Search results for: buffer zone
1512 Performance Evaluation and Economic Analysis of Minimum Quantity Lubrication with Pressurized/Non-Pressurized Air and Nanofluid Mixture
Authors: M. Amrita, R. R. Srikant, A. V. Sita Rama Raju
Abstract:
Water miscible cutting fluids are conventionally used to lubricate and cool the machining zone. But issues related to health hazards, maintenance and disposal costs have limited their usage, leading to application of Minimum Quantity Lubrication (MQL). To increase the effectiveness of MQL, nanocutting fluids are proposed. In the present work, water miscible nanographite cutting fluids of varying concentration are applied at cutting zone by two systems A and B. System A utilizes high pressure air and supplies cutting fluid at a flow rate of 1ml/min. System B uses low pressure air and supplies cutting fluid at a flow rate of 5ml/min. Their performance in machining is evaluated by measuring cutting temperatures, tool wear, cutting forces and surface roughness and compared with dry machining and flood machining. Application of nano cutting fluid using both systems showed better performance than dry machining. Cutting temperatures and cutting forces obtained by both techniques are more than flood machining. But tool wear and surface roughness showed improvement compared to flood machining. Economic analysis has been carried out in all the cases to decide the applicability of the techniques.Keywords: economic analysis, machining, minimum quantity lubrication, nanofluid
Procedia PDF Downloads 3801511 Non-Dominated Sorting Genetic Algorithm (NSGA-II) for the Redistricting Problem in Mexico
Authors: Antonin Ponsich, Eric Alfredo Rincon Garcia, Roman Anselmo Mora Gutierrez, Miguel Angel Gutierrez Andrade, Sergio Gerardo De Los Cobos Silva, Pedro Lara Velzquez
Abstract:
The electoral zone design problem consists in redrawing the boundaries of legislative districts for electoral purposes in such a way that federal or state requirements are fulfilled. In Mexico, this process has been historically carried out by the National Electoral Institute (INE), by optimizing an integer nonlinear programming model, in which population equality and compactness of the designed districts are considered as two conflicting objective functions, while contiguity is included as a hard constraint. The solution technique used by the INE is a Simulated Annealing (SA) based algorithm, which handles the multi-objective nature of the problem through an aggregation function. The present work represents the first intent to apply a classical Multi-Objective Evolutionary Algorithm (MOEA), the second version of the Non-dominated Sorting Genetic Algorithm (NSGA-II), to this hard combinatorial problem. First results show that, when compared with the SA algorithm, the NSGA-II obtains promising results. The MOEA manages to produce well-distributed solutions over a wide-spread front, even though some convergence troubles for some instances constitute an issue, which should be corrected in future adaptations of MOEAs to the redistricting problem.Keywords: multi-objective optimization, NSGA-II, redistricting, zone design problem
Procedia PDF Downloads 3671510 Keying Effect During Fracture of Stainless Steel
Authors: Farej Ahmed Emhmmed
Abstract:
Fracture of duplex stainless steels (DSS) was investigated in air and in 3.5 wt % NaCl solution. Tow sets of fatigued specimens were heat treated at 475ºC for different times and pulled to failure either in air or after kept in 3.5% NaCl with polarization of -900 mV/ SCE. Fracture took place in general by ferrite cleavage and austenite ductile fracture in transgranular mode. Specimens measured stiffness (Ms) was affected by the aging time, with higher values measured for specimens aged for longer times. Microstructural features played a role in "blocking" the crack propagation process leading to lower the CTOD values specially for specimens aged for short times. Unbroken ligaments/ austenite were observed at the crack wake. These features may exerted a bridging stress, blocking effect, at the crack tip giving resistance to the crack propagation process i.e the crack mouth opening was reduced. Higher stress intensity factor Kıc values were observed with increased amounts of crack growth suggesting longer zone of unbroken ligaments in the crack wake. The bridging zone was typically several mm in length. Attempt to model the bridge stress was suggested to understand the role of ligaments/unbroken austenite in increasing the fracture toughness factor.Keywords: stainless steels, fracture toughness, crack keying effect, ligaments
Procedia PDF Downloads 3581509 The Influence of Infiltration and Exfiltration Processes on Maximum Wave Run-Up: A Field Study on Trinidad Beaches
Authors: Shani Brathwaite, Deborah Villarroel-Lamb
Abstract:
Wave run-up may be defined as the time-varying position of the landward extent of the water’s edge, measured vertically from the mean water level position. The hydrodynamics of the swash zone and the accurate prediction of maximum wave run-up, play a critical role in the study of coastal engineering. The understanding of these processes is necessary for the modeling of sediment transport, beach recovery and the design and maintenance of coastal engineering structures. However, due to the complex nature of the swash zone, there remains a lack of detailed knowledge in this area. Particularly, there has been found to be insufficient consideration of bed porosity and ultimately infiltration/exfiltration processes, in the development of wave run-up models. Theoretically, there should be an inverse relationship between maximum wave run-up and beach porosity. The greater the rate of infiltration during an event, associated with a larger bed porosity, the lower the magnitude of the maximum wave run-up. Additionally, most models have been developed using data collected on North American or Australian beaches and may have limitations when used for operational forecasting in Trinidad. This paper aims to assess the influence and significance of infiltration and exfiltration processes on wave run-up magnitudes within the swash zone. It also seeks to pay particular attention to how well various empirical formulae can predict maximum run-up on contrasting beaches in Trinidad. Traditional surveying techniques will be used to collect wave run-up and cross-sectional data on various beaches. Wave data from wave gauges and wave models will be used as well as porosity measurements collected using a double ring infiltrometer. The relationship between maximum wave run-up and differing physical parameters will be investigated using correlation analyses. These physical parameters comprise wave and beach characteristics such as wave height, wave direction, period, beach slope, the magnitude of wave setup, and beach porosity. Most parameterizations to determine the maximum wave run-up are described using differing parameters and do not always have a good predictive capability. This study seeks to improve the formulation of wave run-up by using the aforementioned parameters to generate a formulation with a special focus on the influence of infiltration/exfiltration processes. This will further contribute to the improvement of the prediction of sediment transport, beach recovery and design of coastal engineering structures in Trinidad.Keywords: beach porosity, empirical models, infiltration, swash, wave run-up
Procedia PDF Downloads 3571508 Seismic Hazard Study and Strong Ground Motion in Southwest Alborz, Iran
Authors: Fereshteh Pourmohammad, Mehdi Zare
Abstract:
The city of Karaj, having a population of 2.2 millions (est. 2022) is located in the South West of Alborz Mountain Belt in Northern Iran. The region is known to be a highly active seismic zone. This study is focused on the geological and seismological analyses within a radius of 200 km from the center of Karaj. There are identified five seismic zones and seven linear seismic sources. The maximum magnitude was calculated for the seismic zones. Scine tghe seismicity catalog is incomplete, we have used a parametric-historic algorithm and the Kijko and Sellevoll (1992) method was used to calculate seismicity parameters, and the return periods and the probability frequency of recurrence of the earthquake magnitude in each zone obtained for 475-years return period. According to the calculations, the highest and lowest earthquake magnitudes of 7.6 and 6.2 were respectively obtained in Zones 1 and 4. This result is a new and extremely important in view point of earthquake risk in a densely population city. The maximum strong horizontal ground motion for the 475-years return period 0.42g and for 2475-year return period 0.70g also the maximum strong vertical ground motion for 475-years return period 0.25g and 2475-years return period 0.44g was calculated using attenuation relationships. These acceleration levels are new, and are obtained to be about 25% higher than presented values in the Iranian building code.Keywords: seismic zones, ground motion, return period, hazard analysis
Procedia PDF Downloads 971507 ANSYS FLUENT Simulation of Natural Convection and Radiation in a Solar Enclosure
Authors: Sireetorn Kuharat, Anwar Beg
Abstract:
In this study, multi-mode heat transfer characteristics of spacecraft solar collectors are investigated computationally. Two-dimensional steady-state incompressible laminar Newtonian viscous convection-radiative heat transfer in a rectangular solar collector geometry. The ANSYS FLUENT finite volume code (version 17.2) is employed to simulate the thermo-fluid characteristics. Several radiative transfer models are employed which are available in the ANSYS workbench, including the classical Rosseland flux model and the more elegant P1 flux model. Mesh-independence tests are conducted. Validation of the simulations is conducted with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation. The influence of aspect ratio, Prandtl number (Pr), Rayleigh number (Ra) and radiative flux model on temperature, isotherms, velocity, the pressure is evaluated and visualized in color plots. Additionally, the local convective heat flux is computed and solutions are compared with the MAC solver for various buoyancy effects (e.g. Ra = 10,000,000) achieving excellent agreement. The P1 model is shown to better predict the actual influence of solar radiative flux on thermal fluid behavior compared with the limited Rosseland model. With increasing Rayleigh numbers the hot zone emanating from the base of the collector is found to penetrate deeper into the collector and rises symmetrically dividing into two vortex regions with very high buoyancy effect (Ra >100,000). With increasing Prandtl number (three gas cases are examined respectively hydrogen gas mixture, air and ammonia gas) there is also a progressive incursion of the hot zone at the solar collector base higher into the solar collector space and simultaneously a greater asymmetric behavior of the dual isothermal zones. With increasing aspect ratio (wider base relative to the height of the solar collector geometry) there is a greater thermal convection pattern around the whole geometry, higher temperatures and the elimination of the cold upper zone associated with lower aspect ratio.Keywords: thermal convection, radiative heat transfer, solar collector, Rayleigh number
Procedia PDF Downloads 1181506 Assessment of the Effect of Building Materials on Energy Demand of Buildings in Jos: An Experimental and Numerical Approach
Authors: Zwalnan Selfa Johnson, Caleb Nanchen Nimyel, Gideon Duvuna Ayuba
Abstract:
Air conditioning accounts for a significant share of the overall energy consumed in residential buildings. Solar thermal gains in buildings account for a significant component of the air conditioning load in buildings. This study compares the solar thermal gain and air conditioning load of a proposed building design with a typical conventional building in the climatic conditions of Jos, Nigeria, using a combined experimental and computational method using TRNSYS software. According to the findings of this study, the proposed design building's annual average solar thermal gains are lower compared to the reference building's average solar heat gains. The study case building's decreased solar heat gain is mostly attributable to the lower temperature of the building zones because of the greater building volume and lower fenestration ratio (ratio external opening area to the area of the external walls). This result shows that the proposed building design adjusts to the local climate better than the standard conventional construction in Jos to maintain a suitable temperature within the building. This finding means that the air-conditioning electrical energy consumption per volume of the proposed building design will be lower than that of a conventional building design.Keywords: solar heat gain, building zone, cooling energy, air conditioning, zone temperature
Procedia PDF Downloads 931505 Study of Growth Behavior of Some Bacterial Fish Pathogens to Combined Selected Herbal Essential Oil
Authors: Ashkan Zargar, Ali Taheri Mirghaed, Zein Talal Barakat, Alireza Khosravi, Hamed Paknejad
Abstract:
With the increase of bacterial resistance to the chemical antibiotics, replacing it with ecofriendly herbal materials and with no adverse effects in the host body is very important. Therefore, in this study, the effect of combined essential oil (Thymus vulgaris-Origanum magorana and Ziziphora clinopodioides) on the growth behavior of Yersinia ruckeri, Aeromonas hydrophila and Lactococcus garvieae was evaluated. The compositions of the herbal essential oils used in this study were determined by gas chromatography-mass spectrometry (GC-MS) while, the investigating of antimicrobial effects was conducted by the agar-disc diffusion method, determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and bacterial growth curves determination relied on optical density (OD) at 630 nm. The main compounds were thymol (40.60 %) and limonene (15.98 %) for Thymus vulgaris while carvacrol (57.86 %) and thymol (13.54 %) were the major compounds in Origanum magorana. As regards Ziziphora clinopodiodes, α-pinene (22.6 %) and carvacrol (21.1 %) represented the major constituents. Concerning Yersinia ruckeri, disc-diffusion results showed that t.O.z (50 % Origanum majorana) combined essential oil was presented the best inhibition zone (30.66 mm) but it was exhibited no significant differences with other tested commercial antibiotics except oxytetracycline (P <0/05). The inhibitory activity and the bactericidal effect of the t.O.z, unveiled by the MIC= 0.2 μL /mL and MBC= 1.6 μL /mL values, were clearly the best between all combined oils. The growth behaviour of Yersinia ruckeri was affected by this combined essential oil and changes in temperature and pH conditions affected herbal oil performance. As regard Aeromonas hydrophila, its results were so similar to Yersinia ruckeri results and t.O.z (50 % Origanum majorana) was the best between all combined oils (inhibition zone= 26 mm, MIC= 0.4 μL /mL and MBC= 3.2 μL /mL, combined essential oil was affected bacterial growth behavior). Also for Lactococcus garvieae, t.O.z (50 % Origanum majorana) was the best between all combined oils having the best inhibition zone= 20.66 mm, MIC= 0.8 μL /mL and MBC= 1.6 μL /mL and best effect on inhibiting bacterial growth. Combined herbal essential oils have a good and noticeable effect on the growth behavior of pathogenic bacteria in the laboratory, and by continuing research in the host, they may be a suitable alternative to control, prevent and treat diseases caused by these bacteria.Keywords: bacterial pathogen, herbal medicine, growth behavior, fish
Procedia PDF Downloads 711504 Tuning the Microstructure and Mechanical Properties of Fine Recycled Plastic Aggregates in Concrete Using Ethylene-Vinyl Acetate
Authors: Ahmed Al-Mansour, Qiang Zeng
Abstract:
Recycling waste plastics in the form of concrete components, i.e. fine aggregates, has been an attractive topic among the society of civil engineers. Not only does the recycling of plastics reduce the overall cost of concrete production, but it also takes part in solving environmental issues. Nevertheless, the incorporation of recycled plastics into concrete results in an increasing reduction in the mechanical properties of concrete as the percentage of replacement of natural aggregates increases. In order to overcome this reduction, Ethylene-vinyl acetate (EVA) was used as an additive in concrete with recycled plastic aggregates. The aim of this additive is to: 1) increase the interfacial interaction at the interfacial transition zone (ITZ) between plastic pellets and cement matrix, and 2) mitigate the loss in mechanical properties. Three different groups of samples (i.e. cubes and prisms) were tested according to the plastics substituting fine aggregates. 5, 10, and 15% of fine aggregates were substituted for recycled plastic pellets, and 2 – 4% of the cement was substituted for EVA that produces a flexible agent when mixed properly with water. Compressive and tensile strength tests were conducted for the mechanical properties, while SEM and X-CT scan were implemented for further investigation of calcium-silicate-hydrate (C–S–H) formation and ITZ analysis. The optimal amount of plastic particles with EVA is suggested to get the most compact and dense matrix structure according to the results of this study.Keywords: the durability of concrete, ethylene-vinyl acetate (EVA), interfacial transition zone (ITZ), recycled plastics
Procedia PDF Downloads 1861503 Stability Assessment of Underground Power House Encountering Shear Zone: Sunni Dam Hydroelectric Project (382 MW), India
Authors: Sanjeev Gupta, Ankit Prabhakar, K. Rajkumar Singh
Abstract:
Sunni Dam Hydroelectric Project (382 MW) is a run of river type development with an underground powerhouse, proposed to harness the hydel potential of river Satluj in Himachal Pradesh, India. The project is located in the inner lesser Himalaya between Dhauladhar Range in the south and the higher Himalaya in the north. The project comprises two large underground caverns, a Powerhouse cavern (171m long, 22.5m wide and 51.2m high) and another transformer hall cavern (175m long, 18.7m wide and 27m high) and the rock pillar between the two caverns is 50m. The highly jointed, fractured, anisotropic rock mass is a key challenge in Himalayan geology for an underground structure. The concern for the stability of rock mass increases when weak/shear zones are encountered in the underground structure. In the Sunni Dam project, 1.7m to 2m thick weak/shear zone comprising of deformed, weak material with gauge has been encountered in powerhouse cavern at 70m having dip direction 325 degree and dip amount 38 degree which also intersects transformer hall at initial reach. The rock encountered in the powerhouse area is moderate to highly jointed, pink quartz arenite belonging to the Khaira Formation, a transition zone comprising of alternate grey, pink & white quartz arenite and shale sequence and dolomite at higher reaches. The rock mass is intersected by mainly 3 joint sets excluding bedding joints and a few random joints. The rock class in powerhouse mainly varies from poor class (class IV) to lower order fair class (class III) and in some reaches, very poor rock mass has also been encountered. To study the stability of the underground structure in weak/shear rock mass, a 3D numerical model analysis has been carried out using RS3 software. Field studies have been interpreted and analysed to derive Bieniawski’s RMR, Barton’s “Q” class and Geological Strength Index (GSI). The various material parameters, in-situ characteristics have been determined based on tests conducted by Central Soil and Materials Research Station, New Delhi. The behaviour of the cavern has been studied by assessing the displacement contours, major and minor principal stresses and plastic zones for different stage excavation sequences. For optimisation of the support system, the stability of the powerhouse cavern with different powerhouse orientations has also been studied. The numerical modeling results indicate that cavern will not likely face stress governed by structural instability with the support system to be applied to the crown and side walls.Keywords: 3D analysis, Himalayan geology, shear zone, underground power house
Procedia PDF Downloads 881502 Indoor Radon Concentrations in the High Levels of Uranium Deposit of Phanom and Ko Pha-Ngan Districts, Surat Thani Province, Thailand
Authors: Kanokkan Titipornpun, Somphorn Sriarpanon, Apinun Titipornpun, Jan Gimsa, Tripob Bhongsuwan, Noodchanath Kongchouy
Abstract:
The Phanom and Ko Pha-ngan districts of Surat Thani province are known for their high atmospheric radon concentrations from different sources. While Phanom district is located in an active fault zone, the main radon source in Ko Pha-ngan district is the high amounts of equivalent uranium in the ground surface. Survey measurements of the indoor radon concentrations have been carried out in 105 dwellings and 93 workplaces, using CR-39 detectors that were exposed to indoor radon for forty days. Alpha tracks were made visible by chemical etching and counted manually under an optical microscope. The indoor radon concentrations in the two districts were found to vary between 9 and 63 Bq m-3 (Phanom) and 12 and 645 Bq m-3 (Ko Pha-ngan). The geometric mean radon concentration in Ko Pha-ngan district (51±2 Bq m-3) was significantly higher than in the Phanom district (26±1 Bq m-3) at a significance level of p<0.05 (t-test for independent samples). Nevertheless, only in two dwellings (1%), located in Ko Pha-ngan district, radon concentrations (177 and 645 Bq m-3) were found to exceed the limit recommended by the US EPA of 148 Bq m-3. The two houses are probably located near to radon sources which, in combination with low air convection, led to increased indoor levels of radon. Our study also shows that the geometric mean radon concentration was higher in workplaces than in dwellings (0.05 significance level) in both districts.Keywords: indoor radon, CR-39 detector, active fault zone, equivalent uranium
Procedia PDF Downloads 3011501 Evaluation of Different Fertilization Practices and Their Impacts on Soil Chemical and Microbial Properties in Two Agroecological Zones of Ghana
Authors: Ansong Richard Omari, Yosei Oikawa, Yoshiharu Fujii, Dorothea Sonoko Bellingrath-Kimura
Abstract:
Renewed interest in soil management aimed at improving the productive capacity of Sub Saharan Africa (SSA) soils has called for the need to analyse the long term effect of different fertilization systems on soil. This study was conducted in two agroecological zones (i.e., Guinea Savannah (GS) and Deciduous forest (DF)) of Ghana to evaluate the impacts of long term (> 5 years) fertilization schemes on soil chemical and microbial properties. Soil samples under four different fertilization schemes (inorganic, inorganic and organic, organic, and no fertilization) were collected from 20 farmers` field in both agroecological zones. Soil analyses were conducted using standard procedures. All average soil quality parameters except extractable C, potential mineralizable nitrogen and CEC were significantly higher in DF sites compared to GS. Inorganic fertilization proved superior in soil chemical and microbial biomass especially in GS zone. In GS, soil deterioration index (DI) revealed that soil quality deteriorated significantly (−26%) under only organic fertilization system whereas soil improvement was observed under inorganic and no fertilization sites. In DF, either inorganic or organic and inorganic fertilization showed significant positive effects on soil quality. The high soil chemical composition and enhanced microbial biomass in DF were associated with the high rate of inorganic fertilization.Keywords: deterioration index, fertilization scheme, microbial biomass, tropical agroecological zone
Procedia PDF Downloads 4061500 A Performance Analysis of Different Scheduling Schemes in WiMAX
Authors: A. Youseef
Abstract:
One of the most aims of IEEE 802.16 (WiMAX) is to present high-speed wireless access to cover wide range coverage. The base station (BS) and the subscriber station (SS) are the main parts of WiMAX. WiMAX uses either Point-to-Multipoint (PMP) or mesh topologies. In the PMP mode, the SSs connect to the BS to gain access to the network. However, in the mesh mode, the SSs connect to each other to gain access to the BS. The main components of QoS management in the 802.16 standard are the admission control, buffer management, and packet scheduling. There are several researches proposed to create an efficient packet scheduling schemes. Therefore, we use QualNet 5.0.2 to study the performance of different scheduling schemes, such as WFQ, SCFQ, RR, and SP when the numbers of SSs increase. We find that when the number of SSs increases, the average jitter and average end-to-end delay is increased and the throughput is reduced.Keywords: WiMAX, scheduling scheme, QoS, QualNet
Procedia PDF Downloads 4561499 Disposable PANI-CeO2 Sensor for the Electrocatalytic Simultaneous Quantification of Amlodipine and Nebivolol
Authors: Nimisha Jadon, Rajeev Jain, Swati Sharma
Abstract:
A chemically modified carbon paste sensor has been developed for the simultaneous determination of amlodipine (AML) and nebivolol (NBV). Carbon paste electrode (CPE) was fabricated by the addition of Gr/PANI-CeO2. Gr/PANI-CeO2/CPE has achieved excellent electrocatalytic activity and sensitivity. AML and NBV exhibited oxidation peaks at 0.70 and 0.90 V respectively on Gr/ PANI-CeO2/CPE. The linearity range of AML and NBV was 0.1 to 1.6 μgmL-1 in BR buffer (pH 8.0). The Limit of detection (LOD) was 20.0 ngmL-1 for AML and 30.0 ngmL-1 for NBV and limit of quantification (LOQ) was 80.0 ngmL-1 for AML and 100 ngmL-1 for NBV respectively. These analyses were also determined in pharmaceutical formulation and human serum and good recovery was obtained for the developed method.Keywords: amlodipine, nebivolol, square wave voltammetry, carbon paste electrode, simultaneous quantification
Procedia PDF Downloads 3541498 Investigation of Mode II Fracture Toughness in Orthotropic Materials
Authors: Mahdi Fakoor, Nabi Mehri Khansari, Ahmadreza Farokhi
Abstract:
Evaluation of mode II fracture toughness (KIIC) in composite materials is very hard problem to be solved, since it can be affected by many mechanisms of dissipation. Furthermore, non-linearity in its behavior can offer an extra difficulty to obtain accuracy in the results. Different reported values for KIIC in various references can prove the mentioned assertion. In this research, some solutions proposed based on the form of necessary corrections that should be executed on the common test fixtures. Due to the fact that the common test fixtures are not able to active toughening mechanisms in pure Mode II correctly, we have employed some structural modifications on common fixtures. Particularly, the Iosipescu test is used as start point. The tests are applied on graphite/epoxy; PMMA and Western White Pine Wood. Also, mixed mode I/II fracture limit curves are used to indicate the scattering in test results are really relevant to the creation of Fracture Process Zone (FPZ). In the present paper, shear load consideration applied at the predicted shear zone by considering some significant structural amendments that can active mode II toughening mechanisms. Indeed, the employed empirical method causes significant developing in repeatability and reproducibility as well. Moreover, a 3D Finite Element (FE) is performed for verification of the obtained results. Eventually, it is figured out that, a remarkable precision can be obtained in common test fixture in comparison with the previous one.Keywords: FPZ, shear test fixture, mode II fracture toughness, composite material, FEM
Procedia PDF Downloads 3611497 The Integrated Water Management of the Northern Saharan Aquifer System in a Climatic Changes Context
Authors: Mohamed Redha Menani
Abstract:
The Northern Saharan aquifer system “SASS” shared by Algeria, Libya, and Tunisia, covers a surface of about 1 100 000 km². It is composed of superposed aquifers; the upper one is the “Continental terminal – CT” (Eocene calcareous formation) situated at 400 m depth in average, while the” Continental Intercalaire – CI”(clay sands from Albian to Lower Cretaceous) is generally at 1500 m depth. This aquifer system is situated in a dry zone with a very weak current recharge but with a non-renewable big volume stored, estimated between 20 000 and 31 000 km³. From 1970 to nowadays, the exploitation of the SASS has increased from 0.6 to more than 2.5 km³/year. This situation provoked risks of water salinisation, reduction of the artesianisme, an increase of drawdowns, etc. which seriously threaten the sustainable socioeconomic development engaged in the SASS zone. Face the water shortage induced by the alarming dryness noted these last years, particularly in the MENA region, the joint management of this system by the three concerned countries, engaged for many years, needs a long-term strategy of integrated water resources management to meet the expected socio-economic goals projected not only in the SASS zone but also in other places, by water transfers. The sustainable management of this extensive aquifer system, aiming to satisfy various needs not only in the areas covered by the SASS but also in other areas through hydraulic transfers, can only be considered if this management is genuinely coordinated, incorporating schemes that primarily address the major constraint of climate change, which has been observed worldwide over the past two decades and is intensifying. In this particular climate context, management schemes must necessarily target several aspects, including (i) Updating the state of water resource exploitation in the SASS. (ii) Guiding agricultural usage as the primary consumer to ensure significant water savings. (iii) Constant monitoring through a network of piezometers to control the physicochemical parameters of the exploited aquifers. (iv) Other aspects related to governance within the framework of integrated management must also be taken into consideration, particularly environmental aspects and conflict resolution. However, problems, especially political ones as currently seen in Libya, may limit or at least disrupt the prospects of coordinated and sustainable management of this aquifer system, which is vital for the three countries.Keywords: transboundary water resources, SASS, governance, climatic changes
Procedia PDF Downloads 821496 Informal Economy: Case Study of Street Vendors in Bangkok
Authors: Kangrij Roeksiripat
Abstract:
Street vending is one of the informal economy activities which considered significance to Thai people in the economic and the day-to-day social life. It had been believed that the street vendor is a group of the poor and uneducated people. With the increasing numbers of the street vendor occupying space on public sidewalks especially in central business districts, it becomes unclear whether street vending continues as a solution to unemployment for access labors. This research attempts to study and analyze types of street vendors in Bangkok under the informal economy framework. The debate on the heterogeneous informal economy has categorized into four schools; the dualism, the structuralism, the legalism and the voluntarism. The examination also embodies with market concept with Porter’s Five Forces of Competitive Position Model analysis and the interviews with the street vendors in three case study areas: Inner zone (Pathumwan district - the sidewalk on the opposite side of Siam Paragon mall), Middle zone (Ramkhamhaeng district - the sidewalk on the opposite side of Ramkhamhaeng University) and Outer zone (Minburi district- the sidewalk of Sriburanukit Road). The result indicates that most of street vendors in Siam square are voluntarily choose to make a living in vending on a sidewalk and tend to take it as a long-term occupation even though they can be in formal wage employment. Moreover, average income and positive attitude towards self-employed are the important factors that drive them to operate street vending businesses. Meanwhile, street vending is often a family enterprise in Ramkhamhaeng area and most vendors do not wish to transform their businesses into the formal sectors. Whereas the survey conducted in Sriburankit Road reveals that almost all of street vendors migrated from other provinces and were previously paid as the unskilled workers in formal sectors. They moved to informal trades because of the uncertainty of employment in the mainstream sectors and the inconsistent income with knowledge support of friends and relatives from the same hometown. In particular, the result reveals a common pattern that street vending is the very first occupation of some group of vendors and they will continue to engage in this activity. Thus, it is important for the government to design optimal policy which not only integrating informal workers into the formal economy but also monitoring the enforcement of regulations on the modern informal economy.Keywords: informal economy, sidewalks, street vendors, occupation
Procedia PDF Downloads 2851495 The Dynamics of Microorganisms in Dried Yogurt Storages at Different Temperatures
Authors: Jaruwan Chutrtong
Abstract:
Yoghurt is a fermented milk product. The process of making yogurt involves fermenting milk with live and active bacterial cultures by adding bacteria directly to the dairy product. It is usually made with a culture of Lactobacillus sp. (L. acidophilus or L. bulgaricus) and Streptococcus thermophilus. Many people like to eat it plain or flavored and it's also use as ingredient in many dishes. Yogurt is rich in nutrients including the microorganism which have important role in balancing the digestion and absorption of the boy.Consumers will benefit from lactic acid bacteria more or less depending on the amount of bacteria that lives in yogurt while eating. When purchasing yogurt, consumers should always check the label for live cultures. Yoghurt must keep in refrigerator at 4°C for up to ten days. After this amount of time, the cultures often become weak. This research studied freezing dry yogurt storage by monitoring on the survival of microorganisms when stored at different temperatures. At 300°C, representative room temperature of country in equator zone, number of lactic acid bacteria reduced 4 log cycles in 10 week. At 400°C, representative temperature in summer of country in equator zone, number of lactic acid bacteria also dropped 4 log cycle in 10 week, similar as storage at 300°C. But drying yogurt storage at 400°C couldn’t reformed to be good character yogurt as good as storage at 400°C only 4 week storage too. After 1 month, it couldn’t bring back the yogurt form. So if it is inevitable to keep yogurt powder at a temperature of 40°C, yoghurt is maintained only up to 4 weeks.Keywords: dynamic, dry yoghurt, storage, temperature
Procedia PDF Downloads 3251494 Study of Microstructure and Mechanical Properties Obtained by FSW of Similar and Dissimilar Non-Ferrous Alloys Used in Aerospace and Automobile Industry
Authors: Ajay Sidana, Kulbir Singh Sandhu, Balwinder Singh Sidhu
Abstract:
Joining of dissimilar non-ferrous alloys like aluminium and magnesium alloys becomes important in various automobile and aerospace applications due to their low density and good corrosion resistance. Friction Stir Welding (FSW), a solid state joining process, successfully welds difficult to weld similar and dissimilar aluminum and magnesium alloys. Two tool rotation speeds were selected by keeping the transverse speed constant to weld similar and dissimilar alloys. Similar(Al to Al) and Dissimilar(Al to Mg) weld joints were obtained by FSW. SEM scans revealed that higher tool rotation fragments the coarse grains of base material into fine grains in the weld zone. Also, there are less welding defects in weld joints obtained with higher tool rotation speed. The material of dissimilar alloys was mixed with each other forming recrystallised new intermetallics. There was decrease in hardness of similar weld joint however there is significant increase in hardness of weld zone in case of dissimilar weld joints due to stirring action of tool and formation of inter metallics. Tensile tests revealed that there was decrease in percentage elongation in both similar and dissimilar weld joints.Keywords: aluminum alloys, magnesium alloys, friction stir welding, microstructure, mechanical properties
Procedia PDF Downloads 4541493 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.Keywords: control system, hydroponics, machine learning, reinforcement learning
Procedia PDF Downloads 1851492 Hydrogeochemical Assessment, Evaluation and Characterization of Groundwater Quality in Ore, South-Western, Nigeria
Authors: Olumuyiwa Olusola Falowo
Abstract:
One of the objectives of the Millennium Development Goals is to have sustainable access to safe drinking water and basic sanitation. In line with this objective, an assessment of groundwater quality was carried out in Odigbo Local Government Area of Ondo State in November – February, 2019 to assess the drinking, domestic and irrigation uses of the water. Samples from 30 randomly selected ground water sources; 16 shallow wells and 14 from boreholes and analyzed using American Public Health Association method for the examination of water and wastewater. Water quality index calculation, and diagrams such as Piper diagram, Gibbs diagram and Wilcox diagram have been used to assess the groundwater in conjunction with irrigation indices such as % sodium, sodium absorption ratio, permeability index, magnesium ratio, Kelly ratio, and electrical conductivity. In addition statistical Principal component analysis were used to determine the homogeneity and source(s) influencing the chemistry of the groundwater. The results show that all the parameters are within the permissible limit of World Health Organization. The physico-chemical analysis of groundwater samples indicates that the dominant major cations are in decreasing order of Na+, Ca2+, Mg2+, K+ and the dominant anions are HCO-3, Cl-, SO-24, NO-3. The values of water quality index varies suggest a Good water (WQI of 50-75) accounts for 70% of the study area. The dominant groundwater facies revealed in this study are the non-carbonate alkali (primary salinity) exceeds 50% (zone 7); and transition zone with no one cation-anion pair exceeds 50% (zone 9), while evaporation; rock–water interaction, and precipitation; and silicate weathering process are the dominant processes in the hydrogeochemical evolution of the groundwater. The study indicates that waters were found within the permissible limits of irrigation indices adopted, and plot on excellent category on Wilcox plot. In conclusion, the water in the study area are good/suitable for drinking, domestic and irrigation purposes with low equivalent salinity concentrate and moderate electrical conductivity.Keywords: equivalent salinity concentration, groundwater quality, hydrochemical facies, principal component analysis, water-rock interaction
Procedia PDF Downloads 1481491 Bioconversion of Orange Wastes for Pectinase Production Using Aspergillus niger under Solid State Fermentation
Authors: N. Hachemi, A. Nouani, A. Benchabane
Abstract:
The influence of cultivation factors such as content of ammonium sulfate, glucose and water in the culture medium and particle size of dry orange waste, on their bioconversion for pectinase production was studied using complete factorial design. a polygalacturonase (PG) was isolated using ion exchange chromatography under gradient elution 0-0,5 m/l NaCl (column equilibrate with acetate buffer pH 4,5), subsequently by sephadex G75 column chromatography was applied and the molecular weight was obtained about 51,28 KDa . Purified PG enzyme exhibits a pH and temperature optima of activity at 5 and 35°C respectively. Treatment of apple juice by purified enzyme extract yielded a clear juice, which was competitive with juice yielded by pure Sigma Aldrich Aspergillus niger enzyme.Keywords: bioconversion, orange wastes, optimization, pectinase
Procedia PDF Downloads 3821490 Effect of Different FRP Wrapping and Thickness of Concrete Cover on Fatigue Bond Strength of Spliced Concrete Beam
Authors: Rayed Alyousef, Tim Topper, Adil Al-Mayah
Abstract:
This paper presents results of an ongoing research program at University of Waterloo to study the effect of external FRP sheet wrap confinement along a lap splice of reinforced concrete (RC) beams on their fatigue bond strength. Fatigue loading of RC beams containing a lap splice resulted in an increase in the number and width of cracks, an increase in deflection and a decrease of the bond strength between the steel rebar and the surrounding concrete. The phase of the research described here consists of monotonic and fatigue tests of thirty two reinforced concrete beam with dimensions 2200⨉350⨉250 mm. Each beam was reinforced with two 20M bars lap spliced in the constant moment region of the tension zone and two 10M bars in the compression zone outside the constant moment region. The test variables were the presence or absence of a FRP wrapping, the type of the FRP wrapping (GFRP or CFRP), the type of loading and the fatigue load range. The test results for monotonic loading showed that the stiffness of all beams was almost same, but that the FRP sheet wrapping increased the bond strength and the deflection at ultimate load. All beams tested under fatigue loading failed by a bond failure except one CFRP wrapped beam that failed by fatigue of the main reinforcement. The FRP sheet increased the bond strength for all specimens under fatigue loading.Keywords: lap splice, bond strength, fatigue loading, FRP
Procedia PDF Downloads 2931489 Structural Performance Evaluation of Segmented Wind Turbine Blade Through Finite Element Simulation
Authors: Chandrashekhar Bhat, Dilifa Jossley Noronha, Faber A. Saldana
Abstract:
Transportation of long turbine blades from one place to another is a difficult process. Hence a feasibility study of modularization of wind turbine blade was taken from structural standpoint through finite element analysis. Initially, a non-segmented blade is modeled and its structural behavior is evaluated to serve as reference. The resonant, static bending and fatigue tests are simulated in accordance with IEC61400-23 standard for comparison purpose. The non-segmented test blade is separated at suitable location based on trade off studies and the segments are joined with an innovative double strap bonded joint configuration. The adhesive joint is modeled by adopting cohesive zone modeling approach in ANSYS. The developed blade model is analyzed for its structural response through simulation. Performances of both the blades are found to be similar, which indicates that, efficient segmentation of the long blade is possible which facilitates easy transportation of the blades and on site reassembling. The location selected for segmentation and adopted joint configuration has resulted in an efficient segmented blade model which proves the methodology adopted for segmentation was quite effective. The developed segmented blade appears to be the viable alternative considering its structural response specifically in fatigue within considered assumptions.Keywords: modularization, fatigue, cohesive zone modeling, wind turbine blade
Procedia PDF Downloads 4481488 Fuzzy Approach for the Evaluation of Feasibility Levels of Vehicle Movement on the Disaster-Streaking Zone’s Roads
Authors: Gia Sirbiladze
Abstract:
Route planning problems are among the activities that have the highest impact on logistical planning, transportation, and distribution because of their effects on efficiency in resource management, service levels, and client satisfaction. In extreme conditions, the difficulty of vehicle movement between different customers causes the imprecision of time of movement and the uncertainty of the feasibility of movement. A feasibility level of vehicle movement on the closed route of the disaster-streaking zone is defined for the construction of an objective function. Experts’ evaluations of the uncertain parameters in q-rung ortho-pair fuzzy numbers (q-ROFNs) are presented. A fuzzy bi-objective combinatorial optimization problem of fuzzy vehicle routine problem (FVRP) is constructed based on the technique of possibility theory. The FVRP is reduced to the bi-criteria partitioning problem for the so-called “promising” routes which were selected from the all-admissible closed routes. The convenient selection of the “promising” routes allows us to solve the reduced problem in real-time computing. For the numerical solution of the bi-criteria partitioning problem, the -constraint approach is used. The main results' support software is designed. The constructed model is illustrated with a numerical example.Keywords: q-rung ortho-pair fuzzy sets, facility location selection problem, multi-objective combinatorial optimization problem, partitioning problem
Procedia PDF Downloads 1341487 Examination of Recreation Possibilities and Determination of Efficiency Zone in Bursa, Province Nilufer Creek
Authors: Zeynep Pirselimoglu Batman, Elvan Ender Altay, Murat Zencirkiran
Abstract:
Water and water resources are characteristic areas with their special ecosystems Their natural, cultural and economic value and recreation opportunities are high. Recreational activities differ according to the natural, cultural, socio-economic resource values of the areas. In this sense, water and water edge areas, which are important for their resource values, are also important landscape values for recreational activities. From these landscapes values, creeks and the surrounding areas have become a major source of daily life in the past, as well as a major attraction for people's leisure time. However, their qualities and quantities must be sufficient to enable these areas to be used effectively in a recreational sense and to be able to fulfill their recreational functions. The purpose of the study is to identify the recreational use of the water-based activities and identify effective service areas in dense urbanization zones along the creek and green spaces around them. For this purpose, the study was carried out in the vicinity of Nilufer Creek in Bursa. The study area and its immediate surroundings are in the boundaries of Osmangazi and Nilufer districts. The study was carried out in the green spaces along the creek with an individual interaction of 17.930m. These areas are Hudavendigar Urban Park, Atatürk Urban Forest, Bursa Zoo, Soganlı Botanical Park, Mihrapli Park, Nilufer Valley Park. In the first phase of the study, the efficiency zones of these locations were calculated according to international standards. 3200m of this locations are serving the city population and 800m are serving the district and neighborhood population. These calculations are processed on the digitized map by the AUTOCAD program using the satellite image. The efficiency zone of these green spaces in the city were calculated as 71.04 km². In the second phase of the study, water-based current activities were determined by evaluating the recreational potential of these green spaces, which are located along the Nilufer Creek, where efficiency zones have been identified. It has been determined that water-based activities are used intensively in Hudavendigar Urban Park and interacted with Nilufer Creek. Within the scope of effective zones for the study area, appropriate recreational planning proposals have been developed and water-based activities have been suggested.Keywords: Bursa, efficiency zone, Nilufer Creek, recreation, water-based activities
Procedia PDF Downloads 1611486 Study on the Relationship between the Urban Geography and Urban Agglomeration to the Effects of Carbon Emissions
Authors: Peng-Shao Chen, Yen-Jong Chen
Abstract:
In recent years, global warming, the dramatic change in energy prices and the exhaustion of natural resources illustrated that energy-related topic cannot be ignored. Despite the relationship between the cities and CO₂ emissions has been extensively studied in recent years, little attention has been paid to differences in the geographical location of the city. However, the geographical climate has a great impact on lifestyle from city to city, such as the type of buildings, the major industry of the city, etc. Therefore, the paper instigates empirically the effects of kinds of urban factors and CO₂ emissions with consideration of the different geographic, climatic zones which cities are located. Using the regression model and a dataset of urban agglomeration in East Asia cities with over one million population, including 2005, 2010, and 2015 three years, the findings suggest that the impact of urban factors on CO₂ emissions vary with the latitude of the cities. Surprisingly, all kinds of urban factors, including the urban population, the share of GDP in service industry, per capita income, and others, have different level of impact on the cities locate in the tropical climate zone and temperate climate zone. The results of the study analyze the impact of different urban factors on CO₂ emissions in urban area with different geographical climate zones. These findings will be helpful for the formulation of relevant policies for urban planners and policy makers in different regions.Keywords: carbon emissions, urban agglomeration, urban factor, urban geography
Procedia PDF Downloads 2671485 Passive Retrofitting Strategies for Windows in Hot and Humid Climate Vijayawada
Authors: Monica Anumula
Abstract:
Nowadays human beings attain comfort zone artificially for heating, cooling and lighting the spaces they live, and their main importance is given to aesthetics of building and they are not designed to protect themselves from climate. They depend on artificial sources of energy resulting in energy wastage. In order to reduce the amount of energy being spent in the construction industry and Energy Package goals by 2020, new ways of constructing houses is required. The larger part of energy consumption of a building is directly related to architectural aspects hence nature has to be integrated into the building design to attain comfort zone and reduce the dependency on artificial source of energy. The research is to develop bioclimatic design strategies and techniques for the walls and roofs of Vijayawada houses. Study and analysis of design strategies and techniques of various cases like Kerala, Mangalore etc. for similar kind of climate is examined in this paper. Understanding the vernacular architecture and modern techniques of that various cases and implementing in the housing of Vijayawada not only decreases energy consumption but also enhances socio cultural values of Vijayawada. This study focuses on the comparison of vernacular techniques and modern building bio climatic strategies to attain thermal comfort and energy reduction in hot and humid climate. This research provides further thinking of new strategies which include both vernacular and modern bioclimatic techniques.Keywords: bioclimatic design, energy consumption, hot and humid climates, thermal comfort
Procedia PDF Downloads 1791484 Determination of Suction of Arid Region Soil Using Filter Paper Method
Authors: Bhavita S. Dave, Chandresh H. Solanki, Atul K. Desai
Abstract:
Soils of Greater Himalayas mostly pertain to Leh & Ladakh, Lahaul & Sppiti, & high reaches to Uttarakhand. The moisture regime is aridic. The arid zone starts from Baralacha pass in Lahaul and covers the entire Spiti valley in the district of Lahaul & Spiti, Himachal Pradesh of India. Here, the present study is an attempt to determine the suction value of soil collected from the arid zone of Spiti valley for different freezing-thawing cycles considering the climate ranges of Spiti valley. Suction is the basic and most important parameter which influences the behavior of unsaturated soil. It is essential to determine the suction value of unsaturated soil before other tests like shear test, and permeability. Basically, it is the negative pore water pressure in partially saturated soil measured in terms of the height of the water column. The filter paper method has been used for the study as an economical approach to evaluate suction. It is the only method from which both contact and non-contact suction can be deduced. In this study, soil specimens were subjected to 0, 1, 3, & 5 freezing-thawing (F-T) cycles for different degrees of saturation to have a wide range of suction, and soil freezing characteristic curves (SFCC) were formulated for all F-T cycles. The result data collected from the experiments have shown best-fitted values using Fredlund & Xing model for each SFCC.Keywords: suction, arid region soil, soil freezing characteristic curve, freezing-thawing cycle
Procedia PDF Downloads 2281483 Multilevel Two-Phase Structuring in the Nitrogen Supersaturated AISI316 Stainless Steel
Authors: Tatsuhiko Aizawa, Yohei Suzuki, Tomomi Shiratori
Abstract:
The austenitic stainless steel type AISI316 has been widely utilized as structural members and mold die substrates. The low temperature plasma nitriding has been utilized to harden these AISI316 members, parts, and dies without loss of intrinsic corrosion resistance to AISI316 stainless steels. Formation of CrN precipitates by normal plasma nitriding processes resulted in severe deterioration of corrosion toughness. Most previous studies on this low temperature nitriding of AISI316 only described the lattice expansion of original AISI316 lattices by the occupation of nitrogen interstitial solutes into octahedral vacancy sites, the significant hardening by nitrogen solid solution, and the enhancement of corrosion toughness. In addition to those engineering items, this low temperature nitriding process was characterized by the nitrogen supersaturation and nitrogen diffusion processes. The nitrogen supersaturated zones expanded by the nitrogen solute occupation to octahedral vacancy sites, and the un-nitrided surroundings to these zones were plastically strained to compensate for the mismatch strains across these nitrided and nitrided zones. The microstructure of nitrided AISI316 was refined by this plastic straining. The nitrogen diffusion process was enhanced to transport nitrogen solute atoms through the refined zone boundaries. This synergetic collaboration among the nitrogen supersaturation, the lattice expansion, the plastic straining, and the grain refinement yielded a thick nitrogen supersaturated layer. This synergetic relation was also characterized by the multilevel two-phase structuring. In XRD (X-Ray Diffraction) analysis, the nitrided AISI316 layer had - and -phases with the peak shifts from original lattices. After EBSD (Electron Back Scattering Diffraction) analysis, -grains and -grains homogeneously distributed in the nitrided layer. The scanning transmission electron microscopy (STEM) revealed that g-phase zone is N-poor cluster and a-phase zone is N-rich cluster. This proves that nitrogen supersaturated AISI316 stainless steels have multi-level two-phase structure in a very fine granular system.Keywords: AISI316 stainless steels, chemical affinity to nitrogen solutes, multi-level two-phase structuring, nitrogen supersaturation
Procedia PDF Downloads 99