Search results for: image retrieval in transform domain
5524 Fault Detection of Pipeline in Water Distribution Network System
Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee
Abstract:
Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform
Procedia PDF Downloads 5105523 The Study of Suan Sunandha Rajabhat University’s Image among People in Bangkok
Authors: Sawitree Suvanno
Abstract:
The objective of this study is to investigate the Suan Sunandha Rajabhat University (SSRU) image among people in Bangkok. This study was conducted in the quantitative research and the questionnaires were used to collect data from 360 people of a sample group. Descriptive and inferential statistics were used in data analysis. The result showed that the SSRU’s image among people in Bangkok is in the “rather true” level of questionnaire scale in all aspects measured. The aspect that gains the utmost average is that the university is considered as royal-oriented and conservative; 2) the instructional supplies, buildings and venue promoting Thai art and tradition; 3) the moral and honest university administration; 4) the curriculum and the skillful students as well as graduates. Additional, people in Bangkok with different profession have the different view to the SSRU’s image at the significant level 0.05; there is no significant difference in gender, age and income.Keywords: Bangkok, demographics, image, Suan Sunandha Rajabhpat University
Procedia PDF Downloads 2455522 Molecular Characterization of Two Thermoplastic Biopolymer-Degrading Fungi Utilizing rRNA-Based Technology
Authors: Nuha Mansour Alhazmi, Magda Mohamed Aly, Fardus M. Bokhari, Ahmed Bahieldin, Sherif Edris
Abstract:
Out of 30 fungal isolates, 2 new isolates were proven to degrade poly-β-hydroxybutyrate (PHB). Enzyme assay for these isolates indicated the optimal environmental conditions required for depolymerase enzyme to induce the highest level of biopolymer degradation. The two isolates were basically characterized at the morphological level as Trichoderma asperellum (isolate S1), and Aspergillus fumigates (isolate S2) using standard approaches. The aim of the present study was to characterize these two isolates at the molecular level based on the highly diverged rRNA gene(s). Within this gene, two domains of the ribosome large subunit (LSU) namely internal transcribed spacer (ITS) and 26S were utilized in the analysis. The first domain comprises the ITS1/5.8S/ITS2 regions ( > 500 bp), while the second domain comprises the D1/D2/D3 regions ( > 1200 bp). Sanger sequencing was conducted at Macrogen (Inc.) for the two isolates using primers ITS1/ITS4 for the first domain, while primers LROR/LR7 for the second domain. Sizes of the first domain ranged between 594-602 bp for S1 isolate and 581-594 bp for S2 isolate, while those of the second domain ranged between 1228-1238 bp for S1 isolate and 1156-1291 for S2 isolate. BLAST analysis indicated 99% identities of the first domain of S1 isolate with T. asperellum isolates XP22 (ID: KX664456.1), CTCCSJ-G-HB40564 (ID: KY750349.1), CTCCSJ-F-ZY40590 (ID: KY750362.1) and TV (ID: KU341015.1). BLAST of the first domain of S2 isolate indicated 100% identities with A. fumigatus isolate YNCA0338 (ID: KP068684.1) and strain MEF-Cr-6 (ID: KU597198.1), while 99% identities with A. fumigatus isolate CCA101 (ID: KT877346.1) and strain CD1621 (ID: JX092088.1). Large numbers of other T. asperellum and A. fumigatus isolates and strains showed high level of identities with S1 and S2 isolates, respectively, based on the diversity of the first domain. BLAST of the second domain of S1 isolate indicated 99 and 100% identities with only two strains of T. asperellum namely TR 3 (ID: HM466685.1) and G (ID: KF723005.1), respectively. However, other T. species (ex., atroviride, hamatum, deliquescens, harzianum, etc.) also showed high level of identities. BLAST of the second domain of S2 isolate indicated 100% identities with A. fumigatus isolate YNCA0338 (ID: KP068684.1) and strain MEF-Cr-6 (ID: KU597198.1), while 99% identities with A. fumigatus isolate CCA101 (ID: KT877346.1) and strain CD1621 (ID: JX092088.1). Large numbers of other A. fumigatus isolates and strains showed high level of identities with S2 isolate. Overall, the results of molecular characterization based on rRNA diversity for the two isolates of T. asperellum and A. fumigatus matched those obtained by morphological characterization. In addition, ITS domain proved to be more sensitive than 26S domain in diversity profiling of fungi at the species level.Keywords: Aspergillus fumigates, Trichoderma asperellum, PHB, degradation, BLAST, ITS, 26S, rRNA
Procedia PDF Downloads 1585521 3D Object Retrieval Based on Similarity Calculation in 3D Computer Aided Design Systems
Authors: Ahmed Fradi
Abstract:
Nowadays, recent technological advances in the acquisition, modeling, and processing of three-dimensional (3D) objects data lead to the creation of models stored in huge databases, which are used in various domains such as computer vision, augmented reality, game industry, medicine, CAD (Computer-aided design), 3D printing etc. On the other hand, the industry is currently benefiting from powerful modeling tools enabling designers to easily and quickly produce 3D models. The great ease of acquisition and modeling of 3D objects make possible to create large 3D models databases, then, it becomes difficult to navigate them. Therefore, the indexing of 3D objects appears as a necessary and promising solution to manage this type of data, to extract model information, retrieve an existing model or calculate similarity between 3D objects. The objective of the proposed research is to develop a framework allowing easy and fast access to 3D objects in a CAD models database with specific indexing algorithm to find objects similar to a reference model. Our main objectives are to study existing methods of similarity calculation of 3D objects (essentially shape-based methods) by specifying the characteristics of each method as well as the difference between them, and then we will propose a new approach for indexing and comparing 3D models, which is suitable for our case study and which is based on some previously studied methods. Our proposed approach is finally illustrated by an implementation, and evaluated in a professional context.Keywords: CAD, 3D object retrieval, shape based retrieval, similarity calculation
Procedia PDF Downloads 2615520 Treatment of Interferograms Image of Perturbation Processes in Metallic Samples by Optical Method
Authors: Daira Radouane, Naim Boudmagh, Hamada Adel
Abstract:
The but of this handling is to use the technique of the shearing with a mechanism lapping machine of image: a prism of Wollaston. We want to characterize this prism in order to be able to employ it later on in an analysis by shearing. A prism of Wollaston is a prism produced in a birefringent material i.e. having two indexes of refraction. This prism is cleaved so as to present the directions associated with these indices in its face with entry. It should be noted that these directions are perpendicular between them.Keywords: non destructive control, aluminium, interferometry, treatment of image
Procedia PDF Downloads 3265519 Natural Language Processing; the Future of Clinical Record Management
Authors: Khaled M. Alhawiti
Abstract:
This paper investigates the future of medicine and the use of Natural language processing. The importance of having correct clinical information available online is remarkable; improving patient care at affordable costs could be achieved using automated applications to use the online clinical information. The major challenge towards the retrieval of such vital information is to have it appropriately coded. Majority of the online patient reports are not found to be coded and not accessible as its recorded in natural language text. The use of Natural Language processing provides a feasible solution by retrieving and organizing clinical information, available in text and transforming clinical data that is available for use. Systems used in NLP are rather complex to construct, as they entail considerable knowledge, however significant development has been made. Newly formed NLP systems have been tested and have established performance that is promising and considered as practical clinical applications.Keywords: clinical information, information retrieval, natural language processing, automated applications
Procedia PDF Downloads 4025518 Exploring the Impact of Dual Brand Image on Continuous Smartphone Usage Intention
Authors: Chiao-Chen Chang, Yang-Chieh Chin
Abstract:
The mobile phone has no longer confined to communication, from the aspect of smartphones, consumers are only willing to pay for the product which the added value has corresponded with their appetites, such as multiple application, upgrade of the camera, and the appearance of the phone and so on. Moreover, as the maturity stage of smartphone industry today, the strategy which manufactures used to gain competitive advantages through hardware as well as software differentiation, is no longer valid. Thus, this research aims to initiate from brand image, to examine exactly whether consumers’ buying intention focus on smartphone brand or operating system, at the same time, perceived value and customer satisfaction will be added between brand image and continuous usage intention to investigate the impact of these two facets toward continuous usage intention. This study verifies the correlation, fitness, and relationship between the variables that lies within the conceptual framework. The result of using structural equation modeling shows that brand image has a positive impact on continuous usage intention. Firms can affect consumer perceived value and customer satisfaction through the creation of the brand image. It also shows that the brand image of smartphone and brand image of the operating system have a positive impact on customer perceived value and customer satisfaction. Furthermore, perceived value also has a positive impact on satisfaction, and so is the relation within satisfaction and perceived value to the continuous usage intention. Last but not least, the brand image of the smartphone has a more remarkable impact on customers than the brand image of the operating system. In addition, this study extends the results to management practice and suggests manufactures to provide fine product design and hardware.Keywords: smartphone, brand image, perceived value, continuous usage intention
Procedia PDF Downloads 1965517 Contourlet Transform and Local Binary Pattern Based Feature Extraction for Bleeding Detection in Endoscopic Images
Authors: Mekha Mathew, Varun P Gopi
Abstract:
Wireless Capsule Endoscopy (WCE) has become a great device in Gastrointestinal (GI) tract diagnosis, which can examine the entire GI tract, especially the small intestine without invasiveness and sedation. Bleeding in the digestive tract is a symptom of a disease rather than a disease itself. Hence the detection of bleeding is important in diagnosing many diseases. In this paper we proposes a novel method for distinguishing bleeding regions from normal regions based on Contourlet transform and Local Binary Pattern (LBP). Experiments show that this method provides a high accuracy rate of 96.38% in CIE XYZ colour space for k-Nearest Neighbour (k-NN) classifier.Keywords: Wireless Capsule Endoscopy, local binary pattern, k-NN classifier, contourlet transform
Procedia PDF Downloads 4845516 Self-Supervised Learning for Hate-Speech Identification
Authors: Shrabani Ghosh
Abstract:
Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.Keywords: attention learning, language model, offensive language detection, self-supervised learning
Procedia PDF Downloads 1035515 Hardware Implementation of Local Binary Pattern Based Two-Bit Transform Motion Estimation
Authors: Seda Yavuz, Anıl Çelebi, Aysun Taşyapı Çelebi, Oğuzhan Urhan
Abstract:
Nowadays, demand for using real-time video transmission capable devices is ever-increasing. So, high resolution videos have made efficient video compression techniques an essential component for capturing and transmitting video data. Motion estimation has a critical role in encoding raw video. Hence, various motion estimation methods are introduced to efficiently compress the video. Low bit‑depth representation based motion estimation methods facilitate computation of matching criteria and thus, provide small hardware footprint. In this paper, a hardware implementation of a two-bit transformation based low-complexity motion estimation method using local binary pattern approach is proposed. Image frames are represented in two-bit depth instead of full-depth by making use of the local binary pattern as a binarization approach and the binarization part of the hardware architecture is explained in detail. Experimental results demonstrate the difference between the proposed hardware architecture and the architectures of well-known low-complexity motion estimation methods in terms of important aspects such as resource utilization, energy and power consumption.Keywords: binarization, hardware architecture, local binary pattern, motion estimation, two-bit transform
Procedia PDF Downloads 3105514 The Influence of Noise on Aerial Image Semantic Segmentation
Authors: Pengchao Wei, Xiangzhong Fang
Abstract:
Noise is ubiquitous in this world. Denoising is an essential technology, especially in image semantic segmentation, where noises are generally categorized into two main types i.e. feature noise and label noise. The main focus of this paper is aiming at modeling label noise, investigating the behaviors of different types of label noise on image semantic segmentation tasks using K-Nearest-Neighbor and Convolutional Neural Network classifier. The performance without label noise and with is evaluated and illustrated in this paper. In addition to that, the influence of feature noise on the image semantic segmentation task is researched as well and a feature noise reduction method is applied to mitigate its influence in the learning procedure.Keywords: convolutional neural network, denoising, feature noise, image semantic segmentation, k-nearest-neighbor, label noise
Procedia PDF Downloads 2185513 Filtering and Reconstruction System for Grey-Level Forensic Images
Authors: Ahd Aljarf, Saad Amin
Abstract:
Images are important source of information used as evidence during any investigation process. Their clarity and accuracy is essential and of the utmost importance for any investigation. Images are vulnerable to losing blocks and having noise added to them either after alteration or when the image was taken initially, therefore, having a high performance image processing system and it is implementation is very important in a forensic point of view. This paper focuses on improving the quality of the forensic images. For different reasons packets that store data can be affected, harmed or even lost because of noise. For example, sending the image through a wireless channel can cause loss of bits. These types of errors might give difficulties generally for the visual display quality of the forensic images. Two of the images problems: noise and losing blocks are covered. However, information which gets transmitted through any way of communication may suffer alteration from its original state or even lose important data due to the channel noise. Therefore, a developed system is introduced to improve the quality and clarity of the forensic images.Keywords: image filtering, image reconstruction, image processing, forensic images
Procedia PDF Downloads 3615512 VDGMSISS: A Verifiable and Detectable Multi-Secret Images Sharing Scheme with General Access Structure
Authors: Justie Su-Tzu Juan, Ming-Jheng Li, Ching-Fen Lee, Ruei-Yu Wu
Abstract:
A secret image sharing scheme is a way to protect images. The main idea is dispersing the secret image into numerous shadow images. A secret image sharing scheme can withstand the impersonal attack and achieve the highly practical property of multiuse is more practical. Therefore, this paper proposes a verifiable and detectable secret image-sharing scheme called VDGMSISS to solve the impersonal attack and to achieve some properties such as encrypting multi-secret images at one time and multi-use. Moreover, our scheme can also be used for any genera access structure.Keywords: multi-secret image sharing scheme, verifiable, de-tectable, general access structure
Procedia PDF Downloads 1245511 Development of Non-Intrusive Speech Evaluation Measure Using S-Transform and Light-Gbm
Authors: Tusar Kanti Dash, Ganapati Panda
Abstract:
The evaluation of speech quality and intelligence is critical to the overall effectiveness of the Speech Enhancement Algorithms. Several intrusive and non-intrusive measures are employed to calculate these parameters. Non-Intrusive Evaluation is most challenging as, very often, the reference clean speech data is not available. In this paper, a novel non-intrusive speech evaluation measure is proposed using audio features derived from the Stockwell transform. These features are used with the Light Gradient Boosting Machine for the effective prediction of speech quality and intelligibility. The proposed model is analyzed using noisy and reverberant speech from four databases, and the results are compared with the standard Intrusive Evaluation Measures. It is observed from the comparative analysis that the proposed model is performing better than the standard Non-Intrusive models.Keywords: non-Intrusive speech evaluation, S-transform, light GBM, speech quality, and intelligibility
Procedia PDF Downloads 2575510 An Online 3D Modeling Method Based on a Lossless Compression Algorithm
Authors: Jiankang Wang, Hongyang Yu
Abstract:
This paper proposes a portable online 3D modeling method. The method first utilizes a depth camera to collect data and compresses the depth data using a frame-by-frame lossless data compression method. The color image is encoded using the H.264 encoding format. After the cloud obtains the color image and depth image, a 3D modeling method based on bundlefusion is used to complete the 3D modeling. The results of this study indicate that this method has the characteristics of portability, online, and high efficiency and has a wide range of application prospects.Keywords: 3D reconstruction, bundlefusion, lossless compression, depth image
Procedia PDF Downloads 805509 Metareasoning Image Optimization Q-Learning
Authors: Mahasa Zahirnia
Abstract:
The purpose of this paper is to explore new and effective ways of optimizing satellite images using artificial intelligence, and the process of implementing reinforcement learning to enhance the quality of data captured within the image. In our implementation of Bellman's Reinforcement Learning equations, associated state diagrams, and multi-stage image processing, we were able to enhance image quality, detect and define objects. Reinforcement learning is the differentiator in the area of artificial intelligence, and Q-Learning relies on trial and error to achieve its goals. The reward system that is embedded in Q-Learning allows the agent to self-evaluate its performance and decide on the best possible course of action based on the current and future environment. Results show that within a simulated environment, built on the images that are commercially available, the rate of detection was 40-90%. Reinforcement learning through Q-Learning algorithm is not just desired but required design criteria for image optimization and enhancements. The proposed methods presented are a cost effective method of resolving uncertainty of the data because reinforcement learning finds ideal policies to manage the process using a smaller sample of images.Keywords: Q-learning, image optimization, reinforcement learning, Markov decision process
Procedia PDF Downloads 2135508 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection
Authors: Yulan Wu
Abstract:
With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.Keywords: fake news, deep learning, natural language processing, multiple domains
Procedia PDF Downloads 965507 Wavelet Coefficients Based on Orthogonal Matching Pursuit (OMP) Based Filtering for Remotely Sensed Images
Authors: Ramandeep Kaur, Kamaljit Kaur
Abstract:
In recent years, the technology of the remote sensing is growing rapidly. Image enhancement is one of most commonly used of image processing operations. Noise reduction plays very important role in digital image processing and various technologies have been located ahead to reduce the noise of the remote sensing images. The noise reduction using wavelet coefficients based on Orthogonal Matching Pursuit (OMP) has less consequences on the edges than available methods but this is not as establish in edge preservation techniques. So in this paper we provide a new technique minimum patch based noise reduction OMP which reduce the noise from an image and used edge preservation patch which preserve the edges of the image and presents the superior results than existing OMP technique. Experimental results show that the proposed minimum patch approach outperforms over existing techniques.Keywords: image denoising, minimum patch, OMP, WCOMP
Procedia PDF Downloads 3865506 Hyperspectral Image Classification Using Tree Search Algorithm
Authors: Shreya Pare, Parvin Akhter
Abstract:
Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm
Procedia PDF Downloads 1755505 Ice Load Measurements on Known Structures Using Image Processing Methods
Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka
Abstract:
This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates.Keywords: camera calibration, ice detection, ice load measurements, image processing
Procedia PDF Downloads 3675504 Arbitrarily Shaped Blur Kernel Estimation for Single Image Blind Deblurring
Authors: Aftab Khan, Ashfaq Khan
Abstract:
The research paper focuses on an interesting challenge faced in Blind Image Deblurring (BID). It relates to the estimation of arbitrarily shaped or non-parametric Point Spread Functions (PSFs) of motion blur caused by camera handshake. These PSFs exhibit much more complex shapes than their parametric counterparts and deblurring in this case requires intricate ways to estimate the blur and effectively remove it. This research work introduces a novel blind deblurring scheme visualized for deblurring images corrupted by arbitrarily shaped PSFs. It is based on Genetic Algorithm (GA) and utilises the Blind/Reference-less Image Spatial QUality Evaluator (BRISQUE) measure as the fitness function for arbitrarily shaped PSF estimation. The proposed BID scheme has been compared with other single image motion deblurring schemes as benchmark. Validation has been carried out on various blurred images. Results of both benchmark and real images are presented. Non-reference image quality measures were used to quantify the deblurring results. For benchmark images, the proposed BID scheme using BRISQUE converges in close vicinity of the original blurring functions.Keywords: blind deconvolution, blind image deblurring, genetic algorithm, image restoration, image quality measures
Procedia PDF Downloads 4425503 The Use of Tourism Destination Management for Image Branding as a Preferable Choice of Foreign Policy
Authors: Mehtab Alam, Mudiarasan Kuppusamy
Abstract:
Image branding is the prominent and well-guided phenomena of managing tourism destinations. It examines the image of cities forming as brand identity. Transformation of cities into tourist destinations is obligatory for the current management practices to be used for foreign policy. The research considers the features of perception, destination accommodation, destination quality, traveler revisit, destination information system, and behavioral image for tourism destination management. Using the quantitative and qualitative research methodology, the objective is to examine and investigate the opportunities for destination branding. It investigates the features and management of tourism destinations in Abbottabad city of Pakistan through SPSS and NVivo 12 software. The prospective outlook of the results and coding reflects the significant contribution of integrated destination management for image branding, where Abbottabad has the potential to become a destination city. The positive impact of branding integrates tourism management as it is fulfilling travelers’ requirements to influence the choice of destination for innovative foreign policy.Keywords: image branding, destination management, tourism, foreign policy, innovative
Procedia PDF Downloads 905502 A Novel Image Steganography Scheme Based on Mandelbrot Fractal
Authors: Adnan H. M. Al-Helali, Hamza A. Ali
Abstract:
Growth of censorship and pervasive monitoring on the Internet, Steganography arises as a new means of achieving secret communication. Steganography is the art and science of embedding information within electronic media used by common applications and systems. Generally, hiding information of multimedia within images will change some of their properties that may introduce few degradation or unusual characteristics. This paper presents a new image steganography approach for hiding information of multimedia (images, text, and audio) using generated Mandelbrot Fractal image as a cover. The proposed technique has been extensively tested with different images. The results show that the method is a very secure means of hiding and retrieving steganographic information. Experimental results demonstrate that an effective improvement in the values of the Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Normalized Cross Correlation (NCC) and Image Fidelity (IF) over the previous techniques.Keywords: fractal image, information hiding, Mandelbrot et fractal, steganography
Procedia PDF Downloads 5365501 Searching Linguistic Synonyms through Parts of Speech Tagging
Authors: Faiza Hussain, Usman Qamar
Abstract:
Synonym-based searching is recognized to be a complicated problem as text mining from unstructured data of web is challenging. Finding useful information which matches user need from bulk of web pages is a cumbersome task. In this paper, a novel and practical synonym retrieval technique is proposed for addressing this problem. For replacement of semantics, user intent is taken into consideration to realize the technique. Parts-of-Speech tagging is applied for pattern generation of the query and a thesaurus for this experiment was formed and used. Comparison with Non-Context Based Searching, Context Based searching proved to be a more efficient approach while dealing with linguistic semantics. This approach is very beneficial in doing intent based searching. Finally, results and future dimensions are presented.Keywords: natural language processing, text mining, information retrieval, parts-of-speech tagging, grammar, semantics
Procedia PDF Downloads 3065500 The Effects of Turkish Soap Operas on the Image of Turkey in the Middle Europe
Authors: Yakup Uslu
Abstract:
The purpose of this study is to reveal how the Turkish soap operas effect the image of Turkey in the Middle Europe. In last decades, Turkish soap operas have been shown on TV in the middle European countries. A research based on face to face questioning was done in February and June 2014 in Slovakia and the Czech Republic. The participants were seven women and six men from the Czech Republic, 8 women and 6 men from Slovakia. According to results of the research, the Turkish image has been changed substantially after broadcasting the soap operas. In general, the Turkish soap operas have had positive effects on the image of Turkey. The other result of the study shows that most of the people in Slovakia and Czech Republic want to come to Turkey as tourists and want to visit the places where the soap operas have been shooted.Keywords: Turkish soap operas, image of Turkey, Slovakia, Czech Republic
Procedia PDF Downloads 4915499 Investigating Customer Engagement through the Prism of Congruity Theory
Authors: Jamid Ul Islam, Zillur Rahman
Abstract:
The impulse for customer engagement research in online brand communities (OBCs) is largely acknowledged in the literature. Applying congruity theory, this study proposes a model of customer engagement by examining how two congruities viz. self-brand image congruity and value congruity influence customers’ engagement in online brand communities. The consequent effect of customer engagement on brand loyalty is also studied. This study collected data through a questionnaire survey of 395 students of a higher educational institute in India, who were active on Facebook and followed a brand community (at least one). The data were analyzed using structure equation modelling. The results revealed that both the types of congruity i.e., self-brand image congruity and value congruity significantly affect customer engagement. A positive effect of customer engagement on brand loyalty was also affirmed by the results. This study integrates and broadens extant explanations of different congruity effects on consumer behavior-an area that has received little attention. This study is expected to add new trends to engage customers in online brand communities and offer realistic insights to the domain of social media marketing.Keywords: congruity theory, customer engagement, Facebook, online brand communities
Procedia PDF Downloads 3475498 The Non-Linear Analysis of Brain Response to Visual Stimuli
Authors: H. Namazi, H. T. N. Kuan
Abstract:
Brain activity can be measured by acquiring and analyzing EEG signals from an individual. In fact, the human brain response to external and internal stimuli is mapped in his EEG signals. During years some methods such as Fourier transform, wavelet transform, empirical mode decomposition, etc. have been used to analyze the EEG signals in order to find the effect of stimuli, especially external stimuli. But each of these methods has some weak points in analysis of EEG signals. For instance, Fourier transform and wavelet transform methods are linear signal analysis methods which are not good to be used for analysis of EEG signals as nonlinear signals. In this research we analyze the brain response to visual stimuli by extracting information in the form of various measures from EEG signals using a software developed by our research group. The used measures are Jeffrey’s measure, Fractal dimension and Hurst exponent. The results of these analyses are useful not only for fundamental understanding of brain response to visual stimuli but provide us with very good recommendations for clinical purposes.Keywords: visual stimuli, brain response, EEG signal, fractal dimension, hurst exponent, Jeffrey’s measure
Procedia PDF Downloads 5595497 Classifications of Images for the Recognition of People’s Behaviors by SIFT and SVM
Authors: Henni Sid Ahmed, Belbachir Mohamed Faouzi, Jean Caelen
Abstract:
Behavior recognition has been studied for realizing drivers assisting system and automated navigation and is an important studied field in the intelligent Building. In this paper, a recognition method of behavior recognition separated from a real image was studied. Images were divided into several categories according to the actual weather, distance and angle of view etc. SIFT was firstly used to detect key points and describe them because the SIFT (Scale Invariant Feature Transform) features were invariant to image scale and rotation and were robust to changes in the viewpoint and illumination. My goal is to develop a robust and reliable system which is composed of two fixed cameras in every room of intelligent building which are connected to a computer for acquisition of video sequences, with a program using these video sequences as inputs, we use SIFT represented different images of video sequences, and SVM (support vector machine) Lights as a programming tool for classification of images in order to classify people’s behaviors in the intelligent building in order to give maximum comfort with optimized energy consumption.Keywords: video analysis, people behavior, intelligent building, classification
Procedia PDF Downloads 3775496 A Novel Image Steganography Method Based on Mandelbrot Fractal
Authors: Adnan H. M. Al-Helali, Hamza A. Ali
Abstract:
The growth of censorship and pervasive monitoring on the Internet, Steganography arises as a new means of achieving secret communication. Steganography is the art and science of embedding information within electronic media used by common applications and systems. Generally, hiding information of multimedia within images will change some of their properties that may introduce few degradation or unusual characteristics. This paper presents a new image steganography approach for hiding information of multimedia (images, text, and audio) using generated Mandelbrot Fractal image as a cover. The proposed technique has been extensively tested with different images. The results show that the method is a very secure means of hiding and retrieving steganographic information. Experimental results demonstrate that an effective improvement in the values of the Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Normalized Cross Correlation (NCC), and Image Fidelity (IF) over the pervious techniques.Keywords: fractal image, information hiding, Mandelbrot set fractal, steganography
Procedia PDF Downloads 6175495 A Study on the Solutions of the 2-Dimensional and Forth-Order Partial Differential Equations
Abstract:
In this study, we will carry out a comparative study between the reduced differential transform method, the adomian decomposition method, the variational iteration method and the homotopy analysis method. These methods are used in many fields of engineering. This is been achieved by handling a kind of 2-Dimensional and forth-order partial differential equations called the Kuramoto–Sivashinsky equations. Three numerical examples have also been carried out to validate and demonstrate efficiency of the four methods. Furthermost, it is shown that the reduced differential transform method has advantage over other methods. This method is very effective and simple and could be applied for nonlinear problems which used in engineering.Keywords: reduced differential transform method, adomian decomposition method, variational iteration method, homotopy analysis method
Procedia PDF Downloads 431