Search results for: hidden markov model (HMM)
16699 Mixture statistical modeling for predecting mortality human immunodeficiency virus (HIV) and tuberculosis(TB) infection patients
Authors: Mohd Asrul Affendi Bi Abdullah, Nyi Nyi Naing
Abstract:
The purpose of this study was to identify comparable manner between negative binomial death rate (NBDR) and zero inflated negative binomial death rate (ZINBDR) with died patients with (HIV + T B+) and (HIV + T B−). HIV and TB is a serious world wide problem in the developing country. Data were analyzed with applying NBDR and ZINBDR to make comparison which a favorable model is better to used. The ZINBDR model is able to account for the disproportionately large number of zero within the data and is shown to be a consistently better fit than the NBDR model. Hence, as a results ZINBDR model is a superior fit to the data than the NBDR model and provides additional information regarding the died mechanisms HIV+TB. The ZINBDR model is shown to be a use tool for analysis death rate according age categorical.Keywords: zero inflated negative binomial death rate, HIV and TB, AIC and BIC, death rate
Procedia PDF Downloads 43316698 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction
Procedia PDF Downloads 53716697 Model-Based Software Regression Test Suite Reduction
Authors: Shiwei Deng, Yang Bao
Abstract:
In this paper, we present a model-based regression test suite reducing approach that uses EFSM model dependence analysis and probability-driven greedy algorithm to reduce software regression test suites. The approach automatically identifies the difference between the original model and the modified model as a set of elementary model modifications. The EFSM dependence analysis is performed for each elementary modification to reduce the regression test suite, and then the probability-driven greedy algorithm is adopted to select the minimum set of test cases from the reduced regression test suite that cover all interaction patterns. Our initial experience shows that the approach may significantly reduce the size of regression test suites.Keywords: dependence analysis, EFSM model, greedy algorithm, regression test
Procedia PDF Downloads 42716696 Dynamics of a Susceptible-Infected-Recovered Model along with Time Delay, Modulated Incidence, and Nonlinear Treatment
Authors: Abhishek Kumar, Nilam
Abstract:
As we know that, time delay exists almost in every biological phenomenon. Therefore, in the present study, we propose a susceptible–infected–recovered (SIR) epidemic model along with time delay, modulated incidence rate of infection, and Holling Type II nonlinear treatment rate. The present model aims to provide a strategy to control the spread of epidemics. In the mathematical study of the model, it has been shown that the model has two equilibriums which are named as disease-free equilibrium (DFE) and endemic equilibrium (EE). Further, stability analysis of the model is discussed. To prove the stability of the model at DFE, we derived basic reproduction number, denoted by (R₀). With the help of basic reproduction number (R₀), we showed that the model is locally asymptotically stable at DFE when the basic reproduction number (R₀) less than unity and unstable when the basic reproduction number (R₀) is greater than unity. Furthermore, stability analysis of the model at endemic equilibrium has also been discussed. Finally, numerical simulations have been done using MATLAB 2012b to exemplify the theoretical results.Keywords: time delayed SIR epidemic model, modulated incidence rate, Holling type II nonlinear treatment rate, stability
Procedia PDF Downloads 15616695 Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam
Authors: Mehrdad Shahrbanozadeh, Gholam Abbas Barani, Saeed Shojaee
Abstract:
In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM.Keywords: seepage, dam foundation, finite element method, neural network, seep 3D model
Procedia PDF Downloads 47416694 Biofilm Text Classifiers Developed Using Natural Language Processing and Unsupervised Learning Approach
Authors: Kanika Gupta, Ashok Kumar
Abstract:
Biofilms are dense, highly hydrated cell clusters that are irreversibly attached to a substratum, to an interface or to each other, and are embedded in a self-produced gelatinous matrix composed of extracellular polymeric substances. Research in biofilm field has become very significant, as biofilm has shown high mechanical resilience and resistance to antibiotic treatment and constituted as a significant problem in both healthcare and other industry related to microorganisms. The massive information both stated and hidden in the biofilm literature are growing exponentially therefore it is not possible for researchers and practitioners to automatically extract and relate information from different written resources. So, the current work proposes and discusses the use of text mining techniques for the extraction of information from biofilm literature corpora containing 34306 documents. It is very difficult and expensive to obtain annotated material for biomedical literature as the literature is unstructured i.e. free-text. Therefore, we considered unsupervised approach, where no annotated training is necessary and using this approach we developed a system that will classify the text on the basis of growth and development, drug effects, radiation effects, classification and physiology of biofilms. For this, a two-step structure was used where the first step is to extract keywords from the biofilm literature using a metathesaurus and standard natural language processing tools like Rapid Miner_v5.3 and the second step is to discover relations between the genes extracted from the whole set of biofilm literature using pubmed.mineR_v1.0.11. We used unsupervised approach, which is the machine learning task of inferring a function to describe hidden structure from 'unlabeled' data, in the above-extracted datasets to develop classifiers using WinPython-64 bit_v3.5.4.0Qt5 and R studio_v0.99.467 packages which will automatically classify the text by using the mentioned sets. The developed classifiers were tested on a large data set of biofilm literature which showed that the unsupervised approach proposed is promising as well as suited for a semi-automatic labeling of the extracted relations. The entire information was stored in the relational database which was hosted locally on the server. The generated biofilm vocabulary and genes relations will be significant for researchers dealing with biofilm research, making their search easy and efficient as the keywords and genes could be directly mapped with the documents used for database development.Keywords: biofilms literature, classifiers development, text mining, unsupervised learning approach, unstructured data, relational database
Procedia PDF Downloads 17016693 A Mixed Integer Linear Programming Model for Flexible Job Shop Scheduling Problem
Authors: Mohsen Ziaee
Abstract:
In this paper, a mixed integer linear programming (MILP) model is presented to solve the flexible job shop scheduling problem (FJSP). This problem is one of the hardest combinatorial problems. The objective considered is the minimization of the makespan. The computational results of the proposed MILP model were compared with those of the best known mathematical model in the literature in terms of the computational time. The results show that our model has better performance with respect to all the considered performance measures including relative percentage deviation (RPD) value, number of constraints, and total number of variables. By this improved mathematical model, larger FJS problems can be optimally solved in reasonable time, and therefore, the model would be a better tool for the performance evaluation of the approximation algorithms developed for the problem.Keywords: scheduling, flexible job shop, makespan, mixed integer linear programming
Procedia PDF Downloads 18616692 A New Prediction Model for Soil Compression Index
Authors: D. Mohammadzadeh S., J. Bolouri Bazaz
Abstract:
This paper presents a new prediction model for compression index of fine-grained soils using multi-gene genetic programming (MGGP) technique. The proposed model relates the soil compression index to its liquid limit, plastic limit and void ratio. Several laboratory test results for fine-grained were used to develop the models. Various criteria were considered to check the validity of the model. The parametric and sensitivity analyses were performed and discussed. The MGGP method was found to be very effective for predicting the soil compression index. A comparative study was further performed to prove the superiority of the MGGP model to the existing soft computing and traditional empirical equations.Keywords: new prediction model, compression index soil, multi-gene genetic programming, MGGP
Procedia PDF Downloads 37516691 BTG-BIBA: A Flexibility-Enhanced Biba Model Using BTG Strategies for Operating System
Authors: Gang Liu, Can Wang, Runnan Zhang, Quan Wang, Huimin Song, Shaomin Ji
Abstract:
Biba model can protect information integrity but might deny various non-malicious access requests of the subjects, thereby decreasing the availability in the system. Therefore, a mechanism that allows exceptional access control is needed. Break the Glass (BTG) strategies refer an efficient means for extending the access rights of users in exceptional cases. These strategies help to prevent a system from stagnation. An approach is presented in this work for integrating Break the Glass strategies into the Biba model. This research proposes a model, BTG-Biba, which provides both an original Biba model used in normal situations and a mechanism used in emergency situations. The proposed model is context aware, can implement a fine-grained type of access control and primarily solves cross-domain access problems. Finally, the flexibility and availability improvement with the use of the proposed model is illustrated.Keywords: Biba model, break the glass, context, cross-domain, fine-grained
Procedia PDF Downloads 54216690 Proposing a Strategic Management Maturity Model for Continues Innovation
Authors: Ferhat Demir
Abstract:
Even if strategic management is highly critical for all types of organizations, only a few maturity models have been proposed in business literature for the area of strategic management activities. This paper updates previous studies and presents a new conceptual model for assessing the maturity of strategic management in any organization. Strategic management maturity model (S-3M) is basically composed of 6 maturity levels with 7 dimensions. The biggest contribution of S-3M is to put innovation into agenda of strategic management. The main objective of this study is to propose a model to align innovation with business strategies. This paper suggests that innovation (breakthrough new products/services and business models) is the only way of creating sustainable growth and strategy studies cannot ignore this aspect. Maturity models should embrace innovation to respond dynamic business environment and rapidly changing customer behaviours.Keywords: strategic management, innovation, business model, maturity model
Procedia PDF Downloads 19416689 Comparison of Applicability of Time Series Forecasting Models VAR, ARCH and ARMA in Management Science: Study Based on Empirical Analysis of Time Series Techniques
Authors: Muhammad Tariq, Hammad Tahir, Fawwad Mahmood Butt
Abstract:
Purpose: This study attempts to examine the best forecasting methodologies in the time series. The time series forecasting models such as VAR, ARCH and the ARMA are considered for the analysis. Methodology: The Bench Marks or the parameters such as Adjusted R square, F-stats, Durban Watson, and Direction of the roots have been critically and empirically analyzed. The empirical analysis consists of time series data of Consumer Price Index and Closing Stock Price. Findings: The results show that the VAR model performed better in comparison to other models. Both the reliability and significance of VAR model is highly appreciable. In contrary to it, the ARCH model showed very poor results for forecasting. However, the results of ARMA model appeared double standards i.e. the AR roots showed that model is stationary and that of MA roots showed that the model is invertible. Therefore, the forecasting would remain doubtful if it made on the bases of ARMA model. It has been concluded that VAR model provides best forecasting results. Practical Implications: This paper provides empirical evidences for the application of time series forecasting model. This paper therefore provides the base for the application of best time series forecasting model.Keywords: forecasting, time series, auto regression, ARCH, ARMA
Procedia PDF Downloads 34816688 Multiscale Simulation of Ink Seepage into Fibrous Structures through a Mesoscopic Variational Model
Authors: Athmane Bakhta, Sebastien Leclaire, David Vidal, Francois Bertrand, Mohamed Cheriet
Abstract:
This work presents a new three-dimensional variational model proposed for the simulation of ink seepage into paper sheets at the fiber level. The model, inspired by the Hising model, takes into account a finite volume of ink and describes the system state through gravity, cohesion, and adhesion force interactions. At the mesoscopic scale, the paper substrate is modeled using a discretized fiber structure generated using a numerical deposition procedure. A modified Monte Carlo method is introduced for the simulation of the ink dynamics. Besides, a multiphase lattice Boltzmann method is suggested to fine-tune the mesoscopic variational model parameters, and it is shown that the ink seepage behaviors predicted by the proposed model can resemble those predicted by a method relying on first principles.Keywords: fibrous media, lattice Boltzmann, modelling and simulation, Monte Carlo, variational model
Procedia PDF Downloads 14716687 Evaluation of Neuroprotective Potential of Olea europaea and Malus domestica in Experimentally Induced Stroke Rat Model
Authors: Humaira M. Khan, Kanwal Asif
Abstract:
Ischemic stroke is a neurological disorder with a complex pathophysiology associated with motor, sensory and cognitive deficits. Major approaches developed to treat acute ischemic stroke fall into two categories, thrombolysis and neuroprotection. The objectives of this study were to evaluate the neuroprotective and anti-thrombolytic effects of Olea europaea (olive oil) and Malus domestica (apple cider vinegar) and their combination in rat stroke model. Furthermore, histopathological analysis was also performed to assess the severity of ischemia among treated and reference groups. Male albino rats (12 months age) weighing 300- 350gm were acclimatized and subjected to middle cerebral artery occlusion method for stroke induction. Olea europaea and Malus domestica was administered orally in dose of 0.75ml/kg and 3ml/kg and combination was administered at dose of 0.375ml/kg and 1.5ml/kg prophylactically for consecutive 21 days. Negative control group was dosed with normal saline whereas piracetam (250mg/kg) was administered as reference. Neuroprotective activity of standard piracetam, Olea europaea, Malus domestica and their combination was evaluated by performing functional outcome tests i.e. Cylinder, pasta, ladder run, pole and water maize tests. Rats were subjected to surgery after 21 days of treatment for analysis from stroke recovery. Olea europaea and Malus domestica in individual doses of 0.75ml/kg and 3ml/kg respectively showed neuroprotection by significant improvement in ladder run test (121.6± 0.92;128.2 ± 0.73) as compare to reference (125.4 ± 0.74). Both test doses showed significant neuroprotection as compare to reference (9.60 ± 0.50) in pasta test (8.40 ± 0.24;9.80 ± 0.37) whereas with cylinder test, experimental groups showed significant increase in movements (6.60 ± 0.24; 8.40 ± 0.24) in contrast to reference (7.80 ± 0.37).There was a decrease in percentage time taken f to reach the hidden maize in water maize test (56.80 ± 0.58;61.80 ± 0.66) at doses 0.75ml/kg and 3ml/kg respectively as compare to piracetam (59.40 ± 1.07). Olea europaea and Malus domestica individually showed significant reduction in duration of mobility (127.0 ± 0.44; 123.0 ± 0.44) in pole test as compare to piracetam (124.0 ± 0.70). Histopathological analysis revealed the significant extent of protection from ischemia after prophylactic treatments. Hence it is concluded that Olea europaea and Malus domestica are effective neuroprotective agents alone as compare to their combination.Keywords: ischemia, Malus domestica, neuroprotection, Olea europaea
Procedia PDF Downloads 12616686 Association Rules Mining and NOSQL Oriented Document in Big Data
Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub
Abstract:
Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.Keywords: Apriori, Association rules mining, Big Data, Data Mining, Hadoop, MapReduce, MongoDB, NoSQL
Procedia PDF Downloads 16216685 Design of UV Based Unicycle Robot to Disinfect Germs and Communicate With Multi-Robot System
Authors: Charles Koduru, Parth Patel, M. Hassan Tanveer
Abstract:
In this paper, the communication between a team of robots is used to sanitize an environment with germs is proposed. We introduce capabilities from a team of robots (most likely heterogeneous), a wheeled robot named ROSbot 2.0 that consists of a mounted LiDAR and Kinect sensor, and a modified prototype design of a unicycle-drive Roomba robot called the UV robot. The UV robot consists of ultrasonic sensors to avoid obstacles and is equipped with an ultraviolet light system to disinfect and kill germs, such as bacteria and viruses. In addition, the UV robot is equipped with disinfectant spray to target hidden objects that ultraviolet light is unable to reach. Using the sensors from the ROSbot 2.0, the robot will create a 3-D model of the environment which will be used to factor how the ultraviolet robot will disinfect the environment. Together this proposed system is known as the RME assistive robot device or RME system, which communicates between a navigation robot and a germ disinfecting robot operated by a user. The RME system includes a human-machine interface that allows the user to control certain features of each robot in the RME assistive robot device. This method allows the cleaning process to be done at a more rapid and efficient pace as the UV robot disinfects areas just by moving around in the environment while using the ultraviolet light system to kills germs. The RME system can be used in many applications including, public offices, stores, airports, hospitals, and schools. The RME system will be beneficial even after the COVID-19 pandemic. The Kennesaw State University will continue the research in the field of robotics, engineering, and technology and play its role to serve humanity.Keywords: multi robot system, assistive robots, COVID-19 pandemic, ultraviolent technology
Procedia PDF Downloads 18616684 Metareasoning Image Optimization Q-Learning
Authors: Mahasa Zahirnia
Abstract:
The purpose of this paper is to explore new and effective ways of optimizing satellite images using artificial intelligence, and the process of implementing reinforcement learning to enhance the quality of data captured within the image. In our implementation of Bellman's Reinforcement Learning equations, associated state diagrams, and multi-stage image processing, we were able to enhance image quality, detect and define objects. Reinforcement learning is the differentiator in the area of artificial intelligence, and Q-Learning relies on trial and error to achieve its goals. The reward system that is embedded in Q-Learning allows the agent to self-evaluate its performance and decide on the best possible course of action based on the current and future environment. Results show that within a simulated environment, built on the images that are commercially available, the rate of detection was 40-90%. Reinforcement learning through Q-Learning algorithm is not just desired but required design criteria for image optimization and enhancements. The proposed methods presented are a cost effective method of resolving uncertainty of the data because reinforcement learning finds ideal policies to manage the process using a smaller sample of images.Keywords: Q-learning, image optimization, reinforcement learning, Markov decision process
Procedia PDF Downloads 21516683 Comparison of Sourcing Process in Supply Chain Operation References Model and Business Information Systems
Authors: Batuhan Kocaoglu
Abstract:
Although using powerful systems like ERP (Enterprise Resource Planning), companies still cannot benchmark their processes and measure their process performance easily based on predefined SCOR (Supply Chain Operation References) terms. The purpose of this research is to identify common and corresponding processes to present a conceptual model to model and measure the purchasing process of an organization. The main steps for the research study are: Literature review related to 'procure to pay' process in ERP system; Literature review related to 'sourcing' process in SCOR model; To develop a conceptual model integrating 'sourcing' of SCOR model and 'procure to pay' of ERP model. In this study, we examined the similarities and differences between these two models. The proposed framework is based on the assumptions that are drawn from (1) the body of literature, (2) the authors’ experience by working in the field of enterprise and logistics information systems. The modeling framework provides a structured and systematic way to model and decompose necessary information from conceptual representation to process element specification. This conceptual model will help the organizations to make quality purchasing system measurement instruments and tools. And offered adaptation issues for ERP systems and SCOR model will provide a more benchmarkable and worldwide standard business process.Keywords: SCOR, ERP, procure to pay, sourcing, reference model
Procedia PDF Downloads 36216682 Effect of Different Model Drugs on the Properties of Model Membranes from Fishes
Authors: M. Kumpugdee-Vollrath, T. G. D. Phu, M. Helmis
Abstract:
A suitable model membrane to study the pharmacological effect of pharmaceutical products is human stratum corneum because this layer of human skin is the outermost layer and it is an important barrier to be passed through. Other model membranes which were also used are for example skins from pig, mouse, reptile or fish. We are interested in fish skins in this project. The advantages of the fish skins are, that they can be obtained from the supermarket or fish shop. However, the fish skins should be freshly prepared and used directly without storage. In order to understand the effect of different model drugs e.g. lidocaine HCl, resveratrol, paracetamol, ibuprofen, acetyl salicylic acid on the properties of the model membrane from various types of fishes e.g. trout, salmon, cod, plaice permeation tests were performed and differential scanning calorimetry was applied.Keywords: fish skin, model membrane, permeation, DSC, lidocaine HCl, resveratrol, paracetamol, ibuprofen, acetyl salicylic acid
Procedia PDF Downloads 47016681 Lyapunov Functions for Extended Ross Model
Authors: Rahele Mosleh
Abstract:
This paper gives a survey of results on global stability of extended Ross model for malaria by constructing some elegant Lyapunov functions for two cases of epidemic, including disease-free and endemic occasions. The model is a nonlinear seven-dimensional system of ordinary differential equations that simulates this phenomenon in a more realistic fashion. We discuss the existence of positive disease-free and endemic equilibrium points of the model. It is stated that extended Ross model possesses invariant solutions for human and mosquito in a specific domain of the system.Keywords: global stability, invariant solutions, Lyapunov function, stationary points
Procedia PDF Downloads 16516680 Tracy: A Java Library to Render a 3D Graphical Human Model
Authors: Sina Saadati, Mohammadreza Razzazi
Abstract:
Since Java is an object-oriented language, It can be used to solve a wide range of problems. One of the considerable usages of this language can be found in Agent-based modeling and simulation. Despite the significant power of Java, There is not an easy method to render a 3-dimensional human model. In this article, we are about to develop a library which helps modelers present a 3D human model and control it with Java. The library runs two server programs. The first one is a web page server that can connect to any browser and present an HTML code. The second server connects to the browser and controls the movement of the model. So, the modeler will be able to develop a simulation and display a good-looking human model without any knowledge of any graphical tools.Keywords: agent-based modeling and simulation, human model, graphics, Java, distributed systems
Procedia PDF Downloads 11116679 Nondestructive Inspection of Reagents under High Attenuated Cardboard Box Using Injection-Seeded THz-Wave Parametric Generator
Authors: Shin Yoneda, Mikiya Kato, Kosuke Murate, Kodo Kawase
Abstract:
In recent years, there have been numerous attempts to smuggle narcotic drugs and chemicals by concealing them in international mail. Combatting this requires a non-destructive technique that can identify such illicit substances in mail. Terahertz (THz) waves can pass through a wide variety of materials, and many chemicals show specific frequency-dependent absorption, known as a spectral fingerprint, in the THz range. Therefore, it is reasonable to investigate non-destructive mail inspection techniques that use THz waves. For this reason, in this work, we tried to identify reagents under high attenuation shielding materials using injection-seeded THz-wave parametric generator (is-TPG). Our THz spectroscopic imaging system using is-TPG consisted of two non-linear crystals for emission and detection of THz waves. A micro-chip Nd:YAG laser and a continuous wave tunable external cavity diode laser were used as the pump and seed source, respectively. The pump beam and seed beam were injected to the LiNbO₃ crystal satisfying the noncollinear phase matching condition in order to generate high power THz-wave. The emitted THz wave was irradiated to the sample which was raster scanned by the x-z stage while changing the frequencies, and we obtained multispectral images. Then the transmitted THz wave was focused onto another crystal for detection and up-converted to the near infrared detection beam based on nonlinear optical parametric effects, wherein the detection beam intensity was measured using an infrared pyroelectric detector. It was difficult to identify reagents in a cardboard box because of high noise levels. In this work, we introduce improvements for noise reduction and image clarification, and the intensity of the near infrared detection beam was converted correctly to the intensity of the THz wave. A Gaussian spatial filter is also introduced for a clearer THz image. Through these improvements, we succeeded in identification of reagents hidden in a 42-mm thick cardboard box filled with several obstacles, which attenuate 56 dB at 1.3 THz, by improving analysis methods. Using this system, THz spectroscopic imaging was possible for saccharides and may also be applied to cases where illicit drugs are hidden in the box, and multiple reagents are mixed together. Moreover, THz spectroscopic imaging can be achieved through even thicker obstacles by introducing an NIR detector with higher sensitivity.Keywords: nondestructive inspection, principal component analysis, terahertz parametric source, THz spectroscopic imaging
Procedia PDF Downloads 17716678 A Cohort and Empirical Based Multivariate Mortality Model
Authors: Jeffrey Tzu-Hao Tsai, Yi-Shan Wong
Abstract:
This article proposes a cohort-age-period (CAP) model to characterize multi-population mortality processes using cohort, age, and period variables. Distinct from the factor-based Lee-Carter-type decomposition mortality model, this approach is empirically based and includes the age, period, and cohort variables into the equation system. The model not only provides a fruitful intuition for explaining multivariate mortality change rates but also has a better performance in forecasting future patterns. Using the US and the UK mortality data and performing ten-year out-of-sample tests, our approach shows smaller mean square errors in both countries compared to the models in the literature.Keywords: longevity risk, stochastic mortality model, multivariate mortality rate, risk management
Procedia PDF Downloads 5516677 Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock
Authors: Hadi Farhadian, Homayoon Katibeh
Abstract:
Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.Keywords: water inflow, tunnel, discontinues rock, numerical simulation
Procedia PDF Downloads 52416676 Hidden Critical Risk in the Construction Industry’s Technological Adoption: Cybercrime
Authors: Nuruddeen Usman, Usman Mohammed Gidado, Muhammad Ahmad Ibrahim
Abstract:
Construction industry is one of the sectors that are eyeing adoption of ICT for its development due to the advancement in technology. Though, many manufacturing sectors had been using it, but construction industry was left behind, especially in the developing nation like Nigeria. On account of that, the objective of this study is to conceptually and quantitatively synthesise whether the slow adoption of ICT by the construction industries can be attributable to cybercrime threats. The result of the investigation found that, the risk of cybercrime, and lack of adequate cyber security policies that can enforce and punish defaulters are among the things that hinder ICT adoption of the Nigerian construction industries. Therefore, there is need for the nations to educate their citizens on cybercrime risk, and to establish cybercrime police units that can be monitoring and controlling all online communications.Keywords: construction industry, cybercrime, information and communication technology adoption, risk
Procedia PDF Downloads 51016675 A New Protocol Ensuring Users' Privacy in Pervasive Environment
Authors: Mohammed Nadir Djedid, Abdallah Chouarfia
Abstract:
Transparency of the system and its integration into the natural environment of the user are some of the important features of pervasive computing. But these characteristics that are considered as the strongest points of pervasive systems are also their weak points in terms of the user’s privacy. The privacy in pervasive systems involves more than the confidentiality of communications and concealing the identity of virtual users. The physical presence and behavior of the user in the pervasive space cannot be completely hidden and can reveal the secret of his/her identity and affect his/her privacy. This paper shows that the application of major techniques for protecting the user’s privacy still insufficient. A new solution named Shadow Protocol is proposed, which allows the users to authenticate and interact with the surrounding devices within an ubiquitous computing environment while preserving their privacy.Keywords: pervasive systems, identification, authentication, privacy
Procedia PDF Downloads 48216674 A Model of Condensation and Solidification of Metallurgical Vapor in a Supersonic Nozzle
Authors: Thien X. Dinh, Peter Witt
Abstract:
A one-dimensional model for the simulation of condensation and solidification of a metallurgical vapor in the mixture of gas during supersonic expansion is presented. In the model, condensation is based on critical nucleation and drop-growth theory. When the temperature falls below the supercooling point, all the formed liquid droplets in the condensation phase are assumed to solidify at an infinite rate. The model was verified with a Computational Fluid Dynamics simulation of magnesium vapor condensation and solidification. The obtained results are in reasonable agreement with CFD data. Therefore, the model is a promising, efficient tool for use in the design process for supersonic nozzles applied in mineral processes since it is faster than the CFD counterpart by an order of magnitude.Keywords: condensation, metallurgical flow, solidification, supersonic expansion
Procedia PDF Downloads 6316673 A Nonlinear Approach for System Identification of a Li-Ion Battery Based on a Non-Linear Autoregressive Exogenous Model
Authors: Meriem Mossaddek, El Mehdi Laadissi, El Mehdi Loualid, Chouaib Ennawaoui, Sohaib Bouzaid, Abdelowahed Hajjaji
Abstract:
An electrochemical system is a subset of mechatronic systems that includes a wide variety of batteries and nickel-cadmium, lead-acid batteries, and lithium-ion. Those structures have several non-linear behaviors and uncertainties in their running range. This paper studies an effective technique for modeling Lithium-Ion (Li-Ion) batteries using a Nonlinear Auto-Regressive model with exogenous input (NARX). The Artificial Neural Network (ANN) is trained to employ the data collected from the battery testing process. The proposed model is implemented on a Li-Ion battery cell. Simulation of this model in MATLAB shows good accuracy of the proposed model.Keywords: lithium-ion battery, neural network, energy storage, battery model, nonlinear models
Procedia PDF Downloads 11516672 The Importance of Developing Pedagogical Agency Capacities in Initial Teacher Formation: A Critical Approach to Advance in Social Justice
Authors: Priscilla Echeverria
Abstract:
This paper addresses initial teacher formation as a formative space in which pedagogy students develop a pedagogical agency capacity to contribute to social justice, considering ethical, political, and epistemic dimensions. This paper is structured by discussing first the concepts of agency, pedagogical interaction, and social justice from a critical perspective; and continues offering preliminary results on the capacity of pedagogical agency in novice teachers after the analysis of critical incidents as a research methodology. This study is motivated by the concern that responding to the current neoliberal scenario, many initial teacher formation (ITF) programs have reduced the meaning of education to instruction, and pedagogy to methodology, favouring the formation of a technical professional over a reflective or critical one. From this concern, this study proposes that the restitution of the subject is an urgent task in teacher formation, so it is essential to enable him in his capacity for action and advance in eliminating institutionalized oppression insofar as it affects that capacity. Given that oppression takes place in human interaction, through this work, I propose that initial teacher formation develops sensitivity and educates the gaze to identify oppression and take action against it, both in pedagogical interactions -which configure political, ethical, and epistemic subjectivities- as in the hidden and official curriculum. All this from the premise that modelling democratic and dialogical interactions are basic for any program that seeks to contribute to a more just and empowered society. The contribution of this study lies in the fact that it opens a discussion in an area about which we know little: the impact of the type of interactions offered by university teaching at ITF on the capacity of future teachers to be pedagogical agents. For this reason, this study seeks to gather evidence of the result of this formation, analysing the capacity of pedagogical agency of novice teachers, or, in other words, how capable the graduates of secondary pedagogies are in their first pedagogical experiences to act and make decisions putting the formative purposes that they are capable of autonomously defining before technical or bureaucratic issues imposed by the curriculum or the official culture. This discussion is part of my doctoral research, "The importance of developing the capacity for ethical-political-epistemic agency in novice teachers during initial teacher formation to contribute to social justice", which I am currently developing in the Educational Research program of the University of Lancaster, United Kingdom, as a Conicyt fellow for the 2019 cohort.Keywords: initial teacher formation, pedagogical agency, pedagogical interaction, social justice, hidden curriculum
Procedia PDF Downloads 9716671 The State Model of Corporate Governance
Authors: Asaiel Alohaly
Abstract:
A theoretical framework for corporate governance is needed to bridge the gap between the corporate governance of private companies and State-owned Enterprises (SOEs). The two dominant models, being shareholder and stakeholder, do not always address the specific requirements and challenges posed by ‘hybrid’ companies; namely, previously national bodies that have been privatised bffu t where the government retains significant control or holds a majority of shareholders. Thus, an exploratory theoretical study is needed to identify how ‘hybrid’ companies should be defined and why the state model should be acknowledged since it is the less conspicuous model in comparison with the shareholder and stakeholder models. This research focuses on ‘the state model of corporate governance to understand the complex ownership, control pattern, goals, and corporate governance of these hybrid companies. The significance of this research lies in the fact that there is a limited available publication on the state model. The outcomes of this research are as follows. It became evident that the state model exists in the ecosystem. However, corporate governance theories have not extensively covered this model. Though, there is a lot being said about it by OECD and the World Bank. In response to this gap between theories and industry practice, this research argues for the state model, which proceeds from an understanding of the institutionally embedded character of hybrid companies where the government is either a majority of the total shares or a controlling shareholder.Keywords: corporate governance, control, shareholders, state model
Procedia PDF Downloads 14316670 Simulation on Fuel Metering Unit Used for TurboShaft Engine Model
Authors: Bin Wang, Hengyu Ji, Zhifeng Ye
Abstract:
Fuel Metering Unit (FMU) in fuel system of an aeroengine sometimes has direct influence on the engine performance, which is neglected for the sake of easy access to mathematical model of the engine in most cases. In order to verify the influence of FMU on an engine model, this paper presents a co-simulation of a stepping motor driven FMU (digital FMU) in a turboshaft aeroengine, using AMESim and MATLAB to obtain the steady and dynamic characteristics of the FMU. For this method, mechanical and hydraulic section of the unit is modeled through AMESim, while the stepping motor is mathematically modeled through MATLAB/Simulink. Combining these two sub-models yields an AMESim/MATLAB co-model of the FMU. A simplified component level model for the turboshaft engine is established and connected with the FMU model. Simulation results on the full model show that the engine model considering FMU characteristics describes the engine more precisely especially in its transition state. An FMU dynamics will cut down the rotation speed of the high pressure shaft and the inlet pressure of the combustor during the step response. The work in this paper reveals the impact of FMU on engine operation characteristics and provides a reference to an engine model for ground tests.Keywords: fuel metering unit, stepping motor, AMESim/Matlab, full digital simulation
Procedia PDF Downloads 249