mm) of multimode fibre (MMF) and was formed by tapering the MMF to generate evanescent field which is sensitive to perturbation of sensing medium. When the COD concentration increase takes effect will induce changes in output intensity and effective refractive index between the microfiber and the sensing medium. The adequacy of decisions based on COD values relies on the quality of the measurements. Therefore, the dual output response can be applied to the analytical procedure enhance measurement quality. This work presents a detailed assessment of the determination of COD values in synthetic wastewaters. Detailed models of the measurement performance, including sensitivity, reversibility, stability, and uncertainty were successfully validated by proficiency tests where supported on sound and objective criteria. Comparison of the standard method with the new proposed method was also conducted. This proposed sensor is compact, reliable and feasible to investigate the COD value.

Keywords: chemical oxygen demand, environmental sensing, Mach-Zehnder interferometer sensor, online monitoring

Procedia PDF Downloads 494