Search results for: comprehensive metrics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3193

Search results for: comprehensive metrics

2743 Preserving Heritage in the Face of Natural Disasters: Lessons from the Bam Experience in Iran

Authors: Mohammad Javad Seddighi, Avar Almukhtar

Abstract:

The occurrence of natural disasters, such as floods and earthquakes, can cause significant damage to heritage sites and surrounding areas. In Iran, the city of Bam was devastated by an earthquake in 2003, which had a major impact on the rivers and watercourses around the city. This study aims to investigate the environmental design techniques and sustainable hazard mitigation strategies that can be employed to preserve heritage sites in the face of natural disasters, using the Bam experience as a case study. The research employs a mixed-methods approach, combining both qualitative and quantitative data collection and analysis methods. The study begins with a comprehensive literature review of recent publications on environmental design techniques and sustainable hazard mitigation strategies in heritage conservation. This is followed by a field study of the rivers and watercourses around Bam, including the Adoori River (Talangoo) and other watercourses, to assess the current conditions and identify potential hazards. The data collected from the field study is analysed using statistical methods and GIS mapping techniques. The findings of this study reveal the importance of sustainable hazard mitigation strategies and environmental design techniques in preserving heritage sites during natural disasters. The study suggests that these techniques can be used to prevent the outbreak of another natural disaster in Bam and the surrounding areas. Specifically, the study recommends the establishment of a comprehensive early warning system, the creation of flood-resistant landscapes, and the use of eco-friendly building materials in the reconstruction of heritage sites. These findings contribute to the current knowledge of sustainable hazard mitigation and environmental design in heritage conservation.

Keywords: natural disasters, heritage conservation, sustainable hazard mitigation, environmental design, landscape architecture, flood management, disaster resilience

Procedia PDF Downloads 59
2742 The Nexus Between the Rise of Autocratisation and the Deeper Level of BRI Engagement

Authors: Dishari Rakshit, Mitchell Gallagher

Abstract:

The global landscape is witnessing a disconcerting surge in democratic backsliding, engendering concerns over the rise of autocratisation. This research demonstrates the intricate relationship between a nation's domestic propensity for autocratic governance and its trade relations with China. Giving prominence to Belt and Road Initiative (BRI) investments, this study adopts a rigorous neorealist framework to discern the complexities of nations' economic interests amidst an anarchic milieu and how these interests may transcend steadfast adherence to democratic principles. The burgeoning bipolarity in the international political setting serves as a backdrop to our inquiry. To operationalise our hypothesis, we conduct a large-scale 'N' study, encompassing a comprehensive global dataset comprising countries' democracy indicators, total trade volume with China, and cumulative Chinese BRI investments over a substantial temporal expanse. By meticulously examining BRI signatories’, we aim to ascertain the potential accentuation of democratic backsliding among these nations. To test our empirical underpinning, we will validate our findings through cogent case studies. Our analysis adds to the scholarship on multifaceted interactions between trade dynamics and democratic governance within the fabric of the international political landscape. In its culmination, the paper addresses the question- has the erstwhile grandeur of bipolarity resurfaced in the contemporary global panorama? Concurrently, we explore the nexus between the ascendant wave of autocratisation as a by-product of the Beijing Consensus? Pertinent to policymakers, our discoveries stand poised to furnish a comprehensive grasp of the manifold implications arising from the deepening entanglements with China under the auspices of the BRI.

Keywords: democracy, autocracy, china, belt road initiative, international political economy

Procedia PDF Downloads 42
2741 The Process of Crisis: Model of Its Development in the Organization

Authors: M. Mikušová

Abstract:

The main aim of this paper is to present a clear and comprehensive picture of the process of a crisis in the organization which will help to better understand its possible developments. For a description of the sequence of individual steps and an indication of their causation and possible variants of the developments, a detailed flow diagram with verbal comment is applied. For simplicity, the process of the crisis is observed in four basic phases called: symptoms of the crisis, diagnosis, action and prevention. The model highlights the complexity of the phenomenon of the crisis and that the various phases of the crisis are interweaving.

Keywords: crisis, management, model, organization

Procedia PDF Downloads 269
2740 What Smart Can Learn about Art

Authors: Faten Hatem

Abstract:

This paper explores the associated understanding of the role and meaning of art and whether it is perceived to be separate from smart city construction. The paper emphasises the significance of fulfilling the inherent need for discovery and interaction, driving people to explore new places and think of works of art. This is done by exploring the ways of thinking and types of art in Milton Keynes by illustrating a general pattern of misunderstanding that relies on the separation between smart, art, and architecture, promoting a better and deeper understanding of the interconnections between neuroscience, art, and architecture. A reflective approach is used to clarify the potential and impact of using art-based research, methodology, and ways of knowing when approaching global phenomena and knowledge production while examining the process of making and developing smart cities, in particular, asserting that factors can severely impact it in the process of conducting the study itself. It follows a case study as a research strategy. The qualitative methods included data collection and analysis that involved interviews and observations that depended on visuals.

Keywords: smart cities, art and smart, smart cities design, smart cities making, sustainability, city brain and smart cities metrics, smart cities standards, smart cities applications, governance, planning and policy

Procedia PDF Downloads 78
2739 An Assessment of Suitable Alternative Public Transport System in Mid-Sized City of India

Authors: Sanjeev Sinha, Samir Saurav

Abstract:

The rapid growth of urban areas in India has led to transportation challenges like traffic congestion and an increase in accidents. Despite efforts by state governments and local administrations to improve urban transport, the surge in private vehicles has worsened the situation. Patna, located in Bihar State, is an example of the trend of increasing reliance on private motor vehicles, resulting in vehicular congestion and emissions. The existing transportation infrastructure is inadequate to meet future travel demands, and there has been a notable increase in the share of private vehicles in the city. Additionally, there has been a surge in economic activities in the region, which has increased the demand for improved travel convenience and connectivity. To address these challenges, a study was conducted to assess the most suitable transit mode for the proposed transit corridor outlined in the Comprehensive Mobility Plan (CMP) for Patna. The study covered four stages: developing screening criteria, evaluating parameters for various alternatives, qualitative and quantitative evaluations of alternatives, and implementation options for the most viable alternative. The study suggests that a mass transit system such as a metro rail is necessary to enhance Patna's urban public transport system. The New Metro Policy 2017 outlines specific prerequisites for submitting a Metro Rail Project Proposal to the Ministry of Housing and Urban Affairs (MoHUA), including the preparation of a CMP, the formation of an Urban Metropolitan Transport Authority (UMTA), the creation of an Alternative Analysis Report, the development of a Detailed Project Report, a Multi-Modal Integration Plan, and a Transit-Oriented Development (TOD) Plan. In 2018, the Comprehensive Mobility Plan for Patna was prepared, setting the stage for the subsequent steps in the metro rail project proposal. The results indicated that from the screening and analysis of qualitative parameters for different alternative modes in Patna, it is inferred that the Metro Rail and Monorail score 82.25 and 70.50, respectively, on a scale of 100. Based on the initial analysis and alternative evaluation in the form of quantitative analysis, the Metro Rail System significantly outperformed the Monorail system. The Metro Rail System has a positive Economic Net Present Value (ENPV) at a 14% internal rate of return, while the Monorail has a negative value. In conclusion, the study recommends choosing metro rail over monorail for the proposed transit corridor in Patna. However, the lack of broad-based technical expertise may result in implementation delays and increased costs for monorail.

Keywords: comprehensive mobility plan, alternative analysis, mobility corridors, mass transit system

Procedia PDF Downloads 82
2738 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: decision tree, water quality, water pollution, machine learning

Procedia PDF Downloads 63
2737 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 53
2736 Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings

Authors: Philip Symonds, Jon Taylor, Zaid Chalabi, Michael Davies

Abstract:

With the world climate projected to warm and major cities in developing countries becoming increasingly populated and polluted, governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of an adaptable model of these risks. Simulations are performed using the EnergyPlus building physics software. An accurate metamodel is formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) are compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus.

Keywords: neural networks, radial basis functions, metamodelling, python machine learning libraries

Procedia PDF Downloads 420
2735 The Magnitude and Associated Factors of Coagulation Abnormalities Among Liver Disease Patients at the University of Gondar Comprehensive Specialized Hospital Northwest, Ethiopia

Authors: Melkamu A., Woldu B., Sitotaw C., Seyoum M., Aynalem M.

Abstract:

Background: Liver disease is any condition that affects the liver cells and their function. It is directly linked to coagulation disorders since most coagulation factors are produced by the liver. Therefore, this study aimed to assess the magnitude and associated factors of coagulation abnormalities among liver disease patients. Methods: A cross-sectional study was conducted from August to October 2022 among 307 consecutively selected study participants at the University of Gondar Comprehensive Specialized Hospital. Sociodemographic and clinical data were collected using a structured questionnaire and data extraction sheet, respectively. About 2.7 mL of venous blood was collected and analyzed by the Genrui CA51 coagulation analyzer. Data was entered into Epi-data and exported to STATA version 14 software for analysis. The finding was described in terms of frequencies and proportions. Factors associated with coagulation abnormalities were analyzed by bivariable and multivariable logistic regression. Result: In this study, a total of 307 study participants were included. Of them, the magnitude of prolonged Prothrombin Time (PT) and Activated Partial Thromboplastin Time (APTT) were 68.08% and 63.51%, respectively. The presence of anemia (AOR = 2.97, 95% CI: 1.26, 7.03), a lack of a vegetable feeding habit (AOR = 2.98, 95% CI: 1.42, 6.24), no history of blood transfusion (AOR = 3.72, 95% CI: 1.78, 7.78), and lack of physical exercise (AOR = 3.23, 95% CI: 1.60, 6.52) were significantly associated with prolonged PT. While the presence of anaemia (AOR = 3.02; 95% CI: 1.34, 6.76), lack of vegetable feeding habit (AOR = 2.64; 95% CI: 1.34, 5.20), no history of blood transfusion (AOR = 2.28; 95% CI: 1.09, 4.79), and a lack of physical exercise (AOR = 2.35; 95% CI: 1.16, 4.78) were significantly associated with abnormal APTT. Conclusion: Patients with liver disease had substantial coagulation problems. Being anemic, having a transfusion history, lack of physical activity, and lack of vegetables showed significant association with coagulopathy. Therefore, early detection and management of coagulation abnormalities in liver disease patients are critical.

Keywords: coagulation, liver disease, PT, Aptt

Procedia PDF Downloads 33
2734 Video-On-Demand QoE Evaluation across Different Age-Groups and Its Significance for Network Capacity

Authors: Mujtaba Roshan, John A. Schormans

Abstract:

Quality of Experience (QoE) drives churn in the broadband networks industry, and good QoE plays a large part in the retention of customers. QoE is known to be affected by the Quality of Service (QoS) factors packet loss probability (PLP), delay and delay jitter caused by the network. Earlier results have shown that the relationship between these QoS factors and QoE is non-linear, and may vary from application to application. We use the network emulator Netem as the basis for experimentation, and evaluate how QoE varies as we change the emulated QoS metrics. Focusing on Video-on-Demand, we discovered that the reported QoE may differ widely for users of different age groups, and that the most demanding age group (the youngest) can require an order of magnitude lower PLP to achieve the same QoE than is required by the most widely studied age group of users. We then used a bottleneck TCP model to evaluate the capacity cost of achieving an order of magnitude decrease in PLP, and found it be (almost always) a 3-fold increase in link capacity that was required.

Keywords: network capacity, packet loss probability, quality of experience, quality of service

Procedia PDF Downloads 245
2733 A Systematic Review on Lifelong Learning Programs for Community-Dwelling Older Adults

Authors: Xi Vivien Wu, Emily Neo Kim Ang, Yi Jung Tung, Wenru Wang

Abstract:

Background and Objective: The increase in life expectancy and emphasis on self-reliance for the older adults are global phenomena. As such, lifelong learning in the community is considered a viable means of promoting successful and active aging. This systematic review aims to examine various lifelong learning programs for community-dwelling older adults and to synthesize the contents and outcomes of these lifelong learning programs. Methods: A systematic search was conducted in July to December 2016. Two reviewers were engaged in the process to ensure creditability of the selection process. Narrative description and analysis were applied with the support of a tabulation of key data including study design, interventions, and outcomes. Results: Eleven articles, which consisted of five randomized controlled trials and six quasi-experimental studies, were included in this review. Interventions included e-health literacy programs with the aid of computers and the Internet (n=4), computer and Internet training (n=3), physical fitness programs (n=2), music program (n=1), and intergenerational program (n=1). All studies used objective measurement tools to evaluate the outcomes of the study. Conclusion: The systematic review indicated lifelong learning programs resulted in positive outcomes in terms of physical health, mental health, social behavior, social support, self-efficacy and confidence in computer usage, and increased e-health literacy efficacy. However, the lifelong learning programs face challenges such as funding shortages, program cuts, and increasing costs. A comprehensive lifelong learning program could be developed to enhance the well-being of the older adults at a more holistic level. Empirical research can be done to explore the effectiveness of this comprehensive lifelong learning program.

Keywords: community-dwelling older adults, e-health literacy program, lifelong learning program, the wellbeing of the older adults

Procedia PDF Downloads 135
2732 Real-Time Lane Marking Detection Using Weighted Filter

Authors: Ayhan Kucukmanisa, Orhan Akbulut, Oguzhan Urhan

Abstract:

Nowadays, advanced driver assistance systems (ADAS) have become popular, since they enable safe driving. Lane detection is a vital step for ADAS. The performance of the lane detection process is critical to obtain a high accuracy lane departure warning system (LDWS). Challenging factors such as road cracks, erosion of lane markings, weather conditions might affect the performance of a lane detection system. In this paper, 1-D weighted filter based on row filtering to detect lane marking is proposed. 2-D input image is filtered by 1-D weighted filter considering four-pixel values located symmetrically around the center of candidate pixel. Performance evaluation is carried out by two metrics which are true positive rate (TPR) and false positive rate (FPR). Experimental results demonstrate that the proposed approach provides better lane marking detection accuracy compared to the previous methods while providing real-time processing performance.

Keywords: lane marking filter, lane detection, ADAS, LDWS

Procedia PDF Downloads 167
2731 A Learning Automata Based Clustering Approach for Underwater ‎Sensor Networks to Reduce Energy Consumption

Authors: Motahareh Fadaei

Abstract:

Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.

Keywords: clustering, energy consumption‎, learning automata, underwater sensor networks

Procedia PDF Downloads 294
2730 E-Commerce in Jordan: Conceptual Model

Authors: Muneer Abbad

Abstract:

This study comes with a comprehensive analysis of specific factors affecting the adoption of e-commerce in Jordan. From the theoretical perspective, this study will make a contribution to the e-commerce by providing insights on the factors that seem to affect e-commerce’s adoption. The current study will provide managers information about the planning and formulating appropriate strategies to ensure rapid adoption of e-commerce in Jordan. It will offer marketing implications, conclusions, and suggestions for future research.

Keywords: e-commerce, Jordan, adoption, conceptual model

Procedia PDF Downloads 426
2729 Utilization of Pozzolonic Material for the Enhancement of the Concrete Strength: A Comprehensive Review Paper

Authors: M. Parvez Alam, M. Bilal Khan

Abstract:

Concrete is the material of choice where strength, performance, durability, impermeability, fire resistance, and abrasion resistance are required. The hunger for the higher strength leads to other materials to achieve the desired results and thus, emerged the contribution of cementitious material for the strength of concrete In present day constructions, concrete is chosen as one of the best choices by civil engineers in construction materials. The concept of sustainability is touching new heights and many pozzolonic materials are tried and tested as partial replacement for the cement. In this paper, comprehensive review of available literatures are studied to evaluate the performance of pozzolonic materials such as ceramic waste powder, copper slag, silica fume on the strength of concrete by the partial replacement of ordinary materials such as cement, fine aggregate and coarse aggregate at different percentage of composition. From the study, we conclude that ceramic wastes are suitable to be used in the construction industry, and more significantly on the making of concrete. Ceramic wastes are found to be suitable for usage as substitution for fine and coarse aggregates and partial substitution in cement production. They were found to be performing better than normal concrete, in properties such as density, durability, permeability, and compressive strength. Copper slag is the waste material of matte smelting and refining of copper such that each ton of copper generates approximately 2.5 tons of copper slag. Copper slag is one of the materials that is considered as a waste which could have a promising future in construction Industry as partial or full substitute of aggregates. Silica fume, also known as micro silica or condensed silica fume, is a relatively new material compared to fly ash, It is another material that is used as an artificial pozzolonic admixture. High strength concrete made with silica fume provides high abrasion/corrosion resistance.

Keywords: concrete, pozzolonic materials, ceramic waste powder, copper slag

Procedia PDF Downloads 290
2728 Base Change for Fisher Metrics: Case of the q-Gaussian Inverse Distribution

Authors: Gabriel I. Loaiza Ossa, Carlos A. Cadavid Moreno, Juan C. Arango Parra

Abstract:

It is known that the Riemannian manifold determined by the family of inverse Gaussian distributions endowed with the Fisher metric has negative constant curvature κ= -1/2, as does the family of usual Gaussian distributions. In the present paper, firstly, we arrive at this result by following a different path, much simpler than the previous ones. We first put the family in exponential form, thus endowing the family with a new set of parameters, or coordinates, θ₁, θ₂; then we determine the matrix of the Fisher metric in terms of these parameters; and finally we compute this matrix in the original parameters. Secondly, we define the inverse q-Gaussian distribution family (q < 3) as the family obtained by replacing the usual exponential function with the Tsallis q-exponential function in the expression for the inverse Gaussian distribution and observe that it supports two possible geometries, the Fisher and the q-Fisher geometry. And finally, we apply our strategy to obtain results about the Fisher and q-Fisher geometry of the inverse q-Gaussian distribution family, similar to the ones obtained in the case of the inverse Gaussian distribution family.

Keywords: base of changes, information geometry, inverse Gaussian distribution, inverse q-Gaussian distribution, statistical manifolds

Procedia PDF Downloads 217
2727 A Hybrid Pareto-Based Swarm Optimization Algorithm for the Multi-Objective Flexible Job Shop Scheduling Problems

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a new hybrid particle swarm optimization algorithm is proposed for the multi-objective flexible job shop scheduling problem that is very important and hard combinatorial problem. The Pareto approach is used for solving the multi-objective problem. Several new local search heuristics are integrated into an algorithm based on the critical block concept to enhance the performance of the algorithm. The algorithm is compared with the recently published multi-objective algorithms based on benchmarks selected from the literature. Several metrics are used for quantifying performance and comparison of the achieved solutions. The algorithms are also compared based on the Weighting summation of objectives approach. The proposed algorithm can find the Pareto solutions more efficiently than the compared algorithms in less computational time.

Keywords: swarm-based optimization, local search, Pareto optimality, flexible job shop scheduling, multi-objective optimization

Procedia PDF Downloads 349
2726 sing Eye Tracking to Measure the Impact of Persuasion Principles in Phishing Emails

Authors: Laura Bishop, Isabel Jones, Linn Halvorsen, Angela Smith

Abstract:

Phishing emails are a form of social engineering where attackers deceive email users into revealing sensitive information or installing malware such as ransomware. Scammers often use persuasion techniques to influence email users to interact with malicious content. This study will use eye-tracking equipment to analyze how participants respond to and process Cialdini’s persuasion principles when utilized within phishing emails. Eye tracking provides insights into what is happening on the subconscious level of the brain that the participant may not be aware of. An experiment is conducted to track participant eye movements, whilst interacting with and then filing a series of persuasive emails delivered at random. Eye tracking metrics will be analyzed in relation to whether a malicious email has been identified as phishing (filed as ‘suspicious’) or not phishing (filed in any other folder). This will help determine the most influential persuasion techniques and those 'areas of interest' within an email that require intervention. The results will aid further research on how to reduce the effects of persuasion on human decision-making when interacting with phishing emails.

Keywords: cybersecurity, human-centric, phishing, psychology

Procedia PDF Downloads 55
2725 Automated End of Sprint Detection for Force-Velocity-Power Analysis with GPS/GNSS Systems

Authors: Patrick Cormier, Cesar Meylan, Matt Jensen, Dana Agar-Newman, Chloe Werle, Ming-Chang Tsai, Marc Klimstra

Abstract:

Sprint-derived horizontal force-velocity-power (FVP) profiles can be developed with adequate validity and reliability with satellite (GPS/GNSS) systems. However, FVP metrics are sensitive to small nuances in data processing procedures such that minor differences in defining the onset and end of the sprint could result in different FVP metric outcomes. Furthermore, in team-sports, there is a requirement for rapid analysis and feedback of results from multiple athletes, therefore developing standardized and automated methods to improve the speed, efficiency and reliability of this process are warranted. Thus, the purpose of this study was to compare different methods of sprint end detection on the development of FVP profiles from 10Hz GPS/GNSS data through goodness-of-fit and intertrial reliability statistics. Seventeen national team female soccer players participated in the FVP protocol which consisted of 2x40m maximal sprints performed towards the end of a soccer specific warm-up in a training session (1020 hPa, wind = 0, temperature = 30°C) on an open grass field. Each player wore a 10Hz Catapult system unit (Vector S7, Catapult Innovations) inserted in a vest in a pouch between the scapulae. All data were analyzed following common procedures. Variables computed and assessed were the model parameters, estimated maximal sprint speed (MSS) and the acceleration constant τ, in addition to horizontal relative force (F₀), velocity at zero (V₀), and relative mechanical power (Pmax). The onset of the sprints was standardized with an acceleration threshold of 0.1 m/s². The sprint end detection methods were: 1. Time when peak velocity (MSS) was achieved (zero acceleration), 2. Time after peak velocity drops by -0.4 m/s, 3. Time after peak velocity drops by -0.6 m/s, and 4. When the integrated distance from the GPS/GNSS signal achieves 40-m. Goodness-of-fit of each sprint end detection method was determined using the residual sum of squares (RSS) to demonstrate the error of the FVP modeling with the sprint data from the GPS/GNSS system. Inter-trial reliability (from 2 trials) was assessed utilizing intraclass correlation coefficients (ICC). For goodness-of-fit results, the end detection technique that used the time when peak velocity was achieved (zero acceleration) had the lowest RSS values, followed by -0.4 and -0.6 velocity decay, and 40-m end had the highest RSS values. For intertrial reliability, the end of sprint detection techniques that were defined as the time at (method 1) or shortly after (method 2 and 3) when MSS was achieved had very large to near perfect ICC and the time at the 40 m integrated distance (method 4) had large to very large ICCs. Peak velocity was reached at 29.52 ± 4.02-m. Therefore, sport scientists should implement end of sprint detection either when peak velocity is determined or shortly after to improve goodness of fit to achieve reliable between trial FVP profile metrics. Although, more robust processing and modeling procedures should be developed in future research to improve sprint model fitting. This protocol was seamlessly integrated into the usual training which shows promise for sprint monitoring in the field with this technology.

Keywords: automated, biomechanics, team-sports, sprint

Procedia PDF Downloads 94
2724 The Library as a Metaphor: Perceptions, Evolution, and the Shifting Role in Society Through a Librarian's Lens

Authors: Nihar Kanta Patra, Akhtar Hussain

Abstract:

This comprehensive study, through the perspective of librarians, explores the library as a metaphor and its profound significance in representing knowledge and learning. It delves into how librarians perceive the library as a metaphor and the ways in which it symbolizes the acquisition, preservation, and dissemination of knowledge. The research investigates the most common metaphors used to describe libraries, as witnessed by librarians, and analyzes how these metaphors reflect the evolving role of libraries in society. Furthermore, the study examines how the library metaphor influences the perception of librarians regarding academic libraries as physical places and academic library websites as virtual spaces, exploring their potential for learning and exploration. It investigates the evolving nature of the library as a metaphor over time, as seen by librarians, considering the changing landscape of information and technology. The research explores the ways in which the library metaphor has expanded beyond its traditional representation, encompassing digital resources, online connectivity, and virtual realms, and provides insights into its potential evolution in the future. Drawing on the experiences of librarians in their interactions with library users, the study uncovers any specific cultural or generational differences in how people interpret or relate to the library as a metaphor. It sheds light on the diverse perspectives and interpretations of the metaphor based on cultural backgrounds, educational experiences, and technological familiarity. Lastly, the study investigates the evolving roles of libraries as observed by librarians and explores how these changing roles can influence the metaphors we use to represent them. It examines the dynamic nature of libraries as they adapt to societal needs, technological advancements, and new modes of information dissemination. By analyzing these various dimensions, this research provides a comprehensive understanding of the library as a metaphor through the lens of librarians, illuminating its significance, evolution, and its transformative impact on knowledge, learning, and the changing role of libraries in society.

Keywords: library, librarians, metaphor, perception

Procedia PDF Downloads 64
2723 High-Capacity Image Steganography using Wavelet-based Fusion on Deep Convolutional Neural Networks

Authors: Amal Khalifa, Nicolas Vana Santos

Abstract:

Steganography has been known for centuries as an efficient approach for covert communication. Due to its popularity and ease of access, image steganography has attracted researchers to find secure techniques for hiding information within an innocent looking cover image. In this research, we propose a novel deep-learning approach to digital image steganography. The proposed method, DeepWaveletFusion, uses convolutional neural networks (CNN) to hide a secret image into a cover image of the same size. Two CNNs are trained back-to-back to merge the Discrete Wavelet Transform (DWT) of both colored images and eventually be able to blindly extract the hidden image. Based on two different image similarity metrics, a weighted gain function is used to guide the learning process and maximize the quality of the retrieved secret image and yet maintaining acceptable imperceptibility. Experimental results verified the high recoverability of DeepWaveletFusion which outperformed similar deep-learning-based methods.

Keywords: deep learning, steganography, image, discrete wavelet transform, fusion

Procedia PDF Downloads 48
2722 Centrality and Patent Impact: Coupled Network Analysis of Artificial Intelligence Patents Based on Co-Cited Scientific Papers

Authors: Xingyu Gao, Qiang Wu, Yuanyuan Liu, Yue Yang

Abstract:

In the era of the knowledge economy, the relationship between scientific knowledge and patents has garnered significant attention. Understanding the intricate interplay between the foundations of science and technological innovation has emerged as a pivotal challenge for both researchers and policymakers. This study establishes a coupled network of artificial intelligence patents based on co-cited scientific papers. Leveraging centrality metrics from network analysis offers a fresh perspective on understanding the influence of information flow and knowledge sharing within the network on patent impact. The study initially obtained patent numbers for 446,890 granted US AI patents from the United States Patent and Trademark Office’s artificial intelligence patent database for the years 2002-2020. Subsequently, specific information regarding these patents was acquired using the Lens patent retrieval platform. Additionally, a search and deduplication process was performed on scientific non-patent references (SNPRs) using the Web of Science database, resulting in the selection of 184,603 patents that cited 37,467 unique SNPRs. Finally, this study constructs a coupled network comprising 59,379 artificial intelligence patents by utilizing scientific papers co-cited in patent backward citations. In this network, nodes represent patents, and if patents reference the same scientific papers, connections are established between them, serving as edges within the network. Nodes and edges collectively constitute the patent coupling network. Structural characteristics such as node degree centrality, betweenness centrality, and closeness centrality are employed to assess the scientific connections between patents, while citation count is utilized as a quantitative metric for patent influence. Finally, a negative binomial model is employed to test the nonlinear relationship between these network structural features and patent influence. The research findings indicate that network structural features such as node degree centrality, betweenness centrality, and closeness centrality exhibit inverted U-shaped relationships with patent influence. Specifically, as these centrality metrics increase, patent influence initially shows an upward trend, but once these features reach a certain threshold, patent influence starts to decline. This discovery suggests that moderate network centrality is beneficial for enhancing patent influence, while excessively high centrality may have a detrimental effect on patent influence. This finding offers crucial insights for policymakers, emphasizing the importance of encouraging moderate knowledge flow and sharing to promote innovation when formulating technology policies. It suggests that in certain situations, data sharing and integration can contribute to innovation. Consequently, policymakers can take measures to promote data-sharing policies, such as open data initiatives, to facilitate the flow of knowledge and the generation of innovation. Additionally, governments and relevant agencies can achieve broader knowledge dissemination by supporting collaborative research projects, adjusting intellectual property policies to enhance flexibility, or nurturing technology entrepreneurship ecosystems.

Keywords: centrality, patent coupling network, patent influence, social network analysis

Procedia PDF Downloads 29
2721 The Art of Resilience in the Case of Skopje

Authors: Kristina Nikolovska

Abstract:

Social movements have become common in the Post Yugoslav cities. Consequently, the wave of activism has been considerably present in Skopje. Starting from 2009 the activist wave in Skopje emerged with the notion of the city. Diversity of initiatives appeared in the city in order to defend places that have been contested by the urban development project SK2014. The activist wave diffused into many different initiatives and diversity of issues. The result was unification in one massive movement in 2016, called 'The Colourful Revolution'. The paper explores the scope of activism in Skopje, with taking into consideration the influence of the spatial transformation, the project SK2014. Moreover, it examines the processes of spatiality into shaping the contention in Skopje, focusing on interdisciplinary and comprehensive approaches. Except the diversity of theoretical framework mainly founded on contentious politics theory and space elaboration from different perspectives, the study is founded on field work based on conducted interviews. Using an interdisciplinary approach and focusing on three main dimensions, the research contributes to understand the dynamics of the activist wave and importance of spatial processes in the creation of the contention in Skopje. Moreover, it elaborates the characteristics, possible effects, and reflections of the cycles of protests in Skopje. The main results of the research showed that dynamics of space is important in the creation of the activist wave in Skopje, moreover space context can give explanation about how opportunities diffuse and transformative power is created. The study contributed into deeper understanding of the importance of spatiality in contentious politics, it showed that in general contentions politics can benefit from deeper analyses of place specificity. Finally, the thesis opposes the traditional linear understanding of social movements, and proposes more dynamic, comprehensive, and sensitive elaboration.

Keywords: contentious politics, place, Skopje, SK2014, social movements, space

Procedia PDF Downloads 200
2720 Evaluating Hourly Sulphur Dioxide and Ground Ozone Simulated with the Air Quality Model in Lima, Peru

Authors: Odón R. Sánchez-Ccoyllo, Elizabeth Ayma-Choque, Alan Llacza

Abstract:

Sulphur dioxide (SO₂) and surface-ozone (O₃) concentrations are associated with diseases. The objective of this research is to evaluate the effectiveness of the air-quality-WRF-Chem model with a horizontal resolution of 5 km x 5 km. For this purpose, the measurements of the hourly SO₂ and O₃ concentrations available in three air quality monitoring stations in Lima, Peru were used for the purpose of validating the simulations of the SO₂ and O₃ concentrations obtained with the WRF-Chem model in February 2018. For the quantitative evaluation of the simulations of these gases, statistical techniques were implemented, such as the average of the simulations; the average of the measurements; the Mean Bias (MeB); the Mean Error (MeE); and the Root Mean Square Error (RMSE). The results of these statistical metrics indicated that the simulated SO₂ and O₃ values over-predicted the SO₂ and O₃ measurements. For the SO₂ concentration, the MeB values varied from 0.58 to 26.35 µg/m³; the MeE values varied from 8.75 to 26.5 µg/m³; the RMSE values varied from 13.3 to 31.79 µg/m³; while for O₃ concentrations the statistical values of the MeB varied from 37.52 to 56.29 µg/m³; the MeE values varied from 37.54 to 56.70 µg/m³; the RMSE values varied from 43.05 to 69.56 µg/m³.

Keywords: ground-ozone, lima, sulphur dioxide, WRF-chem

Procedia PDF Downloads 111
2719 Balloon Analogue Risk Task (BART) Performance Indicators Help Predict Outcomes of Matched Savings Program

Authors: Carlos M. Parra, Matthew Sutherland, Ranjita Poudel

Abstract:

Reduced mental-bandwidth related to low socioeconomic status (low-SES) might lead to impulsivity and risk-taking behavior, which poses as a major hurdle towards asset building (savings) behavior. Understanding the relationship between risk-related personality metrics as well as laboratory risk behavior and real-life savings behavior can help facilitate the development of effective asset building programs, which are vital for mitigating financial vulnerability and income inequality. As such, this study explored the relationship between personality metrics, laboratory behavior in a risky decision-making task and real-life asset building (savings) behaviors among individuals with low-SES from Miami, Florida (FL). Study participants (12 male, 15 female) included racially and ethnically diverse adults (mean age 41.22 ± 12.65 years), with incomplete higher education (18% had High School Diploma, 30% Associates, and 52% Some College), and low annual income (mean $13,872 ± $8020.43). Participants completed eight self-report surveys and played a widely used risky decision-making paradigm called the Balloon Analogue Risk Task (BART). Specifically, participants played three runs of BART (20 trials in each run; total 60 trials). In addition, asset building behavior data was collected for 24 participants who opened and used savings accounts and completed a 6-month savings program that involved monthly matches, and a final reward for completing the savings program without any interim withdrawals. Each participant’s total savings at the end of this program was the main asset building indicator considered. In addition, a new effective use of average pump bet (EUAPB) indicator was developed to characterize each participant’s ability to place winning bets. This indicator takes the ratio of each participant’s total BART earnings to average pump bet (APB) in all 60 trials. Our findings indicated that EUAPB explained more than a third of the variation in total savings among participants. Moreover, participants who managed to obtain BART earnings of at least 30 cents out of their APB, also tended to exhibit better asset building (savings) behavior. In particular, using this criterion to separate participants into high and low EUAPB groups, the nine participants with high EUAPB (mean BART earnings of 35.64 cents per APB) ended up with higher mean total savings ($255.11), while the 15 participants with low EUAPB (mean BART earnings of 22.50 cents per APB) obtained lower mean total savings ($40.01). All mean differences are statistically significant (2-tailed p  .0001) indicating that the relation between higher EUAPB and higher total savings is robust. Overall, these findings can help refine asset building interventions implemented by policy makers and practitioners interested in reducing financial vulnerability among low-SES population. Specifically, by helping identify individuals who are likely to readily take advantage of savings opportunities (such as matched savings programs) and avoiding the stipulation of unnecessary and expensive financial coaching programs to these individuals. This study was funded by J.P. Morgan Chase (JPMC) and carried out by scientists from Florida International University (FIU) in partnership with Catalyst Miami.

Keywords: balloon analogue risk task (BART), matched savings programs, asset building capability, low-SES participants

Procedia PDF Downloads 121
2718 A Review of Current Research and Future Directions on Foodborne Illness and Food Safety: Understanding the Risks and Mitigation Strategies

Authors: Tuji Jemal Ahmed

Abstract:

This paper is to provides a comprehensive review of current research works on foodborne illness and food safety, including the risks associated with foodborne illnesses, the latest research on food safety, and the mitigation strategies used to prevent and control foodborne illnesses. Foodborne illness is a major public health concern that affects millions of people every year. As foodborne illnesses have grown more common and dangerous in recent years, it is vital that we research and build upon methods to ensure food remains safe throughout consumption. Additionally, this paper will discuss future directions for food safety research, including emerging technologies, changes in regulations and standards, and collaborative efforts to improve food safety. The first section of the paper provides an overview of the risks of foodborne illness, including a definition of foodborne illness, the causes of foodborne illness, the types of foodborne illnesses, and high-risk foods for foodborne illness, Health Consequences of Foodborne Illness. The second section of the paper focuses on current research on food safety, including the role of regulatory agencies in food safety, food safety standards and guidelines, emerging food safety concerns, and advances in food safety technology. The third section of the paper explores mitigation strategies for foodborne illness, including preventative measures, hazard analysis and critical control points (HACCP), good manufacturing practices (GMPs), and training and education. Finally, this paper examines future directions for food safety research, including hurdle technologies and their impact on food safety, changes in food safety regulations and standards, collaborative efforts to improve food safety, and research gaps and areas for further exploration. In general, this work provides a comprehensive review of current research and future directions in food safety and understanding the risks associated with foodborne illness. The implications of the assessment for food safety and public health are discussed, as well as recommended for research scholars.

Keywords: food safety, foodborne illness, technologies, mitigation

Procedia PDF Downloads 70
2717 Distributed Listening in Intensive Care: Nurses’ Collective Alarm Responses Unravelled through Auditory Spatiotemporal Trajectories

Authors: Michael Sonne Kristensen, Frank Loesche, James Foster, Elif Ozcan, Judy Edworthy

Abstract:

Auditory alarms play an integral role in intensive care nurses’ daily work. Most medical devices in the intensive care unit (ICU) are designed to produce alarm sounds in order to make nurses aware of immediate or prospective safety risks. The utilisation of sound as a carrier of crucial patient information is highly dependent on nurses’ presence - both physically and mentally. For ICU nurses, especially the ones who work with stationary alarm devices at the patient bed space, it is a challenge to display ‘appropriate’ alarm responses at all times as they have to navigate with great flexibility in a complex work environment. While being primarily responsible for a small number of allocated patients they are often required to engage with other nurses’ patients, relatives, and colleagues at different locations inside and outside the unit. This work explores the social strategies used by a team of nurses to comprehend and react to the information conveyed by the alarms in the ICU. Two main research questions guide the study: To what extent do alarms from a patient bed space reach the relevant responsible nurse by direct auditory exposure? By which means do responsible nurses get informed about their patients’ alarms when not directly exposed to the alarms? A comprehensive video-ethnographic field study was carried out to capture and evaluate alarm-related events in an ICU. The study involved close collaboration with four nurses who wore eye-level cameras and ear-level binaural audio recorders during several work shifts. At all time the entire unit was monitored by multiple video and audio recorders. From a data set of hundreds of hours of recorded material information about the nurses’ location, social interaction, and alarm exposure at any point in time was coded in a multi-channel replay-interface. The data shows that responsible nurses’ direct exposure and awareness of the alarms of their allocated patients vary significantly depending on work load, social relationships, and the location of the patient’s bed space. Distributed listening is deliberately employed by the nursing team as a social strategy to respond adequately to alarms, but the patterns of information flow prompted by alarm-related events are not uniform. Auditory Spatiotemporal Trajectory (AST) is proposed as a methodological label to designate the integration of temporal, spatial and auditory load information. As a mixed-method metrics it provides tangible evidence of how nurses’ individual alarm-related experiences differ from one another and from stationary points in the ICU. Furthermore, it is used to demonstrate how alarm-related information reaches the individual nurse through principles of social and distributed cognition, and how that information relates to the actual alarm event. Thereby it bridges a long-standing gap in the literature on medical alarm utilisation between, on the one hand, initiatives to measure objective data of the medical sound environment without consideration for any human experience, and, on the other hand, initiatives to study subjective experiences of the medical sound environment without detailed evidence of the objective characteristics of the environment.

Keywords: auditory spatiotemporal trajectory, medical alarms, social cognition, video-ethography

Procedia PDF Downloads 171
2716 Educational Engineering Tool on Smartphone

Authors: Maya Saade, Rafic Younes, Pascal Lafon

Abstract:

This paper explores the transformative impact of smartphones on pedagogy and presents a smartphone application developed specifically for engineering problem-solving and educational purposes. The widespread availability and advanced capabilities of smartphones have revolutionized the way we interact with technology, including in education. The ubiquity of smartphones allows learners to access educational resources anytime and anywhere, promoting personalized and self-directed learning. The first part of this paper discusses the overall influence of smartphones on pedagogy, emphasizing their potential to improve learning experiences through mobile technology. In the context of engineering education, this paper focuses on the development of a dedicated smartphone application that serves as a powerful tool for both engineering problem-solving and education. The application features an intuitive and user-friendly interface, allowing engineering students and professionals to perform complex calculations and analyses on their smartphones. The smartphone application primarily focuses on beam calculations and serves as a comprehensive beam calculator tailored to engineering education. It caters to various engineering disciplines by offering interactive modules that allow students to learn key concepts through hands-on activities and simulations. With a primary emphasis on beam analysis, this application empowers users to perform calculations for statically determinate beams, statically indeterminate beams, and beam buckling phenomena. Furthermore, the app includes a comprehensive library of engineering formulas and reference materials, facilitating a deeper understanding and practical application of the fundamental principles in beam analysis. By offering a wide range of features specifically tailored for beam calculation, this application provides an invaluable tool for engineering students and professionals looking to enhance their understanding and proficiency in this crucial aspect of a structural engineer.

Keywords: mobile devices in education, solving engineering problems, smartphone application, engineering education

Procedia PDF Downloads 47
2715 Signals Monitored during Anaesthesia

Authors: Launcelot.McGrath

Abstract:

A comprehensive understanding of physiological data is a vital aid to the anaesthesiologist in monitoring and maintaining the well-being of a patient undergoing surgery. Biosignal analysis is one of the most important topics that researchers have tried to develop over the last century to understand numerous human diseases. Understanding which biological signals are most important during anaesthesia is critically important. It is important that the anaesthesiologist understand both the signals themselves and the limitations introduced by the processes of acquisition. In this article, we provide an overview of different types of biological signals as well as the mechanisms applied to acquire them.

Keywords: general biosignals, anaesthesia, biological, electroencephalogram

Procedia PDF Downloads 118
2714 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum

Authors: Abdulrahman Sumayli, Saad M. AlShahrani

Abstract:

For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectively

Keywords: temperature, pressure variations, machine learning, oil treatment

Procedia PDF Downloads 45