Search results for: in-situ laser raman spectroscopy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2855

Search results for: in-situ laser raman spectroscopy

2405 Diagnosis of Gingivitis Based on Correlations of Laser Doppler Data and Gingival Fluid Cytology

Authors: A. V. Belousov, Yakushenko

Abstract:

One of the main problems of modern dentistry is development a reliable method to detect inflammation in the gums on the stages of diagnosis and assessment of treatment efficacy. We have proposed a method of gingival fluid intake, which successfully combines accessibility, excluding the impact of the annoying and damaging the gingival sulcus factors and provides reliable results (patent of RF№ 2342956 Method of gingival fluid intake). The objects of the study were students - volunteers of Dentistry Faculty numbering 75 people aged 20-21 years. Cellular composition of gingival fluid was studied using microscope "Olympus CX 31" (Japan) with the calculation of epithelial leukocyte index (ELI). Assessment of gingival micro circulation was performed using the apparatus «LAKK–01» (Lazma, Moscow). Cytological investigation noted the highly informative of epithelial leukocyte index (ELI), which demonstrated changes in the mechanisms of protection gums. The increase of ELI occurs during inhibition mechanisms of phagocytosis and activation of epithelial desquamation. The cytological data correlate with micro circulation indicators obtained by laser Doppler flowmetry. We have identified and confirmed the correlations between parameters laser Doppler flowmetry and data cytology gingival fluid in patients with gingivitis.

Keywords: gingivitis, laser doppler flowmetry, gingival fluid cytology, epithelial leukocyte index (ELI)

Procedia PDF Downloads 328
2404 Evaluation of Heterogeneity of Paint Coating on Metal Substrate Using Laser Infrared Thermography and Eddy Current

Authors: S. Mezghani, E. Perrin, J. L. Bodnar, J. Marthe, B. Cauwe, V. Vrabie

Abstract:

Non contact evaluation of the thickness of paint coatings can be attempted by different destructive and nondestructive methods such as cross-section microscopy, gravimetric mass measurement, magnetic gauges, Eddy current, ultrasound or terahertz. Infrared thermography is a nondestructive and non-invasive method that can be envisaged as a useful tool to measure the surface thickness variations by analyzing the temperature response. In this paper, the thermal quadrupole method for two layered samples heated up with a pulsed excitation is firstly used. By analyzing the thermal responses as a function of thermal properties and thicknesses of both layers, optimal parameters for the excitation source can be identified. Simulations show that a pulsed excitation with duration of ten milliseconds allows to obtain a substrate-independent thermal response. Based on this result, an experimental setup consisting of a near-infrared laser diode and an Infrared camera was next used to evaluate the variation of paint coating thickness between 60 µm and 130 µm on two samples. Results show that the parameters extracted for thermal images are correlated with the estimated thicknesses by the Eddy current methods. The laser pulsed thermography is thus an interesting alternative nondestructive method that can be moreover used for non conductive substrates.

Keywords: non destructive, paint coating, thickness, infrared thermography, laser, heterogeneity

Procedia PDF Downloads 639
2403 Laser-TIG Welding-Brazing for Dissimilar Metals between Aluminum Alloy and Steel

Authors: Xiangfang Xu, Bintao Wu, Yugang Miao, Duanfeng Han

Abstract:

Experiments were conducted on 5A06 aluminum alloy and Q235 steel using the laser-TIG hybrid heat source welding-brazing method to realize the reliable connection of Al/Fe dissimilar metals and the welding characteristics were analyzed. It was found that the joints with uniform seam and high tensile strength could be obtained using such a method, while the welding process demanded special welding parameters. Spectrum measurements showed that the Al and Fe atoms diffused more thoroughly at the brazing interface and formed a 3μm-thick intermetallic compound layer at the Al/Fe joints brazed connection interface. Shearing tests indicated that the shearing strength of the Al/Fe welding-brazed joint was 165MPa. The fracture occurred near the melting zone of aluminum alloy, which belonged to the mixed mode with the ductile fracture as the base and the brittle fracture as the supplement.

Keywords: Al/Fe dissimilar metals, laser-TIG hybrid heat source, shearing strength, welding-brazing method

Procedia PDF Downloads 403
2402 Pulsed Laser Single Event Transients in 0.18 μM Partially-Depleted Silicon-On-Insulator Device

Authors: MeiBo, ZhaoXing, LuoLei, YuQingkui, TangMin, HanZhengsheng

Abstract:

The Single Event Transients (SETs) were investigated on 0.18μm PDSOI transistors and 100 series CMOS inverter chain using pulse laser. The effect of different laser energy and device bias for waveform on SET was characterized experimentally, as well as the generation and propagation of SET in inverter chain. In this paper, the effects of struck transistors type and struck locations on SETs were investigated. The results showed that when irradiate NMOSFETs from 100th to 2nd stages, the SET pulse width measured at the output terminal increased from 287.4 ps to 472.9 ps; and when irradiate PMOSFETs from 99th to 1st stages, the SET pulse width increased from 287.4 ps to 472.9 ps. When struck locations were close to the output of the chain, the SET pulse was narrow; however, when struck nodes were close to the input, the SET pulse was broadening. SET pulses were progressively broadened up when propagating along inverter chains. The SET pulse broadening is independent of the type of struck transistors. Through analysis, history effect induced threshold voltage hysteresis in PDSOI is the reason of pulse broadening. The positive pulse observed by oscilloscope, contrary to the expected results, is because of charging and discharging of capacitor.

Keywords: single event transients, pulse laser, partially-depleted silicon-on-insulator, propagation-induced pulse broadening effect

Procedia PDF Downloads 412
2401 Hard Water Softening by Chronoamperometry and Impedancemetry

Authors: Samira Ghizellaoui, Manel Boumagoura, Rayane Menzri

Abstract:

The ground water Hamma rich in calcium and bicarbonate likely to deposit the tartar and subsequently lead to the obstruction of the pipes and the seizing of the stopping devices in addition to the financial losses resulting there from. It is therefore necessary to optimise an antiscaling treatment in order to avoid the risk of formation of tartar deposits in the various installations and to protect the equipment in contact with this water. MgCl2 is the chemical inhibitor which was tested. To optimise the effective concentration of this product, we used two electrochemical methods (chronoamperometry and impedancemetry) to identify the best method for optimizing antiscaling treatment. IR, RX, Raman spectroscopy and SEM indicate that the raw waters of Hamma give precipitates in the form of calcite (the most stable form), with the presence of a small amount of magnesian calcite and aragonite. In the presence of the inhibitor (MgCl2), calcium carbonate changes morphology to other forms that do not exist in the deposit obtained from the raw water (vaterite and calcium carbonate monohydrate).

Keywords: calcium carbonate, MgCl2, chronoamperometry, Impedancemetry

Procedia PDF Downloads 88
2400 Electrohydrodynamic Patterning for Surface Enhanced Raman Scattering for Point-of-Care Diagnostics

Authors: J. J. Rickard, A. Belli, P. Goldberg Oppenheimer

Abstract:

Medical diagnostics, environmental monitoring, homeland security and forensics increasingly demand specific and field-deployable analytical technologies for quick point-of-care diagnostics. Although technological advancements have made optical methods well-suited for miniaturization, a highly-sensitive detection technique for minute sample volumes is required. Raman spectroscopy is a well-known analytical tool, but has very weak signals and hence is unsuitable for trace level analysis. Enhancement via localized optical fields (surface plasmons resonances) on nanoscale metallic materials generates huge signals in surface-enhanced Raman scattering (SERS), enabling single molecule detection. This enhancement can be tuned by manipulation of the surface roughness and architecture at the sub-micron level. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for SERS-based sensing devices. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing. The superior detection properties and the ability to fabricate SERS substrates on the miniaturized scale, will facilitate the development of advanced and novel opto-fluidic devices, such as portable detection systems, and will offer numerous applications in biomedical diagnostics, forensics, ecological warfare and homeland security.

Keywords: hierarchical electrohydrodynamic patterning, medical diagnostics, point-of care devices, SERS

Procedia PDF Downloads 346
2399 Micro-Study of Dissimilar Welded Materials

Authors: Ezzeddin Anawa, Abdol-Ghane Olabi

Abstract:

The dissimilar joint between aluminum /titanium alloys (Al 6082 and Ti G2) alloys were successfully achieved by CO2 laser welding with a single pass and without filler material using the overlap joint design. Laser welding parameters ranges combinations were experimentally determined using Taguchi approach with the objective of producing welded joint with acceptable welding profile and high quality of mechanical properties. In this study a joining of dissimilar Al 6082 / Ti G2 was result in three distinct regions fusion area (FA), heat-affected zone (HAZ), and the unaffected base metal (BM) in the weldment. These regions are studied in terms of its microstructural characteristics and microhardness which are directly affecting the welding quality. The weld metal was mainly composed of martensite alpha prime. In two different metals in the two different sides of joint HAZ, grain growth was detected. The microhardness of the joint distribution also has shown microhardness increasing in the HAZ of two base metals and a varying microhardness in fusion zone.

Keywords: microharness , microstructure, laser welding and dissimilar jointed materials.

Procedia PDF Downloads 374
2398 Discrimination between Defective and Non-Defective Coffee Beans Using a Laser Prism Spectrometer

Authors: A. Belay, B. Kebede

Abstract:

The concentration- and temperature-dependent refractive indices of solutions extracted from defective and non-defective coffee beans have been investigated using a He–Ne laser. The refractive index has a linear relationship with the presumed concentration of the coffee solutions in the range of 0.5–3%. Higher and lower values of refractive index were obtained for immature and non-defective coffee beans, respectively. The Refractive index of bean extracts can be successfully used to separate defective from non-defective beans.

Keywords: coffee extract, refractive index, temperature dependence

Procedia PDF Downloads 150
2397 Discrimination Between Bacillus and Alicyclobacillus Isolates in Apple Juice by Fourier Transform Infrared Spectroscopy and Multivariate Analysis

Authors: Murada Alholy, Mengshi Lin, Omar Alhaj, Mahmoud Abugoush

Abstract:

Alicyclobacillus is a causative agent of spoilage in pasteurized and heat-treated apple juice products. Differentiating between this genus and the closely related Bacillus is crucially important. In this study, Fourier transform infrared spectroscopy (FT-IR) was used to identify and discriminate between four Alicyclobacillus strains and four Bacillus isolates inoculated individually into apple juice. Loading plots over the range of 1350 and 1700 cm-1 reflected the most distinctive biochemical features of Bacillus and Alicyclobacillus. Multivariate statistical methods (e.g. principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA)) were used to analyze the spectral data. Distinctive separation of spectral samples was observed. This study demonstrates that FT-IR spectroscopy in combination with multivariate analysis could serve as a rapid and effective tool for fruit juice industry to differentiate between Bacillus and Alicyclobacillus and to distinguish between species belonging to these two genera.

Keywords: alicyclobacillus, bacillus, FT-IR, spectroscopy, PCA

Procedia PDF Downloads 488
2396 Greywater Reuse for Sunflower Irrigation Previously Radiated with Helium-Neon Laser: Evaluation of Growth, Flowering, and Chemical Constituents

Authors: Sami Ali Metwally, Bedour Helmy Abou-Leila, Hussien Ibrahim Abdel-Shafy

Abstract:

This study was carried out at the pilot plant area in the National Research Centre during the two successive seasons, 2020 and 2022. The aim is to investigate the response of vegetative growth and chemical constituents of sunflowers plants irrigated by two types of wastewater, namely: black wastewater W1 (Bathroom) and grey wastewater W1, under irradiation conditions of helium-neon (He-Ne) laser. The examined data indicated that irrigation of W1 significantly increased the growth and flowering parameters (plant height, leaves number, leaves area, leaves fresh and dry weight, flower diameter, flower stem length, flower stem thickness, number of days to flower, and total chlorophyll). Treated sunflower plants with 0 to 10 min. recorded an increase in the fresh weight and dry weight of leaves. However, the superiority of increasing vase life and delaying flowers were recorded by prolonging exposure time by up to 10 min. Regarding the effect of interaction treatments, the data indicated that the highest values on almost growth parameters were obtained from plants treated with W1+0 laser followed by W2+10 min. laser, compared with all interaction treatments. As for flowering parameters, the interactions between W2+2 min. time exposure, W1+0 time, w1+10 min., and w1+2 min. exposures recorded the highest values on flower diameter, flower stem length, flower stem thickness, vase life, and delaying flowering.

Keywords: greywater, sunflower plant, water reuse, vegetative growth, laser radiation

Procedia PDF Downloads 83
2395 Post Growth Annealing Effect on Deep Level Emission and Raman Spectra of Hydrothermally Grown ZnO Nanorods Assisted by KMnO4

Authors: Ashish Kumar, Tejendra Dixit, I. A. Palani, Vipul Singh

Abstract:

Zinc oxide, with its interesting properties such as large band gap (3.37eV), high exciton binding energy (60 meV) and intense UV absorption has been studied in literature for various applications viz. optoelectronics, biosensors, UV-photodetectors etc. The performance of ZnO devices is highly influenced by morphologies, size, crystallinity of the ZnO active layer and processing conditions. Recently, our group has shown the influence of the in situ addition of KMnO4 in the precursor solution during the hydrothermal growth of ZnO nanorods (NRs) on their near band edge (NBE) emission. In this paper, we have investigated the effect of post-growth annealing on the variations in NBE and deep level (DL) emissions of as grown ZnO nanorods. These observed results have been explained on the basis of X-ray Diffraction (XRD) and Raman spectroscopic analysis, which clearly show that improved crystalinity and quantum confinement in ZnO nanorods.

Keywords: ZnO, nanorods, hydrothermal, KMnO4

Procedia PDF Downloads 401
2394 Growth and Characterization of Cuprous Oxide (Cu2O) Nanorods by Reactive Ion Beam Sputter Deposition (Ibsd) Method

Authors: Assamen Ayalew Ejigu, Liang-Chiun Chao

Abstract:

In recent semiconductor and nanotechnology, quality material synthesis, proper characterizations, and productions are the big challenges. As cuprous oxide (Cu2O) is a promising semiconductor material for photovoltaic (PV) and other optoelectronic applications, this study was aimed at to grow and characterize high quality Cu2O nanorods for the improvement of the efficiencies of thin film solar cells and other potential applications. In this study, well-structured cuprous oxide (Cu2O) nanorods were successfully fabricated using IBSD method in which the Cu2O samples were grown on silicon substrates with a substrate temperature of 400°C in an IBSD chamber of pressure of 4.5 x 10-5 torr using copper as a target material. Argon, and oxygen gases were used as a sputter and reactive gases, respectively. The characterization of the Cu2O nanorods (NRs) were done in comparison with Cu2O thin film (TF) deposited with the same method but with different Ar:O2 flow rates. With Ar:O2 ratio of 9:1 single phase pure polycrystalline Cu2O NRs with diameter of ~500 nm and length of ~4.5 µm were grow. Increasing the oxygen flow rates, pure single phase polycrystalline Cu2O thin film (TF) was found at Ar:O2 ratio of 6:1. The field emission electron microscope (FE-SEM) measurements showed that both samples have smooth morphologies. X-ray diffraction and Rama scattering measurements reveals the presence of single phase Cu2O in both samples. The differences in Raman scattering and photoluminescence (PL) bands of the two samples were also investigated and the results showed us there are differences in intensities, in number of bands and in band positions. Raman characterization shows that the Cu2O NRs sample has pronounced Raman band intensities, higher numbers of Raman bands than the Cu2O TF which has only one second overtone Raman signal at 2 (217 cm-1). The temperature dependent photoluminescence (PL) spectra measurements, showed that the defect luminescent band centered at 720 nm (1.72 eV) is the dominant one for the Cu2O NRs and the 640 nm (1.937 eV) band was the only PL band observed from the Cu2O TF. The difference in optical and structural properties of the samples comes from the oxygen flow rate change in the process window of the samples deposition. This gave us a roadmap for further investigation of the electrical and other optical properties for the tunable fabrication of the Cu2O nano/micro structured sample for the improvement of the efficiencies of thin film solar cells in addition to other potential applications. Finally, the novel morphologies, excellent structural and optical properties seen exhibits the grown Cu2O NRs sample has enough quality to be used in further research of the nano/micro structured semiconductor materials.

Keywords: defect levels, nanorods, photoluminescence, Raman modes

Procedia PDF Downloads 241
2393 Synthesis, Characterization of Pd Nanoparticle Supported on Amine-Functionalized Graphene and Its Catalytic Activity for Suzuki Coupling Reaction

Authors: Surjyakanta Rana, Sreekantha B. Jonnalagadda

Abstract:

Synthesis of well distributed Pd nanoparticles (3 – 7 nm) on organo amine-functionalized graphene is reported, which demonstrated excellent catalytic activity towards Suzuki coupling reaction. The active material was characterized by X-ray diffraction (XRD), BET surface area, X-ray photoelectron spectra (XPS), Fourier-transfer infrared spectroscopy (FTIR), Raman spectra, Scanning electron microscope (SEM), Transmittance electron microscopy (TEM) analysis and HRTEM. FT-IR revealed that the organic amine functional group was successfully grafted onto the graphene oxide surface. The formation of palladium nanoparticles was confirmed by XPS, TEM and HRTEM techniques. The catalytic activity in the coupling reaction was superb with 100% conversion and 98 % yield and also activity remained almost unaltered up to six cycles. Typically, an extremely high turnover frequency of 185,078 h-1 is observed in the C-C Suzuki coupling reaction using organo di-amine functionalized graphene as catalyst.

Keywords: Di-amine, graphene, Pd nanoparticle, suzuki coupling

Procedia PDF Downloads 375
2392 Synthesis, Structural, Spectroscopic and Nonlinear Optical Properties of New Picolinate Complex of Manganese (II) Ion

Authors: Ömer Tamer, Davut Avcı, Yusuf Atalay

Abstract:

Novel picolinate complex of manganese(II) ion, [Mn(pic)2] [pic: picolinate or 2-pyridinecarboxylate], was prepared and fully characterized by single crystal X-ray structure determination. The manganese(II) complex was characterized by FT-IR, FT-Raman and UV–Vis spectroscopic techniques. The C=O, C=N and C=C stretching vibrations were found to be strong and simultaneously active in IR and spectra. In order to support these experimental techniques, density functional theory (DFT) calculations were performed at Gaussian 09W. Although the supramolecular interactions have some influences on the molecular geometry in solid state phase, the calculated data show that the predicted geometries can reproduce the structural parameters. The molecular modeling and calculations of IR, Raman and UV-vis spectra were performed by using DFT levels. Nonlinear optical (NLO) properties of synthesized complex were evaluated by the determining of dipole moment (µ), polarizability (α) and hyperpolarizability (β). Obtained results demonstrated that the manganese(II) complex is a good candidate for NLO material. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was analyzed using natural bond orbital (NBO) analysis. The highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) which is also known the frontier molecular orbitals were simulated, and obtained energy gap confirmed that charge transfer occurs within manganese(II) complex. Molecular electrostatic potential (MEP) for synthesized manganese(II) complex displays the electrophilic and nucleophilic regions. From MEP, the the most negative region is located over carboxyl O atoms while positive region is located over H atoms.

Keywords: DFT, picolinate, IR, Raman, nonlinear optic

Procedia PDF Downloads 499
2391 Structural Investigation and Hyperfine Interactions of BaBiₓLaₓFe₁₂₋₂ₓO₁₉ (0.0 ≤ X ≤ 0.5) Hexaferrites

Authors: Hakan Gungunes, Ismail A. Auwal, Abdulhadi Baykal, Sagar E. Shirsath

Abstract:

Barium hexaferrite, BaFe₁₂O₁₉, substituted by Bi³⁺ and La³⁺ (BaBiₓLaₓFe₁₂₋₂ₓO₁₉ where 0.0 ≤ x ≤ 0.5) were prepared by solid state synthesis route. The effect of substituted Bi³⁺ and La³⁺ ions on the structure, morphology, magnetic and cation distributions of barium hexaferrite were investigated by X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR) and Mössbauer spectroscopy. XRD powder patterns were refined by the Rietveld analysis method which confirmed the formation of single phase magneto-plumbite structure and the substitution of La³⁺ and Bi³⁺ ions into the lattice of barium ferrite. These results show that both La³⁺ and Bi³⁺ ions completely enter into barium hexaferrite lattice without disturbing the hexagonal ferrite structure. The EDX spectra confirmed the presence of all the constituents in expected elemental percentage. From 57Fe Mössbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values on Bi and La substitutions have been determined. Cation distribution in the presently investigated hexaferrite system was estimated using the relative area of Mössbauer spectroscopy.

Keywords: hexaferrite, mössbauer, cation distribution, solid state synthesis

Procedia PDF Downloads 378
2390 Study of the Energy Levels in the Structure of the Laser Diode GaInP

Authors: Abdelali Laid, Abid Hamza, Zeroukhi Houari, Sayah Naimi

Abstract:

This work relates to the study of the energy levels and the optimization of the Parameter intrinsic (a number of wells and their widths, width of barrier of potential, index of refraction etc.) and extrinsic (temperature, pressure) in the Structure laser diode containing the structure GaInP. The methods of calculation used; - method of the empirical pseudo potential to determine the electronic structures of bands, - graphic method for optimization. The found results are in concord with those of the experiment and the theory.

Keywords: semi-conductor, GaInP/AlGaInP, pseudopotential, energy, alliages

Procedia PDF Downloads 492
2389 A Density Function Theory Based Comparative Study of Trans and Cis - Resveratrol

Authors: Subhojyoti Chatterjee, Peter J. Mahon, Feng Wang

Abstract:

Resveratrol (RvL), a phenolic compound, is a key ingredient in wine and tomatoes that has been studied over the years because of its important bioactivities such as anti-oxidant, anti-aging and antimicrobial properties. Out of the two isomeric forms of resveratrol i.e. trans and cis, the health benefit is primarily associated with the trans form. Thus, studying the structural properties of the isomers will not only provide an insight into understanding the RvL isomers, but will also help in designing parameters for differentiation in order to achieve 99.9% purity of trans-RvL. In the present study, density function theory (DFT) study is conducted, using the B3LYP/6-311++G** model to explore the through bond and through space intramolecular interactions. Properties such as vibrational spectroscopy (IR and Raman), nuclear magnetic resonance (NMR) spectra, excess orbital energy spectrum (EOES), energy based decomposition analyses (EDA) and Fukui function are calculated. It is discovered that the structure of trans-RvL, although it is C1 non-planar, the backbone non-H atoms are nearly in the same plane; whereas the cis-RvL consists of two major planes of R1 and R2 that are not in the same plane. The absence of planarity gives rise to a H-bond of 2.67Å in cis-RvL. Rotation of the C(5)-C(8) single bond in trans-RvL produces higher energy barriers since it may break the (planar) entire conjugated structure; while such rotation in cis-RvL produces multiple minima and maxima depending on the positions of the rings. The calculated FT-IR spectrum shows very different spectral features for trans and cis-RvL in the region 900 – 1500 cm-1, where the spectral peaks at 1138-1158 cm-1 are split in cis-RvL compared to a single peak at 1165 cm-1 in trans-RvL. In the Raman spectra, there is significant enhancement of cis-RvL in the region above 3000cm-1. Further, the carbon chemical environment (13C NMR) of the RvL molecule exhibit a larger chemical shift for cis-RvL compared to trans-RvL (Δδ = 8.18 ppm) for the carbon atom C(11), indicating that the chemical environment of the C group in cis-RvL is more diverse than its other isomer. The energy gap between highest occupied molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO) is 3.95 eV for trans and 4.35 eV for cis-RvL. A more detailed inspection using the recently developed EOES revealed that most of the large energy differences i.e. Δεcis-trans > ±0.30 eV, in their orbitals are contributed from the outer valence shell. They are MO60 (HOMO), MO52-55 and MO46. The active sites that has been captured by Fukui function (f + > 0.08) are associated with the stilbene C=C bond of RvL and cis-RvL is more active at these sites than in trans-RvL, as cis orientation breaks the large conjugation of trans-RvL so that the hydroxyl oxygen’s are more active in cis-RvL. Finally, EDA highlights the interaction energy (ΔEInt) of the phenolic compound, where trans is preferred over the cis-RvL (ΔΔEi = -4.35 kcal.mol-1) isomer. Thus, these quantum mechanics results could help in unwinding the diversified beneficial activities associated with resveratrol.

Keywords: resveratrol, FT-IR, Raman, NMR, excess orbital energy spectrum, energy decomposition analysis, Fukui function

Procedia PDF Downloads 194
2388 Applying Laser Scanning and Digital Photogrammetry for Developing an Archaeological Model Structure for Old Castle in Germany

Authors: Bara' Al-Mistarehi

Abstract:

Documentation and assessment of conservation state of an archaeological structure is a significant procedure in any management plan. However, it has always been a challenge to apply this with a low coast and safe methodology. It is also a time-demanding procedure. Therefore, a low cost, efficient methodology for documenting the state of a structure is needed. In the scope of this research, this paper will employ digital photogrammetry and laser scanner to one of highly significant structures in Germany, The Old Castle (German: Altes Schloss). The site is well known for its unique features. However, the castle suffers from serious deterioration threats because of the environmental conditions and the absence of continuous monitoring, maintenance and repair plans. Digital photogrammetry is a generally accepted technique for the collection of 3D representations of the environment. For this reason, this image-based technique has been extensively used to produce high quality 3D models of heritage sites and historical buildings for documentation and presentation purposes. Additionally, terrestrial laser scanners are used, which directly measure 3D surface coordinates based on the run-time of reflected light pulses. These systems feature high data acquisition rates, good accuracy and high spatial data density. Despite the potential of each single approach, in this research work maximum benefit is to be expected by a combination of data from both digital cameras and terrestrial laser scanners. Within the paper, the usage, application and advantages of the technique will be investigated in terms of building high realistic 3D textured model for some parts of the old castle. The model will be used as diagnosing tool of the conservation state of the castle and monitoring mean for future changes.

Keywords: Digital photogrammetry, Terrestrial laser scanners, 3D textured model, archaeological structure

Procedia PDF Downloads 179
2387 Antireflection Performance of Graphene Directly Deposited on Silicon Substrate by the Atmospheric Pressure Chemical Vapor Deposition Method

Authors: Samira Naghdi, Kyong Yop Rhee

Abstract:

Transfer-free synthesis of graphene on dielectric substrates is highly desirable but remains challenging. Here, by using a thin sacrificial platinum layer as a catalyst, graphene was deposited on a silicon substrate through a simple and transfer-free synthesis method. During graphene growth, the platinum layer evaporated, resulting in direct deposition of graphene on the silicon substrate. In this work, different growth conditions of graphene were optimized. Raman spectra of the produced graphene indicated that the obtained graphene was bilayer. The sheet resistance obtained from four-point probe measurements demonstrated that the deposited graphene had high conductivity. Reflectance spectroscopy of graphene-coated silicon showed a decrease in reflectance across the wavelength range of 200-800 nm, indicating that the graphene coating on the silicon surface had antireflection capabilities.

Keywords: antireflection coating, chemical vapor deposition, graphene, the sheet resistance

Procedia PDF Downloads 181
2386 Use of EPR in Experimental Mechanics

Authors: M. Sikoń, E. Bidzińska

Abstract:

An attempt to apply EPR (Electron Paramagnetic Resonance) spectroscopy to experimental analysis of the mechanical state of the loaded material is considered in this work. Theory concerns the participation of electrons in transfer of mechanical action. The model of measurement is shown by applying classical mechanics and quantum mechanics. Theoretical analysis is verified using EPR spectroscopy twice, once for the free spacemen and once for the mechanical loaded spacemen. Positive results in the form of different spectra for free and loaded materials are used to describe the mechanical state in continuum based on statistical mechanics. Perturbation of the optical electrons in the field of the mechanical interactions inspires us to propose new optical properties of the materials with mechanical stresses.

Keywords: Cosserat medium, EPR spectroscopy, optical active electrons, optical activity

Procedia PDF Downloads 380
2385 Web Map Service for Fragmentary Rockfall Inventory

Authors: M. Amparo Nunez-Andres, Nieves Lantada

Abstract:

One of the most harmful geological risks is rockfalls. They cause both economic lost, damaged in buildings and infrastructures, and personal ones. Therefore, in order to estimate the risk of the exposed elements, it is necessary to know the mechanism of this kind of events, since the characteristics of the rock walls, to the propagation of fragments generated by the initial detached rock mass. In the framework of the research RockModels project, several inventories of rockfalls were carried out along the northeast of the Spanish peninsula and the Mallorca island. These inventories have general information about the events, although the important fact is that they contained detailed information about fragmentation. Specifically, the IBSD (Insitu Block Size Distribution) is obtained by photogrammetry from drone or TLS (Terrestrial Laser Scanner) and the RBSD (Rock Block Size Distribution) from the volume of the fragment in the deposit measured by hand. In order to share all this information with other scientists, engineers, members of civil protection, and stakeholders, it is necessary a platform accessible from the internet and following interoperable standards. In all the process, open-software have been used: PostGIS 2.1., Geoserver, and OpenLayers library. In the first step, a spatial database was implemented to manage all the information. We have used the data specifications of INSPIRE for natural risks adding specific and detailed data about fragmentation distribution. The next step was to develop a WMS with Geoserver. A previous phase was the creation of several views in PostGIS to show the information at different scales of visualization and with different degrees of detail. In the first view, the sites are identified with a point, and basic information about the rockfall event is facilitated. In the next level of zoom, at medium scale, the convex hull of the rockfall appears with its real shape and the source of the event and fragments are represented by symbols. The queries at this level offer a major detail about the movement. Eventually, the third level shows all elements: deposit, source, and blocks, in their real size, if it is possible, and in their real localization. The last task was the publication of all information in a web mapping site (www.rockdb.upc.edu) with data classified by levels using libraries in JavaScript as OpenLayers.

Keywords: geological risk, web mapping, WMS, rockfalls

Procedia PDF Downloads 160
2384 Purple Spots on Historical Parchments: Confirming the Microbial Succession at the Basis of Biodeterioration

Authors: N. Perini, M. C. Thaller, F. Mercuri, S. Orlanducci, A. Rubechini, L. Migliore

Abstract:

The preservation of cultural heritage is one of the major challenges of today’s society, because of the fundamental right of future generations to inherit it as the continuity with their historical and cultural identity. Parchments, consisting of a semi-solid matrix of collagen produced from animal skin (i.e., sheep or goats), are a significant part of the cultural heritage, being used as writing material for many centuries. Due to their animal origin, parchments easily undergo biodeterioration. The most common biological damage is characterized by isolated or coalescent purple spots that often leads to the detachment of the superficial layer and the loss of the written historical content of the document. Although many parchments with the same biodegradative features were analyzed, no common causative agent has been found so far. Very recently, a study was performed on a purple-damaged parchment roll dated back 1244 A.D, the A.A. Arm. I-XVIII 3328, belonging to the oldest collection of the Vatican Secret Archive (Fondo 'Archivum Arcis'), by comparing uncolored undamaged and purple damaged areas of the same document. As a whole, the study gave interesting results to hypothesize a model of biodeterioration, consisting of a microbial succession acting in two main phases: the first one, common to all the damaged parchments, is characterized by halophilic and halotolerant bacteria fostered by the salty environment within the parchment maybe induced by bringing of the hides; the second one, changing with the individual history of each parchment, determines the identity of its colonizers. The design of this model was pivotal to this study, performed by different labs of the Tor Vergata University (Rome, Italy), in collaboration with the Vatican Secret Archive. Three documents, belonging to a collection of dramatically damaged parchments archived as 'Faldone Patrizi A 19' (dated back XVII century A.D.), were analyzed through a multidisciplinary approach, including three updated technologies: (i) Next Generation Sequencing (NGS, Illumina) to describe the microbial communities colonizing the damaged and undamaged areas, (ii) RAMAN spectroscopy to analyze the purple pigments, (iii) Light Transmitted Analysis (LTA) to evaluate the kind and entity of the damage to native collagen. The metagenomic analysis obtained from NGS revealed DNA sequences belonging to Halobacterium salinarum mainly in the undamaged areas. RAMAN spectroscopy detected pigments within the purple spots, mainly bacteriorhodopsine/rhodopsin-like pigments, a purple transmembrane protein containing retinal and present in Halobacteria. The LTA technique revealed extremely damaged collagen structures in both damaged and undamaged areas of the parchments. In the light of these data, the study represents a first confirmation of the microbial succession model described above. The demonstration of this model is pivotal to start any possible new restoration strategy to bring back historical parchments to their original beauty, but also to open opportunities for intervention on a huge amount of documents.

Keywords: biodeterioration, parchments, purple spots, ecological succession

Procedia PDF Downloads 171
2383 Fe-Doped Graphene Nanoparticles for Gas Sensing Applications

Authors: Shivani A. Singh, Pravin S. More

Abstract:

In the present inspection, we indicate the falsification of Fe-doped graphene nanoparticles by modified Hummers method. Structural and physiochemical properties of the resulting pallets were explored with the help of ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), Photoluminescence spectroscopy (PL) for graphene sample exhibits absorption peaks ~248nm. Pure graphene shows PL peak at 348 nm. After doping of Fe with graphene the PL peak shifted from 348 nm to 332 nm. The oxidation degree, i.e. the relative amount of oxygen functional groups was estimated from the relative intensities of the oxygen related bands (ORB) in the FTIR measurements. These analyses show that this modified material can be useful for gas sensing applications and to be used in diverse areas.

Keywords: chemical doping, graphene, gas sensing, sensing

Procedia PDF Downloads 218
2382 The Key Role of Yttrium Oxide on Devitrification Resilience of Barium Gallo-germanate Glasses: Physicochemical Properties and Crystallization Study

Authors: Samar Aoujia, Théo Guérineaub, Rayan Zaitera, Evelyne Fargina, Younès Messaddeqb, Thierry Cardinala

Abstract:

Two barium gallo-germanate glass series were elaborated to investigate the effect of the yttrium introduction on the glass physicochemical properties and crystallization behavior. One to twenty mol% of YO3/2 were either added into the glass matrix or substituted for gallium oxide. The glass structure was studied by Raman spectroscopy, and the thermal, optical, thermo-mechanical and physical properties are examined. The introduction of yttrium ions in both glass series increases the glass transition temperature, crystallization temperature, softening temperature, coefficient of linear thermal expansion and density. Through differential scanning calorimetry and X-ray diffraction analyses, it was found that competition occurs between the gallo-germanate zeolite-type phase and the yttrium-containing phase. From 13 mol% of YO3/2, the yttrium introduction impedes the formation of surface crystallization in these glasses.

Keywords: photonic, heavy-metal oxide, glass, crystallization

Procedia PDF Downloads 145
2381 Endoscopic Treatment of Patients with Large Bile Duct Stones

Authors: Yuri Teterin, Lomali Generdukaev, Dmitry Blagovestnov, Peter Yartcev

Abstract:

Introduction: Under the definition "large biliary stones," we referred to stones over 1.5 cm, in which standard transpapillary litho extraction techniques were unsuccessful. Electrohydraulic and laser contact lithotripsy under SpyGlass control have been actively applied for the last decade in order to improve endoscopic treatment results. Aims and Methods: Between January 2019 and July 2022, the N.V. Sklifosovsky Research Institute of Emergency Care treated 706 patients diagnosed with choledocholithiasis who underwent biliary stones removed from the common bile duct. Of them, in 57 (8, 1%) patients, the use of a Dormia basket or Biliary stone extraction balloon was technically unsuccessful due to the size of the stones (more than 15 mm in diameter), which required their destruction. Mechanical lithotripsy was used in 35 patients, and electrohydraulic and laser lithotripsy under SpyGlass direct visualization system - in 26 patients. Results: The efficiency of mechanical lithotripsy was 72%. Complications in this group were observed in 2 patients. In both cases, on day one after lithotripsy, acute pancreatitis developed, which resolved on day three with conservative therapy (Clavin-Dindo type 2). The efficiency of contact lithotripsy was in 100% of patients. Complications were not observed in this group. Bilirubin level in this group normalized on the 3rd-4th day. Conclusion: Our study showed the efficacy and safety of electrohydraulic and laser lithotripsy under SpyGlass control in a well-defined group of patients with large bile duct stones.

Keywords: contact lithotripsy, choledocholithiasis, SpyGlass, cholangioscopy, laser, electrohydraulic system, ERCP

Procedia PDF Downloads 80
2380 Numerical Simulation of Transient 3D Temperature and Kerf Formation in Laser Fusion Cutting

Authors: Karim Kheloufi, El Hachemi Amara

Abstract:

In the present study, a three-dimensional transient numerical model was developed to study the temperature field and cutting kerf shape during laser fusion cutting. The finite volume model has been constructed, based on the Navier–Stokes equations and energy conservation equation for the description of momentum and heat transport phenomena, and the Volume of Fluid (VOF) method for free surface tracking. The Fresnel absorption model is used to handle the absorption of the incident wave by the surface of the liquid metal and the enthalpy-porosity technique is employed to account for the latent heat during melting and solidification of the material. To model the physical phenomena occurring at the liquid film/gas interface, including momentum/heat transfer, a new approach is proposed which consists of treating friction force, pressure force applied by the gas jet and the heat absorbed by the cutting front surface as source terms incorporated into the governing equations. All these physics are coupled and solved simultaneously in Fluent CFD®. The main objective of using a transient phase change model in the current case is to simulate the dynamics and geometry of a growing laser-cutting generated kerf until it becomes fully developed. The model is used to investigate the effect of some process parameters on temperature fields and the formed kerf geometry.

Keywords: laser cutting, numerical simulation, heat transfer, fluid flow

Procedia PDF Downloads 339
2379 Electrochemical Performance of Carbon Nanotube Based Supercapacitor

Authors: Jafar Khan Kasi, Ajab Khan Kasi, Muzamil Bokhari

Abstract:

Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750 C analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor.

Keywords: carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry

Procedia PDF Downloads 563
2378 Nanocomposite Metal Material: Study of Antimicrobial and Catalytic Properties

Authors: Roman J. Jedrzejczyk, Damian K. Chlebda, Anna Dziedzicka, Rafal Wazny, Agnieszka Domka, Maciej Sitarz, Przemyslaw J. Jodlowski

Abstract:

The aim of this study was to obtain antimicrobial material based on thin zirconium dioxide coatings on structured reactors doped with metal nanoparticles using the sonochemical sol-gel method. As a result, dense, uniform zirconium dioxide films were obtained on the kanthal sheets which can be used as support materials in antimicrobial converters with sophisticated shapes. The material was characterised by physicochemical methods, such as AFM, SEM, EDX, XRF, XRD, XPS and in situ Raman and DRIFT spectroscopy. In terms of antimicrobial activity, the material was tested by ATP/AMP method using model microbes isolated from the real systems. The results show that the material can be potentially used in the market as a good candidate for active package and as active bulkheads of climatic systems. The mechanical tests showed that the developed method is an efficient way to obtain durable converters with high antimicrobial activity against fungi and bacteria.

Keywords: antimicrobial properties, kanthal steel, nanocomposite, zirconium oxide

Procedia PDF Downloads 201
2377 Optical Characterization of Transition Metal Ion Doped ZnO Microspheres Synthesized via Laser Ablation in Air

Authors: Parvathy Anitha, Nilesh J. Vasa, M. S. Ramachandra Rao

Abstract:

ZnO is a semiconducting material with a direct wide band gap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature. Microspheres with high sphericity and symmetry exhibit unique functionalities which makes them excellent omnidirectional optical resonators. Hence there is an advent interest in fabrication of single crystalline semiconductor microspheres especially magnetic ZnO microspheres, as ZnO is a promising material for semiconductor device applications. Also, ZnO is non-toxic and biocompatible, implying it is a potential material for biomedical applications. Room temperature Photoluminescence (PL) spectra of the fabricated ZnO microspheres were measured, at an excitation wavelength of 325 nm. The ultraviolet (UV) luminescence observed is attributed to the room-temperature free exciton related near-band-edge (NBE) emission in ZnO. Besides the NBE luminescence, weak and broad visible luminescence (~560nm) was also observed. This broad emission band in the visible range is associated with oxygen vacancies related to structural defects. In transition metal (TM) ion-doped ZnO, 3d levels emissions of TM ions will modify the inherent characteristic emissions of ZnO. A micron-sized ZnO crystal has generally a wurtzite structure with a natural hexagonal cross section, which will serve as a WGM (whispering gallery mode) lasing micro cavity due to its high refractive index (~2.2). But hexagonal cavities suffers more optical loss at their corners in comparison to spherical structures; hence spheres may be a better candidate to achieve effective light confinement. In our study, highly smooth spherical shaped micro particles with different diameters ranging from ~4 to 6 μm were grown on different substrates. SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) images show the presence of uniform smooth surfaced spheres. Raman scattering measurements from the fabricated samples at 488 nm light excitation provide convincing supports for the wurtzite structure of the prepared ZnO microspheres. WGM lasing studies from TM-doped ZnO microparticles are in progress.

Keywords: laser ablation, microcavity, photoluminescence, ZnO microsphere

Procedia PDF Downloads 217
2376 Liquid-Liquid Transitions in Strontium Tellurite Melts

Authors: Rajinder Kaur, Atul Khanna

Abstract:

Transparent glass-ceramic and crystalline samples of the system: xSrO-(100-x)TeO2; x = 7.5 and 8.5 mol% were prepared by quenching the melts in the temperature range of 700 to 950oC. A very interesting effect of the temperature on the glass-forming ability (GFA) of strontium tellurite melts is observed,and it is found that the melts produce transparent glass-ceramics when it is solidified from lower temperatures in the range of 700-750oC, however, when the melts are cooled from higher temperatures in the range of 850-950oC, the GFA is significantly reduced andanti-glass and/or crystalline phases are produced on solidification.The effect of temperature on GFA of strontium tellurite melts is attributed to short-range structural transformations: TeO₄TeO₃ which procceds towards the right side with an increrase in temperature. This isomerization reaction lowers the melt viscosity and enhances the crystallization tedendency. It is concluded that the high-temperature strontium tellurite meltsfreeze faster into crystalline phases as compared to the melts at a lower temperature; the latter supercooland solidify into glassy phases.

Keywords: anti-glasss, ceramic, supercool liquid, raman spectroscopy

Procedia PDF Downloads 83