Search results for: hydrothermal alteration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 564

Search results for: hydrothermal alteration

114 CeO₂-Decorated Graphene-coated Nickel Foam with NiCo Layered Double Hydroxide for Efficient Hydrogen Evolution Reaction

Authors: Renzhi Qi, Zhaoping Zhong

Abstract:

Under the dual pressure of the global energy crisis and environmental pollution, avoiding the consumption of non-renewable fossil fuels based on carbon as the energy carrier and developing and utilizing non-carbon energy carriers are the basic requirements for the future new energy economy. Electrocatalyst for water splitting plays an important role in building sustainable and environmentally friendly energy conversion. The oxygen evolution reaction (OER) is essentially limited by the slow kinetics of multi-step proton-electron transfer, which limits the efficiency and cost of water splitting. In this work, CeO₂@NiCo-NRGO/NF hybrid materials were prepared using nickel foam (NF) and nitrogen-doped reduced graphene oxide (NRGO) as conductive substrates by multi-step hydrothermal method and were used as highly efficient catalysts for OER. The well-connected nanosheet array forms a three-dimensional (3D) network on the substrate, providing a large electrochemical surface area with abundant catalytic active sites. The doping of CeO₂ in NiCo-NRGO/NF electrocatalysts promotes the dispersion of substances and its synergistic effect in promoting the activation of reactants, which is crucial for improving its catalytic performance against OER. The results indicate that CeO₂@NiCo-NRGO/NF only requires a lower overpotential of 250 mV to drive the current density of 10 mA cm-2 for an OER reaction of 1 M KOH, and exhibits excellent stability at this current density for more than 10 hours. The double layer capacitance (Cdl) values show that CeO₂@NiCo-NRGO/NF significantly affects the interfacial conductivity and electrochemically active surface area. The hybrid structure could promote the catalytic performance of oxygen evolution reaction, such as low initial potential, high electrical activity, and excellent long-term durability. The strategy for improving the catalytic activity of NiCo-LDH can be used to develop a variety of other electrocatalysts for water splitting.

Keywords: CeO₂, reduced graphene oxide, NiCo-layered double hydroxide, oxygen evolution reaction

Procedia PDF Downloads 48
113 Alteration of Placental Development and Vascular Dysfunction in Gestational Diabetes Mellitus Has Impact on Maternal and Infant Health

Authors: Sadia Munir

Abstract:

The aim of this study is to investigate changes in placental development and vascular dysfunction which subsequently affect feto-maternal health in pregnancies complicated by gestational diabetes mellitus (GDM). Fetal and postnatal adverse health outcomes of GDM are shown to be associated with disturbances in placental structure and function. Children of women with GDM are more likely to be obese and diabetic in childhood and adulthood. GDM also increases the risk of adverse pregnancy outcomes, including preeclampsia, birth injuries, macrosomia and neonatal hypoglycemia, respiratory distress syndrome, neonatal cardiac dysfunction and stillbirth. Incidences of type 2 diabetes in the MENA region are growing at an alarming rate which is estimated to become more than double by 2030. Five of the top 10 countries for diabetes prevalence in 2010 were in the Gulf region. GDM also increases the risk of development of type 2 diabetes. Interestingly, more than half of the women with GDM develop diabetes later in their life. The human placenta is a temporary organ located at the interface between mother and fetal blood circulation. Placenta has a central role as both a producer as well as a target of several molecules that are involved in placental development and function. We have investigated performed a Pubmed search with key words placenta, GDM, placental villi, vascularization, cytokines, growth factors, inflammation, hypoxia, oxidative stress and pathophysiology. We have investigated differences in the development and vascularization of placenta, their underlying causes and impact on feto-maternal health through literature review. We have also identified gaps in the literature and research questions that need to be answered to completely understand the central role of placenta in the GDM. This study is important in understanding the pathophysiology of placenta due to changes in the vascularization of villi, surface area and diameter of villous capillaries in pregnancies complicated by GDM. It is necessary to understand these mechanisms in order to develop treatments to reverse their effects on placental malfunctioning, which in turn, will result in improved mother and child health.

Keywords: gestational diabetes mellitus, placenta, vasculature, villi

Procedia PDF Downloads 299
112 Development of a Computer Based, Nutrition and Fitness Programme and Its Effect on Nutritional Status and Fitness of Obese Adults

Authors: Richa Soni, Vibha Bhatnagar, N. K. Jain

Abstract:

This study was conducted to develop a computer mediated programme for weight management and physical fitness and examining its efficacy in reducing weight and improving physical fitness in obese adults. A user friendly, computer based programme was developed to provide a simple, quick, easy and user-friendly method of assessing energy balance at individual level. The programme had four main sections viz. personal Profile, know about your weight, fitness and food exchange list. The computer programme was developed to provide facilities of creating individual profile, tracking meal and physical activities, suggesting nutritional and exercise requirements, planning calorie specific menus, keeping food diaries and revising the diet and exercise plans if needed. The programme was also providing information on obesity, underweight, physical fitness. An exhaustive food exchange list was also given in the programme to assist user to make right food choice decisions. The developed programme was evaluated by a panel of 15 experts comprising endocrinologists, nutritionists and diet counselors. Suggestions given by the experts were paned down and the entire programme was modified in light of suggestions given by the panel members and was reevaluated by the same panel of experts. For assessing the impact of the programme 22 obese subjects were selected purposively and randomly assigned to intervention group (n=12) and no information control group. (n=10). The programme group was asked to strictly follow the programme for one month. Significant reduction in the intake of energy, fat and carbohydrates was observed while intake of fruits, green leafy vegetables was increased. The programme was also found to be effective in reducing body weight, body fat percent and body fat mass whereas total body water and physical fitness scores improved significantly. There was no significant alteration observed in any parameters in the control group.

Keywords: body composition, body weight, computer programme, physical fitness

Procedia PDF Downloads 262
111 Cognitive Dissonance in Robots: A Computational Architecture for Emotional Influence on the Belief System

Authors: Nicolas M. Beleski, Gustavo A. G. Lugo

Abstract:

Robotic agents are taking more and increasingly important roles in society. In order to make these robots and agents more autonomous and efficient, their systems have grown to be considerably complex and convoluted. This growth in complexity has led recent researchers to investigate forms to explain the AI behavior behind these systems in search for more trustworthy interactions. A current problem in explainable AI is the inner workings with the logic inference process and how to conduct a sensibility analysis of the process of valuation and alteration of beliefs. In a social HRI (human-robot interaction) setup, theory of mind is crucial to ease the intentionality gap and to achieve that we should be able to infer over observed human behaviors, such as cases of cognitive dissonance. One specific case inspired in human cognition is the role emotions play on our belief system and the effects caused when observed behavior does not match the expected outcome. In such scenarios emotions can make a person wrongly assume the antecedent P for an observed consequent Q, and as a result, incorrectly assert that P is true. This form of cognitive dissonance where an unproven cause is taken as truth induces changes in the belief base which can directly affect future decisions and actions. If we aim to be inspired by human thoughts in order to apply levels of theory of mind to these artificial agents, we must find the conditions to replicate these observable cognitive mechanisms. To achieve this, a computational architecture is proposed to model the modulation effect emotions have on the belief system and how it affects logic inference process and consequently the decision making of an agent. To validate the model, an experiment based on the prisoner's dilemma is currently under development. The hypothesis to be tested involves two main points: how emotions, modeled as internal argument strength modulators, can alter inference outcomes, and how can explainable outcomes be produced under specific forms of cognitive dissonance.

Keywords: cognitive architecture, cognitive dissonance, explainable ai, sensitivity analysis, theory of mind

Procedia PDF Downloads 113
110 Exercise in Extreme Conditions: Leg Cooling and Fat/Carbohydrate Utilization

Authors: Anastasios Rodis

Abstract:

Background: Case studies of walkers, climbers, and campers exposed to cold and wet conditions without limb water/windproof protection revealed experiences of muscle weakness and fatigue. It is reasonable to assume that a part of the fatigue could occur due to an alteration in substrate utilization, since reduction of performance in extreme cold conditions, may partially be explained by higher anaerobic glycolysis, reflecting higher carbohydrate oxidation and an increase accumulation rate of blood lactate. The aim of this study was to assess the effects of pre-exercise lower limb cooling on substrate utilization rate during sub-maximal exercise. Method: Six male university students (mean (SD): age, 21.3 (1.0) yr; maximal oxygen uptake (V0₂ max), 49.6 (3.6) ml.min⁻¹; and percentage of body fat, 13.6 (2.5) % were examined in random order after either 30min cold water (12°C) immersion utilized as the cooling strategy up to the gluteal fold, or under control conditions (no precooling), with tests separated by minimum of 7 days. Exercise consisted of 60min cycling at 50% V0₂ max, in a thermoneutral environment of 20°C. Subjects were also required to record a diet diary over the 24hrs prior to the each trial. Means (SD) for the three macronutrients during the 1 day prior to each trial (expressed as a percentage of total energy) 52 (3) % carbohydrate, 31 (4) % fat, and 17 (± 2) % protein. Results: The following responses to lower limb cooling relative to control trial during exercise were: 1) Carbohydrate (CHO) oxidation, and blood lactate (Bₗₐc) concentration were significantly higher (P < 0.05); 2) rectal temperature (Tᵣₑc) was significantly higher (P < 0.05), but skin temperature was significantly lower (P < 0.05); no significant differences were found in blood glucose (Bg), heart rate (HR) and oxygen consumption (V0₂). Discussion: These data suggested that lower limb cooling prior to submaximal exercise will shift metabolic processes from Fat oxidation to CHO oxidation. This shift from Fat to CHO oxidation will probably have important implications in the surviving scenario, since people facing accidental localized cooling of their limbs either through wading/falling in cold water or snow even if they do not perform high intensity activity, they have to rely on CHO availability.

Keywords: exercise in wet conditions, leg cooling, outdoors exercise, substrate utilization

Procedia PDF Downloads 413
109 Combined Effect of Gender Differences and Fatiguing Task on Unipedal Postural Balance and Functional Mobility in Adults with Multiple Sclerosis

Authors: Sonda Jallouli, Omar Hammouda, Imen Ben Dhia, Salma Sakka, Chokri Mhiri, Mohamed Habib Elleuch, Abedlmoneem Yahia, Sameh Ghroubi

Abstract:

Multiple sclerosis (MS) is characterized by gender differences with affecting women two to four times more than men, but the disease progression is faster and more severe in men. Fatigue represents one of the most frequent and disabling symptoms related to MS. Results of previous studies regarding gender differences in fatigue perception in MS persons are contradictory. Besides, fatigue has been shown to affect negatively postural balance and functional mobility in MS persons. However, no study has taken into account gender differences in the response of these physical parameters to a fatiguing protocol in MS persons. Given the reduction of autonomy due to the alteration of these parameters induced by fatigue and the importance of gender differences in postural balance training programs in fatigued men and women with MS, the aim of this study was to investigate the effect of gender difference on unipedal postural balance and functional mobility after performing a fatiguing task in MS adults. Methods: Eleven women (30.29 ± 7.99 years) and seven men (30.91 ± 8.19 years) with relapsing-remitting MS performed a fatiguing protocol: three sets of the 5×sit to stand test (5-STST), six-minute walk test (6MWT) followed by three sets of the 5-STST. Unipedal balance, functional mobility, and fatigue perception were measured prefatigue (T0) and post fatigue (T3) using a clinical unipedal balance test, timed up and go test (TUGT), and analogic visual scale of fatigue (VASF), respectively. Heart rate (HR) and rate of perceived exertion (RPE) were recorded before, during and after the fatiguing task. Results: Compared to women, men showed an impairment of unipedal balance on the dominant leg (p<0.001, d=0.52) and mobility (p<0.001, d=3) via reducing unipedal stance time and increasing duration of TUGT execution, respectively. No gender differences were observed in 6MWT, 5-STST, HR, RPE and VASF scores. Conclusion: Fatiguing protocol negatively affected unipedal postural balance and mobility only in men. These gender differences were inconclusive but can be taken into account in postural balance rehabilitation programs for persons with MS.

Keywords: functional mobility, fatiguing exercises, multiple sclerosis, sex differences, unipedal balance

Procedia PDF Downloads 103
108 Supramolecular Approach towards Novel Applications: Battery, Band Gap and Gas Separation

Authors: Sudhakara Naidu Neppalli, Tejas S. Bhosale

Abstract:

It is well known that the block copolymer (BCP) can form a complex molecule, through non-covalent bonds such as hydrogen bond, ionic bond and co-ordination bond, with low molecular weight compound as well as with macromolecules, which provide vast applications, includes the alteration of morphology and properties of polymers. Hence we covered the research that, the importance of non-covalent bonds in increasing the non-favourable segmental interactions of the blocks was well examined by attaching and detaching the bonds between the BCP and additive. We also monitored the phase transition of block copolymer and effective interaction parameter (χeff) for Li-doped polymers using small angle x-ray scattering and transmission electron microscopy. The effective interaction parameter (χeff) between two block components was evaluated using Leibler theory based on the incompressible random phase approximation (RPA) for ionized BCP in a disordered state. Furthermore, conductivity experiments demonstrate that the ionic conductivity in the samples quenched from the different structures is morphology-independent, while it increases with increasing ion salt concentration. Morphological transitions, interaction parameter, and thermal stability also examined in quarternized block copolymer. D-spacing was used to estimate effective interaction parameter (χeff) of block components in weak and strong segregation regimes of ordered phase. Metal-containing polymer has been the topic of great attention in recent years due to their wide range of potential application. Similarly, metal- ligand complex is used as a supramolecular linker between the polymers giving rise to a ‘Metallo-Supramolecule assembly. More precisely, functionalized polymer end capped with 2, 2’:6’, 2”- terpyridine ligand can be selectively complexed with wide range of transition metal ions and then subsequently attached to other terpyridine terminated polymer block. In compare to other supramolecular assembly, BCP involved metallo-supramolecule assembly offers vast applications such as optical activity, electrical conductivity, luminescence and photo refractivity.

Keywords: band gap, block copolymer, conductivity, interaction parameter, phase transition

Procedia PDF Downloads 143
107 Therapeutic Efficacy of Clompanus Pubescens Leaves Fractions via Downregulation of Neuronal Cholinesterases/NA⁺-K⁺ ATPase/IL-1 β and Improving the Neurocognitive and Antioxidants Status of Streptozotocin-Induced Diabetic Rats

Authors: Amos Sunday Onikanni, Bashir Lawal, Babatunji Emmanuel Oyinloye, Gomaa Mostafa-Hedeab, Mohammed Alorabi, Simona Cavalu, Augustine O. Olusola, Chih-Hao Wang, Gaber El-Saber Batiha

Abstract:

The increasing global burden of diabetes mellitus has called for the search for a therapeutic alternative that offers better activities and safety than conventional chemotherapy. Herein, we evaluated the neuroprotective and antioxidant properties of different fractions (ethyl acetate, N-butanol and residual aqueous) of Clompanus pubescens leaves in streptozotocin (STZ)-induced diabetic rats. Our results revealed a significant elevation in the levels of blood glucose, pro-inflammatory cytokines, lipid peroxidation, neuronal activities of acetylcholinesterase, butyrylcholinesterase, nitric oxide, epinephrine, norepinephrine, and Na+/K+-ATPase in diabetic non treated rats. In addition, decreased levels of enzymatic and non-enzymatic antioxidants were observed. Treatment with different fractions of C. pubescens leaves resulted in a significant reversal of the biochemical alteration and improved the neurocognitive deficit in STZ-induced diabetic rats. However, the ethyl-acetate fraction demonstrated higher activities than the other fractions and was characterized for its phytoconstituents, revealing the presence of Gallic acid (713.00 ppm), catechin (0.91 ppm), ferulic acid (0.98 ppm), rutin (59.82 ppm), quercetin (3.22 ppm) and kaempferol (4.07 ppm). Our molecular docking analysis revealed that these compounds exhibited different binding affinities and potentials for targeting BChE/AChE/ IL-1 β/Na+-K+-ATPase. However, only Kampferol and ferulic exhibited good drug-like, ADMET, and permeability properties suitable for use as a neuronal drug target agent. Hence, the ethyl-acetate fraction of C. pubescent leaves could be considered a source of promising bioactive metabolite for the treatment and management of cognitive impairments related to type II diabetes mellitus.

Keywords: diabetes mellitus, neuroprotective, antioxidant, pro-inflammatory cytokines

Procedia PDF Downloads 81
106 Transition in Protein Profile, Maillard Reaction Products and Lipid Oxidation of Flavored Ultra High Temperature Treated Milk

Authors: Muhammad Ajmal

Abstract:

- Thermal processing and subsequent storage of ultra-heat treated (UHT) milk leads to alteration in protein profile, Maillard reaction and lipid oxidation. Concentration of carbohydrates in normal and flavored version of UHT milk is considerably different. Transition in protein profile, Maillard reaction and lipid oxidation in UHT flavored milk was determined for 90 days at ambient conditions and analyzed at 0, 45 and 90 days of storage. Protein profile, hydroxymethyl furfural, furosine, Nε-carboxymethyl-l-lysine, fatty acid profile, free fatty acids, peroxide value and sensory characteristics were determined. After 90 days of storage, fat, protein, total solids contents and pH were significantly less than the initial values determined at 0 day. As compared to protein profile normal UHT milk, more pronounced changes were recorded in different fractions of protein in UHT milk at 45 and 90 days of storage. Tyrosine content of flavored UHT milk at 0, 45 and 90 days of storage were 3.5, 6.9 and 15.2 µg tyrosine/ml. After 45 days of storage, the decline in αs1-casein, αs2-casein, β-casein, κ-casein, β-lactoglobulin, α-lactalbumin, immunoglobulin and bovine serum albumin were 3.35%, 10.5%, 7.89%, 18.8%, 53.6%, 20.1%, 26.9 and 37.5%. After 90 days of storage, the decline in αs1-casein, αs2-casein, β-casein, κ-casein, β-lactoglobulin, α-lactalbumin, immunoglobulin and bovine serum albumin were 11.2%, 34.8%, 14.3%, 33.9%, 56.9%, 24.8%, 36.5% and 43.1%. Hydroxy methyl furfural content of UHT milk at 0, 45 and 90 days of storage were 1.56, 4.18 and 7.61 (µmol/L). Furosine content of flavored UHT milk at 0, 45 and 90 days of storage intervals were 278, 392 and 561 mg/100g protein. Nε-carboxymethyl-l-lysine content of UHT flavored milk at 0, 45 and 90 days of storage were 67, 135 and 343mg/kg protein. After 90 days of storage of flavored UHT milk, the loss of unsaturated fatty acids 45.7% from the initial values. At 0, 45 and 90 days of storage, free fatty acids of flavored UHT milk were 0.08%, 0.11% and 0.16% (p<0.05). Peroxide value of flavored UHT milk at 0, 45 and 90 days of storage was 0.22, 0.65 and 2.88 (MeqO²/kg). Sensory analysis of flavored UHT milk after 90 days indicated that appearance, flavor and mouth feel score significantly decreased from the initial values recorded at 0 day. Findings of this investigation evidenced that in flavored UHT milk more pronounced changes take place in protein profile, Maillard reaction products and lipid oxidation as compared to normal UHT milk.

Keywords: UHT flavored milk , hydroxymethyl furfural, lipid oxidation, sensory properties

Procedia PDF Downloads 175
105 Human TP53 Three Dimentional (3D) Core Domain Hot Spot Mutations at Codon, 36, 72 and 240 are Associated with Oral Squamous Cell Carcinoma

Authors: Saima Saleem, Zubair Abbasi, Abdul Hameed, Mansoor Ahmed Khan, Navid Rashid Qureshi, Abid Azhar

Abstract:

Oral Squamous Cell Carcinoma (OSCC) is the leading cause of death in the developing countries like Pakistan. This problem aggravates because of the excessive use of available chewing products. In spite of widespread information on their use and purported legislations against their use the Pakistani markets are classical examples of selling chewable carcinogenic mutagens. Reported studies indicated that these products are rich in reactive oxygen species (ROS) and polyphenols. TP53 gene is involved in the suppression of tumor. It has been reported that somatic mutations caused by TP53 gene are the foundation of the cancer. This study aims to find the loss of TP53 functions due to mutation/polymorphism caused by genomic alteration and interaction with tobacco and its related ingredients. Total 260 tissues and blood specimens were collected from OSCC patients and compared with age and sex matched controls. Mutations in exons 2-11 of TP53 were examined by PCR-SSCP. Samples showing mobility shift were directly sequenced. Two mutations were found in exon 4 at nucleotide position 108 and 215 and one in exon 7 at nucleotide position 719 of the coding sequences in patient’s tumor samples. These results show that substitution of proline with arginine at codon 72 and serine with threonine at codon 240 of p53 protein. These polymorphic changes, found in tumor samples of OSCC, could be involved in loss of heterozygocity and apoptotic activity in the binding domain of TP53. The model of the mutated TP53 gene elaborated a nonfunctional unfolded p53 protein, suggesting an important role of these mutations in p53 protein inactivation and malfunction. This nonfunctional 3D model also indicates that exogenous tobacco related carcinogens may act as DNA-damaging agents affecting the structure of DNA. The interpretations could be helpful in establishing the pathways responsible for tumor formation in OSCC patients.

Keywords: TP53 mutation/polymorphism, OSCC, PCR-SSCP, direct DNA sequencing, 3D structure

Procedia PDF Downloads 347
104 Application of Heritage Clay Roof Tiles in Malaysia’s Government Buildings: Conservation Challenges

Authors: Mohd Sabere Sulaiman, Masyitah Abd Aziz, Norsiah Hassan, Jamilah Halina Abdul Halim, Mohd Saipul Asrafi Haron

Abstract:

The use of clay roof tiles was spread out through Asia and Europe, including Malaysia, since the early 17th Century. Most of the common type of clay roof tiles are used in a flat and rectangular shape, measurement, styles, and characteristics through each tradition and interest, including responsive to the climate. Various types of heritage clay roof tiles were used in Malaysia’s Government Buildings dated 1865, 1919, 1936, and so forth, which mostly were imported from India, France, and Italy. Until now, these heritage clay roof tiles are still found throughout Malaysia, including the ‘Interlocking’ clay roof tile type. This study is to investigate and overview the existence of heritage clay roof tiles used in Malaysia; the ‘interlocking’ type with ‘lip’ and ‘hooks’, through literature reviews as desktop study besides carried out a preliminary observation on various sites and interviews. From the literatures, the last production and used of the local heritage clay roof tiles in Malaysia dated in mid 1900s in Batu Arang, Selangor. The brick factory was abandoned since early 2000s. Although the modern ‘Interlocking’ type were produced to duplicate its form, pattern, and size of the original one, they still facing the problem to blend and merged, which end up dismantling the original version, or replacing one to one condition and even replaced overall with the modern materials. This is quite contradicting with the basic principles of building conservation and had become a challenge. Initial findings from the preliminary observation on site in various state in Malaysia shows some evidence that the heritage clay roof tiles are still intact and been used. Some of them might change to modern roof materials such as metal deck, probably due to easy maintenance and cheaper. Also, some are still struggling to maintain and retain its looks and authenticity of the roof while facing the increasing of material cost. Those improper alteration and changes made is due to lack of knowledge among the owner and end user. Various aspect needs to be considered in order to sustain its usage and its original looks by looking at the proper maintenance aspects of the heritage clay roof tiles to prolong the building life for future generation preferences.

Keywords: challenges, clay, interlocking, maintenance

Procedia PDF Downloads 65
103 Nanotechnology in Conservation of Artworks: TiO2-Based Nanocoatings for the Protection and Preservation of Stone Monuments

Authors: Sayed M. Ahmed, Sawsan S. Darwish, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Mahmoud A. Adam, Nadia A. Al-Mouallimi

Abstract:

The preservation of cultural heritage is a worldwide problem. Stone monuments represent an important part of this heritage, but due to their prevalently outdoor location, they are generally subject to a complex series of weathering and decay processes, in addition to physical and chemical factors, also biological agents usually play an important role in deterioration phenomena. The aim of this paper is to experimentally verify applicability and feasibility of titanium dioxide (TiO2) nanoparticles for the preservation of historical (architectural, monumental, archaeological) stone surfaces which enables to reduce the deterioration behaviors mentioned above. TiO2 nanoparticles dispersed in an aqueous colloidal suspension were applied directly on travertine (Marble and limestone often used in historical and monumental buildings) by spray-coating in order to obtain a nanometric film on stone samples. SEM, coupled with EDX microanalysis. (SEM-EDX), in order to obtain information oncoating homogeneity, surface morphology before and after aging and penetration depth of the TiO2 within the samples. Activity of the coated surface was evaluated with UV accelerated aging test. Capillary water absorption, thermal aging and colorimetric measurements have been performed on on coated and uncoated samples to evaluate their properties and estimate change of appearance with colour variation. Results show Tio2 nanoparticles good candidate for coating applications on calcareous stone, good water-repellence was observed on the samples after treatment; analyses were carried out on both untreated and freshly treated samples as well as after artificial aging. Colour change showed negligible variations on the coated or uncoated stone as well as after aging. Results showed that treated stone surfaces seem to be not affected after 1000 hours of exposure to UV radiation, no alteration of the original features.

Keywords: architectural and archaeological heritage, calcareous stone, photocatalysis TiO2, self-cleaning, thermal aging

Procedia PDF Downloads 257
102 COX-2 Inhibitor NS398 Counteracts Chemoresistance to Temozolomide in T98G Glioblastoma Cell Line

Authors: Francesca Lombardi, Francesca Rosaria Augello, Benedetta Cinque, Maria Grazia Cifone, Paola Palumbo

Abstract:

Glioblastoma multiforme (GBM) is a high-grade primary brain tumor refractory to current forms of treatment. The survival benefits of patients with GBM remain unsatisfactory due to the intrinsic or acquired resistance to temozolomide (TMZ), an alkylating agent, used as the first-line chemotherapeutic drug to treat GBM patients. Its cytotoxic effect is visualized by the induction of O6-methylguanine (O6MeG) within DNA. Cyclooxygenase-2 (COX-2), an inflammation-associated enzyme, has been implicated in tumorigenesis and progression of GBM, its inhibition shows anticancer activities. In the present study, it was verified if the combination of a COX-2 selective inhibitor, NS398, with TMZ could counteract the TMZ resistance. In particular, the effect of NS398 mixed with TMZ was investigated in the GBM TMZ-resistant cell line, T98G. Cells were pretreated with NS398 (100µM, 24 hours) and then exposed to TMZ alone (200µM), NS398 alone, or both for 72 hours, after which cell growth rate and cycle phases, as well as apoptosis level, were evaluated. Coadministration of NS398 and TMZ caused a significant decrease in cell growth and a progressive increase of dead cells detected by trypan blue staining. Moreover, a significant level of apoptotic cell percentage and alteration of cell cycle phases were observed in T98G treated with TMZ-NS398 combination when compared to untreated cells or TMZ-treated cells. TMZ-resistant tumors, as GBM, express elevated levels of DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT). The mixture drastically reduced MGMT expression in the TMZ-resistant cell line T98G, known to express high levels of MGMT basically. Moreover, while TMZ alone did not influence the COX-2 protein expression, the combination successfully reduced it. In conclusion, these results demonstrated that NS398 enhanced the efficacy of TMZ through cell number reduction, apoptosis induction, and decreased MGMT levels, suggesting the ability of drug combination to reduce the chemoresistance. This drug combination deserves attention and could be considered as a promising therapeutic strategy for GBM patients.

Keywords: COX-2, COX-2 inhibitor, glioblastoma, NS398, T98G, temozolomide

Procedia PDF Downloads 125
101 Adaptive Strategies to Nutrient Deficiency of Doubled Diploid Citrumelo 4475: A Prospective Study Based on Structural, Ultrastructural, Physiological and Biochemical Parameters

Authors: J. Oustric, L. Berti, J. Santini

Abstract:

Nowadays, the objective of durable agriculture, and in particular organic agriculture, is to reduce the level of fertilizer inputs used in crops. Limiting the quantity of fertilizer inputs would optimize the economical result and minimizing the environmental impact. Nutrient deficiency, particularly of a major nutrient (N, P, and K), can seriously affect fruit production and quality. In citrus crops, rootstock/scion combinations. In citrus crop, scion/rootstock combinations are used frequently to improve tolerance to various abiotic stresses. New rootstocks are needed to respond to these constraints, and the use of new tetraploid rootstocks better adapted to lower nutrient intake could offer a promising way forward. The aim of this work was to determine whether a better tolerance to nutrient deficiency could be observed in a doubled diploid seedling and whether this tolerance could be observed in common clementine scion if used as rootstocks. We selected diploid (CM2x) and doubled diploid (CM4x) Citrumelo 4475 seedlings and common clementine (C) grafted onto Citrumelo 4475 diploid (C/CM2x) and doubled diploid (C/CM4x) rootstocks. Nutrient deficiency effects on the seedlings and scion/rootstock combinations were analyzed by studying anatomical, structural and ultrastructural determinants (chlorosis, stomata, ostiole and cells and their organelles), photosynthetic properties (leaf net photosynthetic rate (Pₙₑₜ), stomatal conductance (gₛ), chlorophyll a fluorescence (Fᵥ/Fₘ)) and oxidative marker (malondialdehyde). Nutrient deficiency affected differently foliar tissues, physiological parameters, and oxidative metabolism in leaves of seedlings depending on their ploidy level and of common clementine scion depending on their rootstocks ploidy level. Both CM4x and C/CM4x presented lower foliar damages (chlorosis, chloroplasts, mitochondria, and plastoglobuli), photosynthesis processes alteration (Pₙₑₜ, gₛ, and Fᵥ/Fₘ), and malondialdehyde accumulation than CM2x and C/CM2x after nutrient deficiency. Doubled diploid Citrumelo 4475 can improve nutrient deficiency tolerance, and its use as a rootstock allows to confer this tolerance to the common clementine scion.

Keywords: nutrient deficiency, oxidative stress, photosynthesis, polyploid rootstocks

Procedia PDF Downloads 106
100 Analysing the Applicability of a Participatory Approach to Life Cycle Sustainability Assessment: Case Study of a Housing Estate Regeneration in London

Authors: Sahar Navabakhsh, Rokia Raslan, Yair Schwartz

Abstract:

Decision-making on regeneration of housing estates, whether to refurbish or re-build, has been mostly triggered by economic factors. To enable sustainable growth, it is vital that environmental and social impacts of different scenarios are also taken into account. The methodology used to include all the three sustainable development pillars is called Life Cycle Sustainability Assessment (LCSA), which comprises of Life Cycle Assessment (LCA) for the assessment of environmental impacts of buildings. Current practice of LCA is regularly conducted post design stage and by sustainability experts. Not only is undertaking an LCA at this stage less effective, but issues such as the limited scope for the definition and assessment of environmental impacts, the implication of changes in the system boundary and the alteration of each of the variable metrics, employment of different Life Cycle Impact Assessment Methods and use of various inventory data for Life Cycle Inventory Analysis can result in considerably contrasting results. Given the niche nature and scarce specialist domain of LCA of buildings, the majority of the stakeholders do not contribute to the generation or interpretation of the impact assessment, and the results can be generated and interpreted subjectively due to the mentioned uncertainties. For an effective and democratic assessment of environmental impacts, different stakeholders, and in particular the community and design team should collaborate in the process of data collection, assessment and analysis. This paper examines and evaluates a participatory approach to LCSA through the analysis of a case study of a housing estate in South West London. The study has been conducted throughout tier-based collaborative methods to collect and share data through surveys and co-design workshops with the community members and the design team as the main stakeholders. The assessment of lifecycle impacts is conducted throughout the process and has influenced the decision-making on the design of the Community Plan. The evaluation concludes better assessment transparency and outcome, alongside other socio-economic benefits of identifying and engaging the most contributive stakeholders in the process of conducting LCSA.

Keywords: life cycle assessment, participatory LCA, life cycle sustainability assessment, participatory processes, decision-making, housing estate regeneration

Procedia PDF Downloads 122
99 Copy Number Variants in Children with Non-Syndromic Congenital Heart Diseases from Mexico

Authors: Maria Lopez-Ibarra, Ana Velazquez-Wong, Lucelli Yañez-Gutierrez, Maria Araujo-Solis, Fabio Salamanca-Gomez, Alfonso Mendez-Tenorio, Haydeé Rosas-Vargas

Abstract:

Congenital heart diseases (CHD) are the most common congenital abnormalities. These conditions can occur as both an element of distinct chromosomal malformation syndromes or as non-syndromic forms. Their etiology is not fully understood. Genetic variants such copy number variants have been associated with CHD. The aim of our study was to analyze these genomic variants in peripheral blood from Mexican children diagnosed with non-syndromic CHD. We included 16 children with atrial and ventricular septal defects and 5 healthy subjects without heart malformations as controls. To exclude the most common heart disease-associated syndrome alteration, we performed a fluorescence in situ hybridization test to identify the 22q11.2, responsible for congenital heart abnormalities associated with Di-George Syndrome. Then, a microarray based comparative genomic hybridization was used to identify global copy number variants. The identification of copy number variants resulted from the comparison and analysis between our results and data from main genetic variation databases. We identified copy number variants gain in three chromosomes regions from pediatric patients, 4q13.2 (31.25%), 9q34.3 (25%) and 20q13.33 (50%), where several genes associated with cellular, biosynthetic, and metabolic processes are located, UGT2B15, UGT2B17, SNAPC4, SDCCAG3, PMPCA, INPP6E, C9orf163, NOTCH1, C20orf166, and SLCO4A1. In addition, after a hierarchical cluster analysis based on the fluorescence intensity ratios from the comparative genomic hybridization, two congenital heart disease groups were generated corresponding to children with atrial or ventricular septal defects. Further analysis with a larger sample size is needed to corroborate these copy number variants as possible biomarkers to differentiate between heart abnormalities. Interestingly, the 20q13.33 gain was present in 50% of children with these CHD which could suggest that alterations in both coding and non-coding elements within this chromosomal region may play an important role in distinct heart conditions.

Keywords: aCGH, bioinformatics, congenital heart diseases, copy number variants, fluorescence in situ hybridization

Procedia PDF Downloads 265
98 Geochemical Study of the Bound Hydrocarbon in the Asphaltene of Biodegraded Oils of Cambay Basin

Authors: Sayani Chatterjee, Kusum Lata Pangtey, Sarita Singh, Harvir Singh

Abstract:

Biodegradation leads to a systematic alteration of the chemical and physical properties of crude oil showing sequential depletion of n-alkane, cycloalkanes, aromatic which increases its specific gravity, viscosity and the abundance of heteroatom-containing compounds. The biodegradation leads to a change in the molecular fingerprints and geochemical parameters of degraded oils, thus make source and maturity identification inconclusive or ambiguous. Asphaltene is equivalent to the most labile part of the respective kerogen and generally has high molecular weight. Its complex chemical structure with substantial microporous units makes it suitable to occlude the hydrocarbon expelled from the source. The occluded molecules are well preserved by the macromolecular structure and thus prevented from secondary alterations. They retain primary organic geochemical information over the geological time. The present study involves the extraction of this occluded hydrocarbon from the asphaltene cage through mild oxidative degradation using mild oxidative reagents like Hydrogen Peroxide (H₂O₂) and Acetic Acid (CH₃COOH) on purified asphaltene of the biodegraded oils of Mansa, Lanwa and Santhal fields in Cambay Basin. The study of these extracted occluded hydrocarbons was carried out for establishing oil to oil and oil to source correlation in the Mehsana block of Cambay Basin. The n-alkane and biomarker analysis through GC and GC-MS of these occluded hydrocarbons show similar biomarker imprint as the normal oil in the area and hence correlatable with them. The abundance of C29 steranes, presence of Oleanane, Gammacerane and 4-Methyl sterane depicts that the oils are derived from terrestrial organic matter deposited in the stratified saline water column in the marine environment with moderate maturity (VRc 0.6-0.8). The oil source correlation study suggests that the oils are derived from Jotana-Warosan Low area. The developed geochemical technique to extract the occluded hydrocarbon has effectively resolved the ambiguity that resulted from the inconclusive fingerprint of the biodegraded oil and the method can be also applied in other biodegraded oils as well.

Keywords: asphaltene, biomarkers, correlation, mild oxidation, occluded hydrocarbon

Procedia PDF Downloads 138
97 Designing Financing Schemes to Make Forest Management Units Work in Aceh Province, Indonesia

Authors: Riko Wahyudi, Rezky Lasekti Wicaksono, Ayu Satya Damayanti, Ridhasepta Multi Kenrosa

Abstract:

Implementing Forest Management Unit (FMU) is considered as the best solution for forest management in developing countries. However, when FMU has been formed, many parties then blame the FMU and assume it is not working on. Currently, there are two main issues that make FMU not be functional i.e. institutional and financial issues. This paper is addressing financial issues to make FMUs in Aceh Province can be functional. A mixed financing scheme is proposed here, both direct and indirect financing. The direct financing scheme derived from two components i.e. public funds and businesses. Non-tax instruments of intergovernmental fiscal transfer (IFT) system and FMU’s businesses are assessed. Meanwhile, indirect financing scheme is conducted by assessing public funds within villages around forest estate as about 50% of total villages in Aceh Province are located surrounding forest estate. Potential instruments under IFT system are forest and mining utilization royalties. In order to make these instruments become direct financing for FMU, interventions on allocation and distribution aspects of them are conducted. In the allocation aspect, alteration in proportion of allocation is required as the authority to manage forest has shifted from district to province. In the distribution aspect, Government of Aceh can earmark usage of the funds for FMUs. International funds for climate change also encouraged to be domesticated and then channeled through these instruments or new instrument under public finance system in Indonesia. Based on FMU’s businesses both from forest products and forest services, FMU can impose non-tax fees for each forest product and service utilization. However, for doing business, the FMU need to be a Public Service Agency (PSA). With this status, FMU can directly utilize the non-tax fees without transferring them to the state treasury. FMU only need to report the fees to Ministry of Finance. Meanwhile, indirect financing scheme is conducted by empowering villages around forest estate as villages in Aceh Province is receiving average village fund of IDR 800 million per village in 2017 and the funds will continue to increase in subsequent years. These schemes should be encouraged in parallel to establish a mixed financing scheme in order to ensure sustainable financing for FMU in Aceh Province, Indonesia.

Keywords: forest management, public funds, mixed financing, village

Procedia PDF Downloads 166
96 Analysis of the Variation on Earth Pressure by Addition of Construction Demolition Waste (C&D Waste) In Black Cotton Soil

Authors: Nirav Jadav, M. G.Vanza

Abstract:

Black cotton soils mainly exhibit the property of swelling/shrinkage when they react to moisture variations. This property causes development of cracks in the structures resting on these soils, which poses instability to the structures. Soil stabilization is a technique to enhance the geotechnical characteristics of Black cotton soils by changing their properties. Due to rapid growth in construction industry, a lot of waste material is being generated every day, which poses the problem of its disposal. If the waste material can be utilized for soil stabilization, it will mitigate the problems of its disposal. The tests results evaluate that the strength of the Black cotton soils increased by the use of C&D waste material. This study determines various Index and engineering properties of soil and compare for different proportions of soil and C&D Waste. For finding properties of soil and C&D Waste, various test is carried out like sieve analysis, hydrometer test, specific gravity test, Atterberg’s limit test, Standard proctor test and soil Triaxial unconsolidated undrained test. It also takes into account the characteristics alteration due to addition of C&D Waste in active and passive pressure. This study presents the efficacy for use of C&D Waste as a stabilizing material to be mixed with backfill soil in retaining walls. Standard proctor test was conducted at proportions S1W0 (soil = 100%, Waste = 0%), S7W1 (soil = 87.5%, waste = 12.5%), S3W1, S5W3 and S1W1. From these, S5W3 showed optimum results, so this proportion was considered for Soil Triaxial UU-Test. Also, S1W0 was considered too. When 37.5% of soil is replaced by C&D Waste, the Optimum moisture content (OMC) decrease by 11.48%, further, increase C&D Waste in soil OMC remains constant, and maximum dry density (MDD) were observed to be increased by 9.27%, further increased C&D Waste in soil MDD reduces. Carried out strength test, which shows cohesion decreased by 162% and the internal friction angle increased by 49.4% with compare to virgin soil. The study focuses on the potential use of C&D Waste as a stabilizing material in the retaining wall backfill. The active earth pressure decreases, and the passive earth pressure increases in the S5W3 mixture compared to the S1W0 mixture at the same depth.

Keywords: black cotton soil, construction demolition waste, compaction test, strength test

Procedia PDF Downloads 55
95 Shaping of World-Class Delhi: Politics of Marginalization and Inclusion

Authors: Aparajita Santra

Abstract:

In the context of the government's vision of turning Delhi into a green, privatized and slum free city, giving it a world-class image at par with the global cities of the world, this paper investigates into the various processes and politics of things that went behind defining spaces in the city and attributing an aesthetic image to it. The paper will explore two cases that were forged primarily through the forces of one particular type of power relation. One would be to look at the modernist movement adopted by the Nehruvian government post-independence and the next case will look at special periods like Emergency and Commonwealth games. The study of these cases will help understand the ambivalence embedded in the different rationales of the Government and different powerful agencies adopted in order to build world-classness. Through the study, it will be easier to discern how city spaces were reconfigured in the name of 'good governance'. In this process, it also became important to analyze the double nature of law, both as a protector of people’s rights and as a threat to people. What was interesting to note through the study was that in the process of nation building and creating an image for the city, the government’s policies and programs were mostly aimed at the richer sections of the society and the poorer sections and people from lower income groups kept getting marginalized, subdued, and pushed further away (These marginalized people were pushed away even geographically!). The reconfiguration of city space and attributing an aesthetic character to it, led to an alteration not only in the way in which citizens perceived and engaged with these spaces, but also brought about changes in the way they envisioned their place in the city. Ironically, it was found that every attempt to build any kind of facility for the city’s elite in turn led to an inevitable removal of the marginalized sections of the society as a necessary step to achieve a clean, green and world-class city. The paper questions the claim made by the government for creating a just, equitable city and granting rights to all. An argument is put forth that in the politics of redistribution of space, the city that has been designed is meant for the aspirational middle-class and elite only, who are ideally primed to live in world-class cities. Thus, the aim is to study city spaces, urban form, the associated politics and power plays involved within and understand whether segmented cities are being built in the name of creating sensible, inclusive cities.

Keywords: aesthetics, ambivalence, governmentality, power, World-class

Procedia PDF Downloads 93
94 Failing Regeneration, Displacement, and Continued Consequences on Future Urban Planning Processes in Distressed Neighborhoods in Tehran

Authors: Razieh Rezabeigi Sani, Alireza Farahani, Mahdi Haghi

Abstract:

Displacement, local discontent, and forced exclusion have become prominent parts of urban regeneration activities in the Global North and South. This paper discusses the processes of massive displacement and neighborhood alteration as the consequences of a large-scale political/ideological placemaking project in central Tehran that transformed people's daily lives in surrounding neighborhoods. The conversion of Imam Hussein Square and connecting 17-Shahrivar Street to a pedestrian plaza in 2016 resulted in adjacent neighborhoods' physical, social, and economic degradation. The project has downgraded the economic and social characteristics of urban life in surrounding neighborhoods, commercialized residential land uses, displaced local people and businesses, and created unprecedented housing modes. This research has been conducted in two stages; first, after the project's implementation between 2017-2018, and second, when the street was reopened after local protests in 2021. In the first phase, 50+ on-site interviews were organized with planners, managers, and dwellers about the decision-making processes, design, and project implementation. We find that the project was based on the immediate political objectives and top-down power exertion of the local government in creating exclusive spaces (for religious ceremonies) without considering locals' knowledge, preferences, lifestyles, and everyday interactions. In the continued research in 2021, we utilized data gathered in facilitation activities and several meetings and interviews with local inhabitants and businesses to explore, design, and implement initiatives for bottom-up planning in these neighborhoods. The top-down and product-oriented (rather than process-oriented) planning, dependency on municipal financing rather than local partnerships, and lack of public participation proved to have continued effects on local participation. The paper concludes that urban regeneration projects must be based on the participation of different private/public actors, sustainable financial resources, and overall social and spatial analysis of the peripheral area before interventions.

Keywords: displacement, urban regeneration, distressed neighborhoods, ideological placemaking, Tehran

Procedia PDF Downloads 83
93 Aerosol Direct Radiative Forcing Over the Indian Subcontinent: A Comparative Analysis from the Satellite Observation and Radiative Transfer Model

Authors: Shreya Srivastava, Sagnik Dey

Abstract:

Aerosol direct radiative forcing (ADRF) refers to the alteration of the Earth's energy balance from the scattering and absorption of solar radiation by aerosol particles. India experiences substantial ADRF due to high aerosol loading from various sources. These aerosols' radiative impact depends on their physical characteristics (such as size, shape, and composition) and atmospheric distribution. Quantifying ADRF is crucial for understanding aerosols’ impact on the regional climate and the Earth's radiative budget. In this study, we have taken radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 22 years (2000-2021) over the Indian subcontinent. Except for a few locations, the short-wave DARF exhibits aerosol cooling at the TOA (values ranging from +2.5 W/m2 to -22.5W/m2). Cooling due to aerosols is more pronounced in the absence of clouds. Being an aerosol hotspot, higher negative ADRF is observed over the Indo-Gangetic Plain (IGP). Aerosol Forcing Efficiency (AFE) shows a decreasing seasonal trend in winter (DJF) over the entire study region while an increasing trend over IGP and western south India during the post-monsoon season (SON) in clear-sky conditions. Analysing atmospheric heating and AOD trends, we found that only the aerosol loading is not governing the change in atmospheric heating but also the aerosol composition and/or their vertical profile. We used a Multi-angle Imaging Spectro-Radiometer (MISR) Level-2 Version 23 aerosol products to look into aerosol composition. MISR incorporates 74 aerosol mixtures in its retrieval algorithm based on size, shape, and absorbing properties. This aerosol mixture information was used for analysing long-term changes in aerosol composition and dominating aerosol species corresponding to the aerosol forcing value. Further, ADRF derived from this method is compared with around 35 studies across India, where a plane parallel Radiative transfer model was used, and the model inputs were taken from the OPAC (Optical Properties of Aerosols and Clouds) utilizing only limited aerosol parameter measurements. The result shows a large overestimation of TOA warming by the latter (i.e., Model-based method).

Keywords: aerosol radiative forcing (ARF), aerosol composition, MISR, CERES, SBDART

Procedia PDF Downloads 27
92 The Role of Autophagy Modulation in Angiotensin-II Induced Hypertrophy

Authors: Kitti Szoke, Laszlo Szoke, Attila Czompa, Arpad Tosaki, Istvan Lekli

Abstract:

Autophagy plays an important role in cardiac hypertrophy, which is one of the most common causes of heart failure in the world. This self-degradative catabolic process, responsible for protein quality control, balancing sources of energy at critical times, and elimination of damaged organelles. The autophagic activity can be triggered by starvation, oxidative stress, or pharmacological agents, like rapamycin. This induced autophagy can promote cell survival during starvation or pathological stress. In this study, it is investigated the effect of the induced autophagic process on angiotensin induced hypertrophic H9c2 cells. In our study, it is used H9c2 cells as an in vitro model. To induce hypertrophy, cells were treated with 10000 nM angiotensin-II, and to activate autophagy, 100 nM rapamycin treatment was used. The following groups were formed: 1: control, 2: 10000 nM AT-II, 3: 100 nM rapamycin, 4: 100 nM rapamycin pretreatment then 10000 nM AT-II. The cell viability was examined via MTT (cell proliferation assay) assay. The cells were stained with rhodamine-conjugated phalloidin and DAPI to visualize F-actin filaments and cell nuclei then the cell size alteration was examined in a fluorescence microscope. Furthermore, the expression levels of autophagic and apoptotic proteins such as Beclin-1, p62, LC3B-II, Cleaved Caspase-3 were evaluated by Western blot. MTT assay result suggests that the used pharmaceutical agents in the tested concentrations did not have a toxic effect; however, at group 3, a slight decrement was detected in cell viability. In response to AT-II treatment, a significant increase was detected in the cell size; cells became hypertrophic. However, rapamycin pretreatment slightly reduced the cell size compared to group 2. Western blot results showed that AT-II treatment-induced autophagy, because the increased expression of Beclin-1, p62, LC3B-II were observed. However, due to the incomplete autophagy, the apoptotic Cleaved Caspase-3 expression also increased. Rapamycin pretreatment up-regulated Beclin-1 and LC3B-II, down-regulated p62 and Cleaved Caspase-3, indicating that rapamycin-induced autophagy can restore the normal autophagic flux. Taken together, our results suggest that rapamycin activated autophagy reduces angiotensin-II induced hypertrophy.

Keywords: angiotensin-II, autophagy, H9c2 cell line, hypertrophy, rapamycin

Procedia PDF Downloads 118
91 Non-Invasive Viscosity Determination of Liquid Organic Hydrogen Carriers by Alteration of Temperature and Flow Velocity Using Cavity Based Permittivity Measurement

Authors: I. Wiemann, N. Weiß, E. Schlücker, M. Wensing, A. Kölpin

Abstract:

Chemical storage of hydrogen by liquid organic hydrogen carriers (LOHC) is a very promising alternative to compression or cryogenics. These carriers have high energy density and allow at the same time efficient and safe storage of hydrogen under ambient conditions and without leakage losses. Another benefit of LOHC is the possibility to transport it using already available infrastructure for transport of fossil fuels. Efficient use of LOHC is related to a precise process control, which requires a number of sensors in order to measure all relevant process parameters, for example, to measure the level of hydrogen loading of the carrier. The degree of loading is relevant for the energy content of the storage carrier and represents simultaneously the modification in chemical structure of the carrier molecules. This variation can be detected in different physical properties like viscosity, permittivity or density. Thereby, each degree of loading corresponds to different viscosity values. Conventional measurements currently use invasive viscosity measurements or near-line measurements to obtain quantitative information. Avoiding invasive measurements has several severe advantages. Efforts are currently taken to provide a precise, non-invasive measurement method with equal or higher precision of the obtained results. This study investigates a method for determination of the viscosity of LOHC. Since the viscosity can retroactively derived from the degree of loading, permittivity is a target parameter as it is a suitable for determining the hydrogenation degree. This research analyses the influence of common physical properties on permittivity. The permittivity measurement system is based on a cavity resonator, an electromagnetic resonant structure, whose resonation frequency depends on its dimensions as well as the permittivity of the medium inside. For known resonator dimensions, the resonation frequency directly characterizes the permittivity. In order to determine the dependency of the permittivity on temperature and flow velocity, an experimental setup with heating device and flow test bench was designed. By varying temperature in the range of 293,15 K -393,15 K and flow velocity up to 140 mm/s, corresponding changes in the resonation frequency were measured in the hundredths of the GHz range.

Keywords: liquid organic hydrogen carriers, measurement, permittivity, viscosity., temperature, flow process

Procedia PDF Downloads 68
90 Influence of Farnesol on Growth and Development of Dysdercus koenigii

Authors: Shailendra Kumar, Kamal Kumar Gupta

Abstract:

Dysdercus koenigii is an economically important pest of cotton worldwide. The pest damages the crop by sucking sap, staining lint, reducing the oil content of the seeds and deteriorating the quality of cotton. Plant possesses a plethora of secondary metabolites which are used as defense mechanism against herbivores. One of the important categories of such chemicals is insect growth regulators and the intermediates in their biosynthesis. Farnesol belongs to sesquiterpenoid. It is an intermediate in Juvenile hormone biosynthetic pathway in insects has been widely reported in the variety of plants. This chemical can disrupt the normal metabolic function and therefore, affects various life processes of the insects. Present study tested the efficacy of farnesol against Dysdercus koenigii. 2μl of 5% (100µg) and 10% (200µg) of the farnesol was applied topically on the dorsum of thoracic region of the newly emerged fifth instar nymphs of Dysdercus. The treated insects were observed daily for their survival, weight gain, and developmental anomalies for a period of ten days. The results indicated that treatment with 200µg farnesol decreased survival of the insects to 70% after 24h of exposure. At lower doses, no significant decrease in the survival was observed. However, the surviving nymphs showed alteration in growth, development, and metamorphosis. The weight gain in the treated nymphs showed deviation from control. The treated nymphs showed an increase in mortality during subsequent days and increase in the nymphal duration. The number of nymphs undergoing metamorphosis decreased to 46% and 88% in the treatments with the dose of 200µg and 100µg respectively. Severe developmental anomalies were also observed in the treated nymphs. The treated nymphs moulted into supernumerary nymphs, adultoids, adults with exuviae attached and adults with wing deformities. On treatment with 200µg; 26% adultoid, 4% adults with exuviae attached and 12% adults with wing deformed were produced. Treatment with 100µg resulted in production of 34% adultoid, 26% adults with deformed wing and 4% adults with exuviae attached. Many of the treated nymphs did not metamorphose into adults, remained in nymphal stage and died. Our results indicated potential application plant-derived secondary metabolites like farnesol in the management of Dysdercus population.

Keywords: development, Dysdercus koenigii, farnesol, survival

Procedia PDF Downloads 325
89 Characterization of WNK2 Role on Glioma Cells Vesicular Traffic

Authors: Viviane A. O. Silva, Angela M. Costa, Glaucia N. M. Hajj, Ana Preto, Aline Tansini, Martin Roffé, Peter Jordan, Rui M. Reis

Abstract:

Autophagy is a recycling and degradative system suggested to be a major cell death pathway in cancer cells. Autophagy pathway is interconnected with the endocytosis pathways sharing the same ultimate lysosomal destination. Lysosomes are crucial regulators of cell homeostasis, responsible to downregulate receptor signalling and turnover. It seems highly likely that derailed endocytosis can make major contributions to several hallmarks of cancer. WNK2, a member of the WNK (with-no-lysine [K]) subfamily of protein kinases, had been found downregulated by its promoter hypermethylation, and has been proposed to act as a specific tumour-suppressor gene in brain tumors. Although some contradictory studies indicated WNK2 as an autophagy modulator, its role in cancer cell death is largely unknown. There is also growing evidence for additional roles of WNK kinases in vesicular traffic. Aim: To evaluate the role of WNK2 in autophagy and endocytosis on glioma context. Methods: Wild-type (wt) A172 cells (WNK2 promoter-methylated), and A172 transfected either with an empty vector (Ev) or with a WNK2 expression vector, were used to assess the cellular basal capacities to promote autophagy, through western blot and flow-cytometry analysis. Additionally, we evaluated the effect of WNK2 on general endocytosis trafficking routes by immunofluorescence. Results: The re-expression of ectopic WNK2 did not interfere with autophagy-related protein light chain 3 (LC3-II) expression levels as well as did not promote mTOR signaling pathway alteration when compared with Ev or wt A172 cells. However, the restoration of WNK2 resulted in a marked increase (8 to 92,4%) of Acidic Vesicular Organelles formation (AVOs). Moreover, our results also suggest that WNK2 cells promotes delay in uptake and internalization rate of cholera toxin B and transferrin ligands. Conclusions: The restoration of WNK2 interferes in vesicular traffic during endocytosis pathway and increase AVOs formation. This results also suggest the role of WNK2 in growth factor receptor turnover related to cell growth and homeostasis and associates one more time, WNK2 silencing contribution in genesis of gliomas.

Keywords: autophagy, endocytosis, glioma, WNK2

Procedia PDF Downloads 346
88 Optimization and Evaluation of Different Pathways to Produce Biofuel from Biomass

Authors: Xiang Zheng, Zhaoping Zhong

Abstract:

In this study, Aspen Plus was used to simulate the whole process of biomass conversion to liquid fuel in different ways, and the main results of material and energy flow were obtained. The process optimization and evaluation were carried out on the four routes of cellulosic biomass pyrolysis gasification low-carbon olefin synthesis olefin oligomerization, biomass water pyrolysis and polymerization to jet fuel, biomass fermentation to ethanol, and biomass pyrolysis to liquid fuel. The environmental impacts of three biomass species (poplar wood, corn stover, and rice husk) were compared by the gasification synthesis pathway. The global warming potential, acidification potential, and eutrophication potential of the three biomasses were the same as those of rice husk > poplar wood > corn stover. In terms of human health hazard potential and solid waste potential, the results were poplar > rice husk > corn stover. In the popular pathway, 100 kg of poplar biomass was input to obtain 11.9 kg of aviation coal fraction and 6.3 kg of gasoline fraction. The energy conversion rate of the system was 31.6% when the output product energy included only the aviation coal product. In the basic process of hydrothermal depolymerization process, 14.41 kg aviation kerosene was produced per 100 kg biomass. The energy conversion rate of the basic process was 33.09%, which can be increased to 38.47% after the optimal utilization of lignin gasification and steam reforming for hydrogen production. The total exergy efficiency of the system increased from 30.48% to 34.43% after optimization, and the exergy loss mainly came from the concentration of precursor dilute solution. Global warming potential in environmental impact is mostly affected by the production process. Poplar wood was used as raw material in the process of ethanol production from cellulosic biomass. The simulation results showed that 827.4 kg of pretreatment mixture, 450.6 kg of fermentation broth, and 24.8 kg of ethanol were produced per 100 kg of biomass. The power output of boiler combustion reached 94.1 MJ, the unit power consumption in the process was 174.9 MJ, and the energy conversion rate was 33.5%. The environmental impact was mainly concentrated in the production process and agricultural processes. On the basis of the original biomass pyrolysis to liquid fuel, the enzymatic hydrolysis lignin residue produced by cellulose fermentation to produce ethanol was used as the pyrolysis raw material, and the fermentation and pyrolysis processes were coupled. In the coupled process, 24.8 kg ethanol and 4.78 kg upgraded liquid fuel were produced per 100 kg biomass with an energy conversion rate of 35.13%.

Keywords: biomass conversion, biofuel, process optimization, life cycle assessment

Procedia PDF Downloads 52
87 Toxin-Producing Algae of Nigerian Coast, Gulf of Guinea

Authors: Medina O. Kadiri, Jeffrey U. Ogbebor

Abstract:

Toxin-producing algae are algal species that produce potent toxins, which accumulate in food chains and cause various gastrointestinal and neurological illnesses in humans and other animals. They result in shellfish toxicity, ecosystem alteration, cause fish kills and mortality of other animals and humans, in addition to compromised product quality as well as decreased consumer confidence. Animals, including man, are directly exposed to toxins by absorbing toxins from the water via swimming, drinking water with toxins, or ingestion of algal species via feeding on contaminated seafood. These toxins, algal toxins, undergo bioaccumulation, biotransformation, biotransferrence, and biomagnification through the natural food chains and food webs, thereby endangering animals and humans. The Nigerian coast is situated on the Atlantic Ocean, the Gulf of Guinea, one of Africa’s five large marine ecosystems (LME), and studies on toxic algae in this ecosystem are generally lacking. Algal samples were collected from eight coastal states and ten locations spanning the Bight of Bonny and the Bight of Benin. A total of 70 species of toxin-producing algae were found in the coastal waters of Nigeria. There was a great variety of toxin-producing algae in the coastal waters of Nigeria. They were Domoic acid-producing forms (DSP), Saxitoxin-producing, Gonyautoxin-producing, and Yessotoxin-producing (all PSP). Others were Okadaic acid-producing, Dinophysistoxin-producing, and Palytoxin-producing, which are representatives of DSP; CFP was represented by Ciguatoxin-producing forms and NSP by Brevitoxin-producing species. Emerging or new toxins are comprising of Gymnodimines, Spirolides, Palytoxins, and Prorocentrolidess-producing algae. The CyanoToxin Poisoning (CTP) was represented by Anatoxin-, Microcystin-, Cylindrospermopsis-Lyngbyatoxin-, Nordularin-Applyssiatoxin and Debromoapplatoxin-producing species. The highest group was the Saxitoxin-producing species, followed by Microcystin-producing species, then Anatoxin-producing species. Gonyautoxin (PSP), Palytoxin (DSP), Emerging toxins, and Cylindrospermopsin -producing species had a very substantial representation. Only Ciguatoxin-producing species, Lyngbyatoxin-Nordularin, Applyssiatoxin, and Debromoapplatoxin-producing species were represented by one taxon each. The presence of such overwhelming diversity of toxin-producing algae on the Nigerian coast is a source of concern for fisheries, aquaculture, human health, and ecosystem services. Therefore routine monitoring of toxic and harmful algae is greatly recommended.

Keywords: algal syndromes, Atlantic Ocean, harmful algae, Nigeria

Procedia PDF Downloads 177
86 BiVO₄‑Decorated Graphite Felt as Highly Efficient Negative Electrode for All-Vanadium Redox Flow Batteries

Authors: Daniel Manaye Kabtamu, Anteneh Wodaje Bayeh

Abstract:

With the development and utilization of new energy technology, people’s demand for large-scale energy storage system has become increasingly urgent. Vanadium redox flow battery (VRFB) is one of the most promising technologies for grid-scale energy storage applications because of numerous attractive features, such as long cycle life, high safety, and flexible design. However, the relatively low energy efficiency and high production cost of the VRFB still limit its practical implementations. It is of great attention to enhance its energy efficiency and reduce its cost. One of the main components of VRFB that can impressively impact the efficiency and final cost is the electrode materials, which provide the reactions sites for redox couples (V₂₊/V³⁺ and VO²⁺/VO₂⁺). Graphite felt (GF) is a typical carbon-based material commonly employed as electrode for VRFB due to low-cost, good chemical and mechanical stability. However, pristine GF exhibits insufficient wettability, low specific surface area, and poor kinetics reversibility, leading to low energy efficiency of the battery. Therefore, it is crucial to further modify the GF electrode to improve its electrochemical performance towards VRFB by employing active electrocatalysts, such as less expensive metal oxides. This study successfully fabricates low-cost plate-like bismuth vanadate (BiVO₄) material through a simple one-step hydrothermal route, employed as an electrocatalyst to adorn the GF for use as the negative electrode in VRFB. The experimental results show that BiVO₄-3h exhibits the optimal electrocatalytic activity and reversibility for the vanadium redox couples among all samples. The energy efficiency of the VRFB cell assembled with BiVO₄-decorated GF as the negative electrode is found to be 75.42% at 100 mA cm−2, which is about 10.24% more efficient than that of the cell assembled with heat-treated graphite felt (HT-GF) electrode. The possible reasons for the activity enhancement can be ascribed to the existence of oxygen vacancies in the BiVO₄ lattice structure and the relatively high surface area of BiVO₄, which provide more active sites for facilitating the vanadium redox reactions. Furthermore, the BiVO₄-GF electrode obstructs the competitive irreversible hydrogen evolution reaction on the negative side of the cell, and it also has better wettability. Impressively, BiVO₄-GF as the negative electrode shows good stability over 100 cycles. Thus, BiVO₄-GF is a promising negative electrode candidate for practical VRFB applications.

Keywords: BiVO₄ electrocatalyst, electrochemical energy storage, graphite felt, vanadium redox flow battery

Procedia PDF Downloads 1544
85 Establishing the Legality of Terraforming under the Outer Space Treaty

Authors: Bholenath

Abstract:

Ever since Elon Musk revealed his plan to terraform Mars on national television in 2015, the debate regarding the legality of such an activity under the current Outer Space Treaty regime is gaining momentum. Terraforming means to alter or transform the atmosphere of another planet to have the characteristics of landscapes on Earth. Musk’s plan is to alter the entire environment of Mars so as to make it habitable for humans. He has long been an advocate of colonizing Mars, and in order to make humans an interplanetary species; he wants to detonate thermonuclear devices over the poles of Mars. For a common man, it seems to be a fascinating endeavor, but for space lawyers, it poses new and fascinating legal questions. Some of the questions which arise are whether the use of nuclear weapons on celestial bodies is permitted under the Outer Space Treaty? Whether such an alteration of the celestial environment would fall within the scope of the term 'harmful contamination' under Article IX of the treaty? Whether such an activity which would put an entire planet under the control of a private company can be permitted under the treaty? Whether such terraforming of Mars would amount to its appropriation? Whether such an activity would be in the 'benefit and interests of all countries'? This paper will be attempt to examine and elucidate upon these legal questions. Space is one such domain where the law should precede man. The paper follows the approach that the de lege lata is not capable of prohibiting the terraforming of Mars. Outer Space Treaty provides the freedoms of space and prescribes certain restrictions on those freedoms as well. The author shall examine the provisions such as Article I, II, IV, and IX of the Outer Space Treaty in order to establish the legality of terraforming activity. The author shall establish how such activity is peaceful use of the celestial body, is in the benefit and interests of all countries, and does neither qualify as national appropriation of the celestial body nor as its harmful contamination. The author shall divide the paper into three chapters. The first chapter would be about the general introduction of the problem, the analysis of Elon Musk’s plan to terraform Mars, and the need to study terraforming from the lens of the Outer Space Treaty. In the second chapter, the author shall attempt to establish the legality of the terraforming activity under the provisions of the Outer Space Treaty. In this vein, the author shall put forth the counter interpretations and the arguments which may be formulated against the lawfulness of terraforming. The author shall show as to why the counter interpretations establishing the unlawfulness of terraforming should not be accepted, and in doing so, the author shall provide the interpretations that should prevail and ultimately establishes the legality of terraforming activity under the treaty. In the third chapter, the author shall draw relevant conclusions and give suggestions.

Keywords: appropriation, harmful contamination, peaceful, terraforming

Procedia PDF Downloads 127