Search results for: informed decision making
7297 Decomposition of the Discount Function Into Impatience and Uncertainty Aversion. How Neurofinance Can Help to Understand Behavioral Anomalies
Authors: Roberta Martino, Viviana Ventre
Abstract:
Intertemporal choices are choices under conditions of uncertainty in which the consequences are distributed over time. The Discounted Utility Model is the essential reference for describing the individual in the context of intertemporal choice. The model is based on the idea that the individual selects the alternative with the highest utility, which is calculated by multiplying the cardinal utility of the outcome, as if the reception were instantaneous, by the discount function that determines a decrease in the utility value according to how the actual reception of the outcome is far away from the moment the choice is made. Initially, the discount function was assumed to have an exponential trend, whose decrease over time is constant, in line with a profile of a rational investor described by classical economics. Instead, empirical evidence called for the formulation of alternative, hyperbolic models that better represented the actual actions of the investor. Attitudes that do not comply with the principles of classical rationality are termed anomalous, i.e., difficult to rationalize and describe through normative models. The development of behavioral finance, which describes investor behavior through cognitive psychology, has shown that deviations from rationality are due to the limited rationality condition of human beings. What this means is that when a choice is made in a very difficult and information-rich environment, the brain does a compromise job between the cognitive effort required and the selection of an alternative. Moreover, the evaluation and selection phase of the alternative, the collection and processing of information, are dynamics conditioned by systematic distortions of the decision-making process that are the behavioral biases involving the individual's emotional and cognitive system. In this paper we present an original decomposition of the discount function to investigate the psychological principles of hyperbolic discounting. It is possible to decompose the curve into two components: the first component is responsible for the smaller decrease in the outcome as time increases and is related to the individual's impatience; the second component relates to the change in the direction of the tangent vector to the curve and indicates how much the individual perceives the indeterminacy of the future indicating his or her aversion to uncertainty. This decomposition allows interesting conclusions to be drawn with respect to the concept of impatience and the emotional drives involved in decision-making. The contribution that neuroscience can make to decision theory and inter-temporal choice theory is vast as it would allow the description of the decision-making process as the relationship between the individual's emotional and cognitive factors. Neurofinance is a discipline that uses a multidisciplinary approach to investigate how the brain influences decision-making. Indeed, considering that the decision-making process is linked to the activity of the prefrontal cortex and amygdala, neurofinance can help determine the extent to which abnormal attitudes respect the principles of rationality.Keywords: impatience, intertemporal choice, neurofinance, rationality, uncertainty
Procedia PDF Downloads 1307296 The Characteristics of Withhold Resuscitation in Out-Of-Hospital Cardiac Arrest
Authors: An-Yi Wang, Wei-Fong Kao, Shin-Han Tsai
Abstract:
Introduction: Information as patient characteristics, resuscitation scene, resuscitation provider perspectives and families wish affects on resuscitation decision-making for out-of-hospital cardiac arrest (OHCA). There is no consistency consensus on how families and emergency physicians approach this decision. The main purpose of our study is to evaluate the characteristics of withholding resuscitation efforts arrival at the hospital. Methods: We retrospectively analyzed patients with OHCA without pre-hospital return-of-spontaneous circulation (ROSC) who was sent to our emergency department (ED) between January 2014 and December 2015. Baseline characteristics, pre-hospital course, and causes of the cardiopulmonary arrest among patients were compared. Results: In 2 years, total 155 arrest patients without pre-hospital ROSC was included. 33(21.3%) patients withhold the resuscitation efforts in ED with mean resuscitation duration 4.45 ± 7.04 minutes after ED arrival. In withholding group, the initial rhythm of arrests was all non-shockable. 9 of them received endotracheal intubation before decision-making. None of the patients in withhold resuscitation group survived to discharge. There was no significant difference among gender, underlying cardiovascular disease, malignancy, chronic renal disease, nor witness collapse between withhold and continue resuscitation groups. Univariate analysis showed there was lower percentage of bystander resuscitation (32.3% vs. 50.4%, p=0.071), and the lower percentage of transport via emergency medical service (EMS) (78.8% vs. 91.8%, p=0.054) in withholding group. Multivariate analysis showed old age (adjusted odds ratio=1.06, 95% C.I.=[1.02-1.11], p<0.05), with underlying respiratory insufficiency (adjusted odds ratio=12.16, 95% C.I.=[3.34-44.29], p<0.05), living at home compared with nursing home (adjusted odds ratio=37.75, 95% C.I.=[1.09-1110.70], p<0.05) were more likely to withhold resuscitation. Transport via EMS was more likely to continue resuscitation (adjusted odds ratio=0.11, 95% C.I.=[0.02-0.71], p<0.05). Conclusion: The decision-making for families and emergency physicians to withhold or continue resuscitation for out-of-hospital cardiac arrest is complex and multi-factorial. Continue resuscitation efforts in nursing home residents is high, and further study among this population is warranted.Keywords: cardiopulmonary resuscitation, out-of-hospital cardiac arrest, termination resuscitation, withhold resuscitation
Procedia PDF Downloads 2557295 Simple Multiple-Attribute Rating Technique for Optimal Decision-Making Model on Selecting Best Spiker of World Grand Prix
Authors: Chen Chih-Cheng, Chen I-Cheng, Lee Yung-Tan, Kuo Yen-Whea, Yu Chin-Hung
Abstract:
The purpose of this study is to construct a model for best spike player selection in a top volleyball tournament of the world. Data consisted of the records of 2013 World Grand Prix declared by International Volleyball Federation (FIVB). Simple Multiple-Attribute Rating Technique (SMART) was used for optimal decision-making model on the best spike player selection. The research results showed that the best spike player ranking by SMART is different than the ranking by FIVB. The results demonstrated the effectiveness and feasibility of the proposed model.Keywords: simple multiple-attribute rating technique, World Grand Prix, best spike player, International Volleyball Federation
Procedia PDF Downloads 4747294 Interval Bilevel Linear Fractional Programming
Authors: F. Hamidi, N. Amiri, H. Mishmast Nehi
Abstract:
The Bilevel Programming (BP) model has been presented for a decision making process that consists of two decision makers in a hierarchical structure. In fact, BP is a model for a static two person game (the leader player in the upper level and the follower player in the lower level) wherein each player tries to optimize his/her personal objective function under dependent constraints; this game is sequential and non-cooperative. The decision making variables are divided between the two players and one’s choice affects the other’s benefit and choices. In other words, BP consists of two nested optimization problems with two objective functions (upper and lower) where the constraint region of the upper level problem is implicitly determined by the lower level problem. In real cases, the coefficients of an optimization problem may not be precise, i.e. they may be interval. In this paper we develop an algorithm for solving interval bilevel linear fractional programming problems. That is to say, bilevel problems in which both objective functions are linear fractional, the coefficients are interval and the common constraint region is a polyhedron. From the original problem, the best and the worst bilevel linear fractional problems have been derived and then, using the extended Charnes and Cooper transformation, each fractional problem can be reduced to a linear problem. Then we can find the best and the worst optimal values of the leader objective function by two algorithms.Keywords: best and worst optimal solutions, bilevel programming, fractional, interval coefficients
Procedia PDF Downloads 4477293 Big Data-Driven Smart Policing: Big Data-Based Patrol Car Dispatching in Abu Dhabi, UAE
Authors: Oualid Walid Ben Ali
Abstract:
Big Data has become one of the buzzwords today. The recent explosion of digital data has led the organization, either private or public, to a new era towards a more efficient decision making. At some point, business decided to use that concept in order to learn what make their clients tick with phrases like ‘sales funnel’ analysis, ‘actionable insights’, and ‘positive business impact’. So, it stands to reason that Big Data was viewed through green (read: money) colored lenses. Somewhere along the line, however someone realized that collecting and processing data doesn’t have to be for business purpose only, but also could be used for other purposes to assist law enforcement or to improve policing or in road safety. This paper presents briefly, how Big Data have been used in the fields of policing order to improve the decision making process in the daily operation of the police. As example, we present a big-data driven system which is sued to accurately dispatch the patrol cars in a geographic environment. The system is also used to allocate, in real-time, the nearest patrol car to the location of an incident. This system has been implemented and applied in the Emirate of Abu Dhabi in the UAE.Keywords: big data, big data analytics, patrol car allocation, dispatching, GIS, intelligent, Abu Dhabi, police, UAE
Procedia PDF Downloads 4917292 Preliminary Study of Human Reliability of Control in Case of Fire Based on the Decision Processes and Stress Model of Human in a Fire
Authors: Seung-Un Chae, Heung-Yul Kim, Sa-Kil Kim
Abstract:
This paper presents the findings of preliminary study on human control performance in case of fire. The relationship between human control and human decision is studied in decision processes and stress model of human in a fire. Human behavior aspects involved in the decision process during a fire incident. The decision processes appear that six of individual perceptual processes: recognition, validation, definition, evaluation, commitment, and reassessment. Then, human may be stressed in order to get an optimal decision for their activity. This paper explores problems in human control processes and stresses in a catastrophic situation. Thus, the future approach will be concerned to reduce stresses and ambiguous irrelevant information.Keywords: human reliability, decision processes, stress model, fire
Procedia PDF Downloads 9867291 Practical Guidelines for Utilizing WipFrag Software to Assess Oversize Blast Material Using Both Orthomosaic and Digital Images
Authors: Blessing Olamide Taiwo, Andrew Palangio, Chirag Savaliya, Jenil Patel
Abstract:
Oversized material resulting from blasting presents a notable drawback in the transportation of run-off-mine material due to increased expenses associated with handling, decreased efficiency in loading, and greater wear on digging equipment. Its irregular size and weight demand additional resources and time for secondary breakage, impacting overall productivity and profitability. This paper addresses the limitations of interpreting image analysis software results and applying them to the assessment of blast-generated oversized materials. This comprehensive guide utilizes both ortho mosaic and digital photos to provide critical approaches for optimizing fragmentation analysis and improving decision-making in mining operations. It briefly covers post-blast assessment, blast block heat map interpretation, and material loading decision-making recommendations.Keywords: blast result assessment, WipFrag, oversize identification, orthomosaic images, production optimization
Procedia PDF Downloads 417290 Knowledge about Dementia: Why Should Family Caregivers Know that Dementia is a Terminal Disease?
Authors: Elzbieta Sikorska-Simmons
Abstract:
Dementia is a progressive terminal disease. Despite this recognition, research shows that most family caregivers do not know it, and it is unclear how this knowledge affects the quality of patient care. The aim of this qualitative study of 20 family caregivers for patients with advanced dementia is to examine how the caregiver's knowledge about dementia affects the quality of patient care in the context of healthcare decision-making, advanced care planning, and access to adequate support systems. Knowledge about dementia implies family caregivers' understanding of dementia trajectories, common symptoms/complications, and alternative treatment options (e.g., comfort feeding versus tube feeding). Data were collected in semi-structured interviews with 20 family caregivers. The interviews were conducted in person by the author and designed to elicit rich descriptions of family caregivers' experiences with healthcare decision-making and the management of common symptoms/complications of end-stage dementia as patient healthcare proxies. The study findings suggest that caregivers who recognize that dementia is a terminal disease are less likely to opt for life-extending treatments during the advanced stages. They are also more likely to seek palliative/hospice care, and consequently, they are better able to avoid unnecessary hospitalizations or medical procedures. For example, those who know that dementia is a terminal disease tend to opt for "comfort feeding" rather than "tube feeding" in managing the swallowing difficulties that accompany advanced dementia. In the context of advance care planning, family caregivers who know that dementia is a terminal disease tend to have more meaningful advance directives (e.g., Power of Attorney and Do Not Resuscitate orders). They are better prepared to anticipate common problems and pursue treatments that foster the best quality of patient life and care. Greater knowledge about advanced dementia helps them make more informed decisions that focus on enhancing the quality of patient life rather than just survival. In addition, those who know that dementia is a terminal disease are more likely to establish adequate support systems to help them cope with the complex demands of caregiving. For example, they are more likely to seek dementia-oriented primary care programs that offer house visits or respite services. Based on the study findings, knowledge about dementia as a terminal disease is critical in the optimal management of patient care needs and the establishment of adequate support systems. More research is needed to better understand what caregivers need to know to better prepare them for the complex demands of dementia caregiving.Keywords: dementia education, family caregiver, management of dementia, quality of care
Procedia PDF Downloads 1017289 Early Marriage and Women's Empowerment: The Case of Chil-bride in East Hararghe Zone of Oromia National Regional State, Ethiopia
Authors: Emad Mohammed Sani
Abstract:
Women encounter exclusion and discrimination in varying degrees, particularly those who marry as minors. The detrimental custom of getting married young is still prevalent worldwide and affects millions of people. It has been less common over time, although it is still widespread in underdeveloped nations. Oromia Regional State is the region in Ethiopia with the highest proportion of child brides. This study aimed at evaluating the effects of early marriage on its survivors’ life conditions – specifically, empowerment and household decision-making – in Eastern Hararghe Zone of Oromia Region. This study employed community-based cross-sectional study design. It adopted mixed method approach – survey, in-depth interview and focus group discussion (FGD) – to collect, analyses and interpret data on early marriage and its effects on household decision-making processes. Narratives and analytical descriptions were integrated to substantiate and/or explain observed quantitative results, or generate contextual themes. According to this study, married women who were married at or after the age of eighteen participated more in household decision-making than child brides. Child brides were more likely to be victims of violence and other types of spousal abuse in their marriages. These changes are mostly caused by an individual's age at first marriage. Delaying marriage had a large positive impact on women's empowerment at the household level, and age at first marriage had a considerable negative impact. In order to advance women's welfare and emancipation, we advise more research to concentrate on the relationship between the home and the social-structural forms that appear at the individual and communal levels.Keywords: child-bride, early marriage, women, ethiopia
Procedia PDF Downloads 667288 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem
Authors: Feng Yang
Abstract:
Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics
Procedia PDF Downloads 1507287 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees
Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho
Abstract:
The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.Keywords: FSASEC, academic environment model, decision trees, k-nearest neighbor, machine learning, popularity index, support vector machine
Procedia PDF Downloads 2007286 Biases in Macroprudential Supervision and Their Legal Implications
Authors: Anat Keller
Abstract:
Given that macro-prudential supervision is a relatively new policy area and its empirical and analytical research are still in their infancy, its theoretical foundations are also lagging behind. This paper contributes to the developing discussion on effective legal and institutional macroprudential supervision frameworks. In the first part of the paper, it is argued that effectiveness as a key benchmark poses some challenges in the context of macroprudential supervision such as the difficulty in proving causality between supervisory actions and the achievement of the supervisor’s mission. The paper suggests that effectiveness in the macroprudential context should, therefore, be assessed at the supervisory decision-making process (to be differentiated from the supervisory outcomes). The second part of the essay examines whether insights from behavioural economics can point to biases in the macroprudential decision-making process. These biases include, inter alia, preference bias, groupthink bias and inaction bias. It is argued that these biases are exacerbated in the multilateral setting of the macroprudential supervision framework in the EU. The paper then examines how legal and institutional frameworks should be designed to acknowledge and perhaps contain these identified biases. The paper suggests that the effectiveness of macroprudential policy will largely depend on the existence of clear and robust transparency and accountability arrangements. Accountability arrangements can be used as a vehicle for identifying and addressing potential biases in the macro-prudential framework, in particular, inaction bias. Inclusiveness of the public in the supervisory process in the form of transparency and awareness of the logic behind policy decisions may assist in minimising their potential unpopularity thus promoting their effectiveness. Furthermore, a governance structure which facilitates coordination of the macroprudential supervisor with other policymakers and incorporates outside perspectives and opinions could ‘break-down’ groupthink bias as well as inaction bias.Keywords: behavioural economics and biases, effectiveness of macroprudential supervision, legal and institutional macroprudential frameworks, macroprudential decision-making process
Procedia PDF Downloads 2827285 A Collaborative Problem Driven Approach to Design an HR Analytics Application
Authors: L. Atif, C. Rosenthal-Sabroux, M. Grundstein
Abstract:
The requirements engineering process is a crucial phase in the design of complex systems. The purpose of our research is to present a collaborative problem-driven requirements engineering approach that aims at improving the design of a Decision Support System as an Analytics application. This approach has been adopted to design a Human Resource management DSS. The Requirements Engineering process is presented as a series of guidelines for activities that must be implemented to assure that the final product satisfies end-users requirements and takes into account the limitations identified. For this, we know that a well-posed statement of the problem is “a problem whose crucial character arises from collectively produced estimation and a formulation found to be acceptable by all the parties”. Moreover, we know that DSSs were developed to help decision-makers solve their unstructured problems. So, we thus base our research off of the assumption that developing DSS, particularly for helping poorly structured or unstructured decisions, cannot be done without considering end-user decision problems, how to represent them collectively, decisions content, their meaning, and the decision-making process; thus, arise the field issues in a multidisciplinary perspective. Our approach addresses a problem-driven and collaborative approach to designing DSS technologies: It will reflect common end-user problems in the upstream design phase and in the downstream phase these problems will determine the design choices and potential technical solution. We will thus rely on a categorization of HR’s problems for a development mirroring the Analytics solution. This brings out a new data-driven DSS typology: Descriptive Analytics, Explicative or Diagnostic Analytics, Predictive Analytics, Prescriptive Analytics. In our research, identifying the problem takes place with design of the solution, so, we would have to resort a significant transformations of representations associated with the HR Analytics application to build an increasingly detailed representation of the goal to be achieved. Here, the collective cognition is reflected in the establishment of transfer functions of representations during the whole of the design process.Keywords: DSS, collaborative design, problem-driven requirements, analytics application, HR decision making
Procedia PDF Downloads 2967284 An Informed Application of Emotionally Focused Therapy with Immigrant Couples
Authors: Reihaneh Mahdavishahri
Abstract:
This paper provides a brief introduction to emotionally focused therapy (EFT) and its culturally sensitive and informed application when working with immigrant couples. EFT's grounding in humanistic psychology prioritizes a non-pathologizing and empathic understanding of individuals' experiences, creating a safe space for couples to explore and create new experiences without imposing judgment or prescribing the couple "the right way of interacting" with one another. EFT's emphasis on attachment, bonding, emotions, and corrective emotional experiences makes it a fitting approach to work with multicultural couples, allowing for the corrective emotional experience to be shaped and informed by the couples' unique cultural background. This paper highlights the challenges faced by immigrant couples and explores how immigration adds a complex layer to each partner’s sense of self, their attachment bond, and their sense of safety and security within their relationships. Navigating a new culture, creating a shared sense of purpose, and re-establishing emotional bonds can be daunting for immigrant couples, often leading to a deep sense of disconnection and vulnerability. Reestablishing and fostering secure attachment between the partners in the safety of the therapeutic space can be a protective factor for these couples.Keywords: attachment, culturally informed care, emotionally focused therapy, immigration
Procedia PDF Downloads 747283 Ethical and Personality Factors and Accounting Professional Judgement
Authors: Shannon Hashemi, Alireza Daneshfar
Abstract:
Accounting ethical awareness has been widely promoted in recent years both in academia and in practice. However, the effectiveness of ethical awareness on accountants' judgment and choice of action is still debatable. This study investigates whether Machiavellianism and gender, as significant personality factors, influence the effect of ethical awareness on accountants' decision-making. Using an experiment, the results of ANOVA tests show that although introducing ethical awareness positively influences the accountants' judgment and choice of action, such an effect is significantly moderated by the accountants' Machiavellianism score and gender. Specifically, the test results show that the effect of introducing ethical awareness was higher on males with low Machiavellian score. The results also show that when the Machiavellian scores were high, the effect of ethical awareness was lower for both males and females. Applications of the results are discussed for accounting professionals as well as accounting ethics educators and researchers.Keywords: ethical awareness, accounting decision making, Machiavellianism, ANOVA, ethics, accounting education
Procedia PDF Downloads 1147282 Consensus Reaching Process and False Consensus Effect in a Problem of Portfolio Selection
Authors: Viviana Ventre, Giacomo Di Tollo, Roberta Martino
Abstract:
The portfolio selection problem includes the evaluation of many criteria that are difficult to compare directly and is characterized by uncertain elements. The portfolio selection problem can be modeled as a group decision problem in which several experts are invited to present their assessment. In this context, it is important to study and analyze the process of reaching a consensus among group members. Indeed, due to the various diversities among experts, reaching consensus is not necessarily always simple and easily achievable. Moreover, the concept of consensus is accompanied by the concept of false consensus, which is particularly interesting in the dynamics of group decision-making processes. False consensus can alter the evaluation and selection phase of the alternative and is the consequence of the decision maker's inability to recognize that his preferences are conditioned by subjective structures. The present work aims to investigate the dynamics of consensus attainment in a group decision problem in which equivalent portfolios are proposed. In particular, the study aims to analyze the impact of the subjective structure of the decision-maker during the evaluation and selection phase of the alternatives. Therefore, the experimental framework is divided into three phases. In the first phase, experts are sent to evaluate the characteristics of all portfolios individually, without peer comparison, arriving independently at the selection of the preferred portfolio. The experts' evaluations are used to obtain individual Analytical Hierarchical Processes that define the weight that each expert gives to all criteria with respect to the proposed alternatives. This step provides insight into how the decision maker's decision process develops, step by step, from goal analysis to alternative selection. The second phase includes the description of the decision maker's state through Markov chains. In fact, the individual weights obtained in the first phase can be reviewed and described as transition weights from one state to another. Thus, with the construction of the individual transition matrices, the possible next state of the expert is determined from the individual weights at the end of the first phase. Finally, the experts meet, and the process of reaching consensus is analyzed by considering the single individual state obtained at the previous stage and the false consensus bias. The work contributes to the study of the impact of subjective structures, quantified through the Analytical Hierarchical Process, and how they combine with the false consensus bias in group decision-making dynamics and the consensus reaching process in problems involving the selection of equivalent portfolios.Keywords: analytical hierarchical process, consensus building, false consensus effect, markov chains, portfolio selection problem
Procedia PDF Downloads 937281 Machine Learning Techniques to Develop Traffic Accident Frequency Prediction Models
Authors: Rodrigo Aguiar, Adelino Ferreira
Abstract:
Road traffic accidents are the leading cause of unnatural death and injuries worldwide, representing a significant problem of road safety. In this context, the use of artificial intelligence with advanced machine learning techniques has gained prominence as a promising approach to predict traffic accidents. This article investigates the application of machine learning algorithms to develop traffic accident frequency prediction models. Models are evaluated based on performance metrics, making it possible to do a comparative analysis with traditional prediction approaches. The results suggest that machine learning can provide a powerful tool for accident prediction, which will contribute to making more informed decisions regarding road safety.Keywords: machine learning, artificial intelligence, frequency of accidents, road safety
Procedia PDF Downloads 897280 Evaluation Framework for Investments in Rail Infrastructure Projects
Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki
Abstract:
Transport infrastructures are high-cost, long-term investments that serve as vital foundations for the operation of a region or nation and are essential to a country’s or business’s economic development and prosperity, by improving well-being and generating jobs and income. The development of appropriate financing options is of key importance in the decision making process in order develop viable transport infrastructures. The development of transport infrastructure has increasingly been shifting toward alternative methods of project financing such as Public Private Partnership (PPPs) and hybrid forms. In this paper, a methodological decision-making framework based on the evaluation of the financial viability of transportation infrastructure for different financial schemes is presented. The framework leads to an assessment of the financial viability which can be achieved by performing various financing scenarios analyses. To illustrate the application of the proposed methodology, a case study of rail transport infrastructure financing scenario analysis in Greece is developed.Keywords: rail transport infrastructure, financial viability, scenario analysis, rail project feasibility
Procedia PDF Downloads 2797279 A Financial Analysis of the Current State of IKEA: A Case Study
Authors: Isabela Vieira, Leonor Carvalho Garcez, Adalmiro Pereira, Tânia Teixeira
Abstract:
In the present work, we aim to analyse IKEA as a company, by focusing on its development, financial analysis and future benchmarks, as well as applying some of the knowledge learned in class, namely hedging and other financial risk mitigation solutions, to understand how IKEA navigates and protects itself from risk. The decision that led us to choose IKEA for our casework has to do with the long history of the company since the 1940s and its high internationalization in 63 different markets. The company also has clear financial reports which aided us in the making of the present essay and naturally, was a factor that contributed to our decision.Keywords: Ikea, financial risk, risk management, hedge
Procedia PDF Downloads 617278 The Evaluation of Child Maltreatment Severity and the Decision-Making Processes in the Child Protection System
Authors: Maria M. Calheiros, Carla Silva, Eunice Magalhães
Abstract:
Professionals working in child protection services (CPS) need to have common and clear criteria to identify cases of maltreatment and to differentiate levels of severity in order to determine when CPS intervention is required, its nature and urgency, and, in most countries, the service that will be in charge of the case (community or specialized CPS). Actually, decision-making process is complex in CPS, and, for that reason, such criteria are particularly important for who significantly contribute to that decision-making in child maltreatment cases. The main objective of this presentation is to describe the Maltreatment Severity Assessment Questionnaire (MSQ), specifically designed to be used by professionals in the CPS, which adopts a multidimensional approach and uses a scale of severity within subtypes. Specifically, we aim to provide evidence of validity and reliability of this tool, in order to improve the quality and validity of assessment processes and, consequently, the decision making in CPS. The total sample was composed of 1000 children and/or adolescents (51.1% boys), aged between 0 and 18 years old (M = 9.47; DP = 4.51). All the participants were referred to official institutions of the children and youth protective system. Children and adolescents maltreatment (abuse, neglect experiences and sexual abuse) were assessed with 21 items of the Maltreatment Severity Questionnaire (MSQ), by professionals of CPS. Each item (sub-type) was composed of four descriptors of increasing severity. Professionals rated the level of severity, using a 4-point scale (1= minimally severe; 2= moderately severe; 3= highly severe; 4= extremely severe). The construct validity of the Maltreatment Severity Questionnaire was assessed with a holdout method, performing an Exploratory Factor Analysis (EFA) followed by a Confirmatory Factor Analysis (CFA). The final solution comprised 18 items organized in three factors 47.3% of variance explained. ‘Physical neglect’ (eight items) was defined by parental omissions concerning the insurance and monitoring of the child’s physical well-being and health, namely in terms of clothing, hygiene, housing conditions and contextual environmental security. ‘Physical and Psychological Abuse’ (four items) described abusive physical and psychological actions, namely, coercive/punitive disciplinary methods, physically violent methods or verbal interactions that offend and denigrate the child, with the potential to disrupt psychological attributes (e.g., self-esteem). ‘Psychological neglect’ (six items) involved omissions related to children emotional development, mental health monitoring, school attendance, development needs, as well as inappropriate relationship patterns with attachment figures. Results indicated a good reliability of all the factors. The assessment of child maltreatment cases with MSQ could have a set of practical and research implications: a) It is a valid and reliable multidimensional instrument to measure child maltreatment, b) It is an instrument integrating the co-occurrence of various types of maltreatment and a within-subtypes scale of severity; c) Specifically designed for professionals, it may assist them in decision-making processes; d) More than using case file reports to evaluate maltreatment experiences, researchers could guide more appropriately their research about determinants and consequences of maltreatment.Keywords: assessment, maltreatment, children and youth, decision-making
Procedia PDF Downloads 2907277 Effective Citizen Participation in Local Government Decision-Making and Democracy
Authors: Ali Zaimi
Abstract:
Citizen participation in local government is an opportunity given to citizens and government to increase communication between them, create public support for local government plans and most important grow public trust in government. Also, the citizens’ involvement in the political process is an important part of democracy. This study aims to define the strategies for increasing citizen participation in local governance and concentrated in two important mechanisms such as participatory budget and public policy councils. Three strategies that promote more effective citizen involvement in local governance are understanding and using formal institutions of power, collaboration of citizens’ groups and governments officials to jointly formulate programs plans, electing and appointing local officials. A unique aspect of citizen participation to operate effectively is the transparency of government and the inclusion of actors into decision-making. The citizen engagement in local governance enhances accountability and problem solving, promote more inclusive and cohesive communities and enlarge the quality and quantity of initiatives made by communities.Keywords: accountability, citizen participation, democracy, government
Procedia PDF Downloads 2677276 Modeling of Geotechnical Data Using GIS and Matlab for Eastern Ahmedabad City, Gujarat
Authors: Rahul Patel, S. P. Dave, M. V Shah
Abstract:
Ahmedabad is a rapidly growing city in western India that is experiencing significant urbanization and industrialization. With projections indicating that it will become a metropolitan city in the near future, various construction activities are taking place, making soil testing a crucial requirement before construction can commence. To achieve this, construction companies and contractors need to periodically conduct soil testing. This study focuses on the process of creating a spatial database that is digitally formatted and integrated with geotechnical data and a Geographic Information System (GIS). Building a comprehensive geotechnical Geo-database involves three essential steps. Firstly, borehole data is collected from reputable sources. Secondly, the accuracy and redundancy of the data are verified. Finally, the geotechnical information is standardized and organized for integration into the database. Once the Geo-database is complete, it is integrated with GIS. This integration allows users to visualize, analyze, and interpret geotechnical information spatially. Using a Topographic to Raster interpolation process in GIS, estimated values are assigned to all locations based on sampled geotechnical data values. The study area was contoured for SPT N-Values, Soil Classification, Φ-Values, and Bearing Capacity (T/m2). Various interpolation techniques were cross-validated to ensure information accuracy. The GIS map generated by this study enables the calculation of SPT N-Values, Φ-Values, and bearing capacities for different footing widths and various depths. This approach highlights the potential of GIS in providing an efficient solution to complex phenomena that would otherwise be tedious to achieve through other means. Not only does GIS offer greater accuracy, but it also generates valuable information that can be used as input for correlation analysis. Furthermore, this system serves as a decision support tool for geotechnical engineers. The information generated by this study can be utilized by engineers to make informed decisions during construction activities. For instance, they can use the data to optimize foundation designs and improve site selection. In conclusion, the rapid growth experienced by Ahmedabad requires extensive construction activities, necessitating soil testing. This study focused on the process of creating a comprehensive geotechnical database integrated with GIS. The database was developed by collecting borehole data from reputable sources, verifying its accuracy and redundancy, and organizing the information for integration. The GIS map generated by this study is an efficient solution that offers greater accuracy and generates valuable information that can be used as input for correlation analysis. It also serves as a decision support tool for geotechnical engineers, allowing them to make informed decisions during construction activities.Keywords: arcGIS, borehole data, geographic information system (GIS), geo-database, interpolation, SPT N-value, soil classification, φ-value, bearing capacity
Procedia PDF Downloads 707275 Understanding Racial Disparate Treatment of Juvenile Interpersonal Violent Offenders in the Juvenile Justice System Using Focal Concerns Theory
Authors: Suzanne Overstreet-Juenke
Abstract:
Disproportionate minority contact (DMC) is a salient issue that has been found at every stage of the decision-making process in the juvenile justice system. Existing research indicates that DMC influences adjudication for drug, property, and personal crimes. Because intimate partner violence (IPV) is a major public health problem and global concern, the current study examines DMC at adjudication among youth charged for crimes of interpersonal violence. This research uses administrative, Court Designated Worker (CDW) data collected from 2014 to 2016. The results are contextualized using Steffensmeier’s version of focal concerns theory of judicial decision-making. This study assesses race and two seriousness of offense measures to establish whether a link exists between race and adjudication. The results of the study is similar to prior research on the topic. These results are discussed in terms of policy implications, limitations, and future research.Keywords: race, disproportionate minority contact, focal concerns theory, juvenile
Procedia PDF Downloads 777274 Vulnerability of People to Climate Change: Influence of Methods and Computation Approaches on Assessment Outcomes
Authors: Adandé Belarmain Fandohan
Abstract:
Climate change has become a major concern globally, particularly in rural communities that have to find rapid coping solutions. Several vulnerability assessment approaches have been developed in the last decades. This comes along with a higher risk for different methods to result in different conclusions, thereby making comparisons difficult and decision-making non-consistent across areas. The effect of methods and computational approaches on estimates of people’s vulnerability was assessed using data collected from the Gambia. Twenty-four indicators reflecting vulnerability components: (exposure, sensitivity, and adaptive capacity) were selected for this purpose. Data were collected through household surveys and key informant interviews. One hundred and fifteen respondents were surveyed across six communities and two administrative districts. Results were compared over three computational approaches: the maximum value transformation normalization, the z-score transformation normalization, and simple averaging. Regardless of the approaches used, communities that have high exposure to climate change and extreme events were the most vulnerable. Furthermore, the vulnerability was strongly related to the socio-economic characteristics of farmers. The survey evidenced variability in vulnerability among communities and administrative districts. Comparing output across approaches, overall, people in the study area were found to be highly vulnerable using the simple average and maximum value transformation, whereas they were only moderately vulnerable using the z-score transformation approach. It is suggested that assessment approach-induced discrepancies be accounted for in international debates to harmonize/standardize assessment approaches to the end of making outputs comparable across regions. This will also likely increase the relevance of decision-making for adaptation policies.Keywords: maximum value transformation, simple averaging, vulnerability assessment, West Africa, z-score transformation
Procedia PDF Downloads 1057273 The Strategic Role of Accommodation Providers in Encouraging Travelers to Adopt Environmentally-Friendly Modes of Transportation: An Experiment from France
Authors: Luc Beal
Abstract:
Introduction. Among the stakeholders involved in the tourist decision-making process, the accommodation provider has the potential to play a crucial role in raising awareness, disseminating information, and thus influencing the tourists’ choice of transportation. Since the early days of tourism, the accommodation provider has consistently served as the primary point of contact with the destination, and consequently, as the primary source of information for visitors. By offering accommodation and hospitality, the accommodation provider has evolved into a trusted third party, functioning as an 'ambassador' capable of recommending the finest attractions and activities available at the destination. In contemporary times, when tourists plan their trips, they make a series of consecutive decisions, with the most important decision being to lock-in the accommodation reservation for the earliest days, so as to secure a safe arrival. Consequently, tourists place their trust in the accommodation provider not only for lodging but also for recommendations regarding restaurants, activities, and more. Thus, the latter has the opportunity to inform and influence tourists well in advance of their arrival, particularly during the booking phase, namely when it comes to selecting their mode of transportation. The pressing need to reduce greenhouse gas emissions within the tourism sector presents an opportunity to underscore the influence that accommodation providers have historically exerted on tourist decision-making . Methodology A participatory research, currently ongoing in south-western France, in collaboration with a nationwide hotel group and several destination management organizations, aims at examining the factors that determine the ability of accommodation providers to influence tourist transportation choices. Additionally, the research seeks to identify the conditions that motivate accommodation providers to assume a proactive role, such as fostering customer loyalty, reduced distribution costs, and financial compensation mechanisms. A panel of hotels participated in a series of focus group sessions with tourists, with the objective of modeling the decision-making process of tourists regarding their choice of transportation mode and to identify and quantify the types and levels of incentives liable to encourage environmentally responsible choices. Individual interviews were also conducted with hotel staff, including receptionists and guest relations officers, to develop a framework for interactions with tourists during crucial decision-making moments related to transportation choices. The primary finding of this research indicates that financial incentives significantly outweigh symbolic incentives in motivating tourists to opt for eco-friendly modes of transportation. Another noteworthy result underscores the crucial impact of organizational conditions governing interactions with tourists both before and during their stay. These conditions greatly influence the ability to raise awareness at key decision-making moments and the possibility of gathering data about the chosen transportation mode during the stay. In conclusion, this research has led to the formulation of practical recommendations for accommodation providers and Destination Marketing Organizations (DMOs). These recommendations pertain to communication protocols with tourists, the collection of evidences confirming chosen transportation modes, and the implementation of necessary incentives. Through these measures, accommodation provider can assume a central role in guiding tourists towards making responsible choices in terms of transportation.Keywords: accommodation provider, trusted third party, environmentally-friendly transportation, green house gas, tourist decision-making process
Procedia PDF Downloads 587272 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches
Authors: Wuttigrai Ngamsirijit
Abstract:
Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.Keywords: decision making, human capital analytics, talent management, talent value chain
Procedia PDF Downloads 1887271 The Adoption of Process Management for Accounting Information Systems in Thailand
Authors: Manirath Wongsim
Abstract:
Information Quality (IQ) has become a critical, strategic issue in Accounting Information Systems (AIS) adoption. In order to implement AIS adoption successfully, it is important to consider the quality of information use throughout the adoption process, which seriously impacts the effectiveness of AIS adoption practice and the optimization of AIS adoption decisions. There is a growing need for research to provide insights into issues and solutions related to IQ in AIS adoption. The need for an integrated approach to improve IQ in AIS adoption, as well as the unique characteristics of accounting data, demands an AIS adoption specific IQ framework. This research aims to explore ways of managing information quality and AIS adoption to investigate the relationship between the IQ issues and AIS adoption process. This study has led to the development of a framework for understanding IQ management in AIS adoption. This research was done on 44 respondents as ten organisations from manufacturing firms in Thailand. The findings of the research’s empirical evidence suggest that IQ dimensions in AIS adoption to provide assistance in all process of decision making. This research provides empirical evidence that information quality of AIS adoption affect decision making and suggests that these variables should be considered in adopting AIS in order to improve the effectiveness of AIS.Keywords: information quality, information quality dimensions, accounting information systems, accounting information system adoption
Procedia PDF Downloads 4677270 The Development of an Agent-Based Model to Support a Science-Based Evacuation and Shelter-in-Place Planning Process within the United States
Authors: Kyle Burke Pfeiffer, Carmella Burdi, Karen Marsh
Abstract:
The evacuation and shelter-in-place planning process employed by most jurisdictions within the United States is not informed by a scientifically-derived framework that is inclusive of the behavioral and policy-related indicators of public compliance with evacuation orders. While a significant body of work exists to define these indicators, the research findings have not been well-integrated nor translated into useable planning factors for public safety officials. Additionally, refinement of the planning factors alone is insufficient to support science-based evacuation planning as the behavioral elements of evacuees—even with consideration of policy-related indicators—must be examined in the context of specific regional transportation and shelter networks. To address this problem, the Federal Emergency Management Agency and Argonne National Laboratory developed an agent-based model to support regional analysis of zone-based evacuation in southeastern Georgia. In particular, this model allows public safety officials to analyze the consequences that a range of hazards may have upon a community, assess evacuation and shelter-in-place decisions in the context of specified evacuation and response plans, and predict outcomes based on community compliance with orders and the capacity of the regional (to include extra-jurisdictional) transportation and shelter networks. The intention is to use this model to aid evacuation planning and decision-making. Applications for the model include developing a science-driven risk communication strategy and, ultimately, in the case of evacuation, the shortest possible travel distance and clearance times for evacuees within the regional boundary conditions.Keywords: agent-based modeling for evacuation, decision-support for evacuation planning, evacuation planning, human behavior in evacuation
Procedia PDF Downloads 2377269 Landslide Hazard Zonation and Risk Studies Using Multi-Criteria Decision-Making and Slope Stability Analysis
Authors: Ankit Tyagi, Reet Kamal Tiwari, Naveen James
Abstract:
In India, landslides are the most frequently occurring disaster in the regions of the Himalayas and the Western Ghats. The steep slopes and land use in these areas are quite apprehensive. In the recent past, many landslide hazard zonation (LHZ) works have been carried out in the Himalayas. However, the preparation of LHZ maps considering temporal factors such as seismic ground shaking, seismic amplification at surface level, and rainfall are limited. Hence this study presents a comprehensive use of the multi-criteria decision-making (MCDM) method in landslide risk assessment. In this research, we conducted both geospatial and geotechnical analysis to minimize the danger of landslides. Geospatial analysis is performed using high-resolution satellite data to produce landslide causative factors which were given weightage using the MCDM method. The geotechnical analysis includes a slope stability check, which was done to determine the potential landslide slope. The landslide risk map can provide useful information which helps people to understand the risk of living in an area.Keywords: landslide hazard zonation, PHA, AHP, GIS
Procedia PDF Downloads 1947268 Data Mining Meets Educational Analysis: Opportunities and Challenges for Research
Authors: Carla Silva
Abstract:
Recent development of information and communication technology enables us to acquire, collect, analyse data in various fields of socioeconomic – technological systems. Along with the increase of economic globalization and the evolution of information technology, data mining has become an important approach for economic data analysis. As a result, there has been a critical need for automated approaches to effective and efficient usage of massive amount of educational data, in order to support institutions to a strategic planning and investment decision-making. In this article, we will address data from several different perspectives and define the applied data to sciences. Many believe that 'big data' will transform business, government, and other aspects of the economy. We discuss how new data may impact educational policy and educational research. Large scale administrative data sets and proprietary private sector data can greatly improve the way we measure, track, and describe educational activity and educational impact. We also consider whether the big data predictive modeling tools that have emerged in statistics and computer science may prove useful in educational and furthermore in economics. Finally, we highlight a number of challenges and opportunities for future research.Keywords: data mining, research analysis, investment decision-making, educational research
Procedia PDF Downloads 358