Search results for: anomaly detection module
3814 An Electrochemical DNA Biosensor Based on Oracet Blue as a Label for Detection of Helicobacter pylori
Authors: Saeedeh Hajihosseini, Zahra Aghili, Navid Nasirizadeh
Abstract:
An innovative method of a DNA electrochemical biosensor based on Oracet Blue (OB) as an electroactive label and gold electrode (AuE) for detection of Helicobacter pylori, was offered. A single–stranded DNA probe with a thiol modification was covalently immobilized on the surface of the AuE by forming an Au–S bond. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of reduction of the OB binding to double– stranded DNA (ds–DNA). Our results showed that OB–based DNA biosensor has a decent potential for detection of single–base mismatch in target DNA. Selectivity of the proposed DNA biosensor was further confirmed in the presence of non–complementary and complementary DNA strands. Under optimum conditions, the electrochemical signal had a linear relationship with the concentration of the target DNA ranging from 0.3 nmol L-1 to 240.0 nmol L-1, and the detection limit was 0.17 nmol L-1, whit a promising reproducibility and repeatability.Keywords: DNA biosensor, oracet blue, Helicobacter pylori, electrode (AuE)
Procedia PDF Downloads 2673813 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion
Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang
Abstract:
Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.Keywords: roads, defect detection, visualization, deep learning
Procedia PDF Downloads 133812 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays
Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev
Abstract:
In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.Keywords: antenna array, signal detection, ToA, AoA estimation
Procedia PDF Downloads 4993811 Training the Hospitality Entrepreneurship on the Account of Constructing Nascent Entrepreneurial Competence
Authors: Ching-Hsu Huang, Yao-Ling Liu
Abstract:
Over the past several decades there has been considerable research on the topics of entrepreneurship education and nascent entrepreneurial competence. The purpose of this study is to explore the nascent entrepreneurial competence within entrepreneurship education via the use of three studies. It will be a three-phrases longitudinal study and the effective plan will combine the qualitative and quantitative mixed research methodology in order to understand the issues of nascent entrepreneurship and entrepreneurial competence in hospitality industry in Taiwan. In study one, the systematic literature reviews and twelve nascent entrepreneurs who graduated from hospitality management department will be conducted simultaneously to construct the nascent entrepreneurial competence indicators. Nine subjects who are from industry, government, and academia will be the decision makers in terms of forming the systematic nascent entrepreneurial competence indicators. The relative importance of indicators to each decision maker will be synthesized and compared using the Analytic Hierarchy Process method. According to the results of study one, this study will develop the teaching module of nascent hospitality entrepreneurship. It will include the objectives, context, content, audiences, assessment, pedagogy and outcomes. Based on the results of the second study, the quasi-experiment will be conducted in third study to explore the influence of nascent hospitality entrepreneurship teaching module on learners’ learning effectiveness. The nascent hospitality entrepreneurship education program and entrepreneurial competence will be promoted all around the hospitality industry and vocational universities. At the end, the implication for designing the nascent hospitality entrepreneurship teaching module and training programs will be suggested for the nascent entrepreneurship education. All of the proposed hypotheses will be examined and major finding, implication, discussion, and recommendations will be provided for the government and education administration in hospitality field.Keywords: entrepreneurial competence, hospitality entrepreneurship, nascent entrepreneurial, training in hospitality entrepreneurship
Procedia PDF Downloads 2453810 Development of Earthquake and Typhoon Loss Models for Japan, Specifically Designed for Underwriting and Enterprise Risk Management Cycles
Authors: Nozar Kishi, Babak Kamrani, Filmon Habte
Abstract:
Natural hazards such as earthquakes and tropical storms, are very frequent and highly destructive in Japan. Japan experiences, every year on average, more than 10 tropical cyclones that come within damaging reach, and earthquakes of moment magnitude 6 or greater. We have developed stochastic catastrophe models to address the risk associated with the entire suite of damaging events in Japan, for use by insurance, reinsurance, NGOs and governmental institutions. KCC’s (Karen Clark and Company) catastrophe models are procedures constituted of four modular segments: 1) stochastic events sets that would represent the statistics of the past events, hazard attenuation functions that could model the local intensity, vulnerability functions that would address the repair need for local buildings exposed to the hazard, and financial module addressing policy conditions that could estimates the losses incurring as result of. The events module is comprised of events (faults or tracks) with different intensities with corresponding probabilities. They are based on the same statistics as observed through the historical catalog. The hazard module delivers the hazard intensity (ground motion or wind speed) at location of each building. The vulnerability module provides library of damage functions that would relate the hazard intensity to repair need as percentage of the replacement value. The financial module reports the expected loss, given the payoff policies and regulations. We have divided Japan into regions with similar typhoon climatology, and earthquake micro-zones, within each the characteristics of events are similar enough for stochastic modeling. For each region, then, a set of stochastic events is developed that results in events with intensities corresponding to annual occurrence probabilities that are of interest to financial communities; such as 0.01, 0.004, etc. The intensities, corresponding to these probabilities (called CE, Characteristics Events) are selected through a superstratified sampling approach that is based on the primary uncertainty. Region specific hazard intensity attenuation functions followed by vulnerability models leads to estimation of repair costs. Extensive economic exposure model addresses all local construction and occupancy types, such as post-linter Shinand Okabe wood, as well as concrete confined in steel, SRC (Steel-Reinforced Concrete), high-rise.Keywords: typhoon, earthquake, Japan, catastrophe modelling, stochastic modeling, stratified sampling, loss model, ERM
Procedia PDF Downloads 2713809 Optical Flow Localisation and Appearance Mapping (OFLAAM) for Long-Term Navigation
Authors: Daniel Pastor, Hyo-Sang Shin
Abstract:
This paper presents a novel method to use optical flow navigation for long-term navigation. Unlike standard SLAM approaches for augmented reality, OFLAAM is designed for Micro Air Vehicles (MAV). It uses an optical flow camera pointing downwards, an IMU and a monocular camera pointing frontwards. That configuration avoids the expensive mapping and tracking of the 3D features. It only maps these features in a vocabulary list by a localization module to tackle the loss of the navigation estimation. That module, based on the well-established algorithm DBoW2, will be also used to close the loop and allow long-term navigation in confined areas. That combination of high-speed optical flow navigation with a low rate localization algorithm allows fully autonomous navigation for MAV, at the same time it reduces the overall computational load. This framework is implemented in ROS (Robot Operating System) and tested attached to a laptop. A representative scenarios is used to analyse the performance of the system.Keywords: vision, UAV, navigation, SLAM
Procedia PDF Downloads 6073808 Clustering Color Space, Time Interest Points for Moving Objects
Authors: Insaf Bellamine, Hamid Tairi
Abstract:
Detecting moving objects in sequences is an essential step for video analysis. This paper mainly contributes to the Color Space-Time Interest Points (CSTIP) extraction and detection. We propose a new method for detection of moving objects. Two main steps compose the proposed method. First, we suggest to apply the algorithm of the detection of Color Space-Time Interest Points (CSTIP) on both components of the Color Structure-Texture Image Decomposition which is based on a Partial Differential Equation (PDE): a color geometric structure component and a color texture component. A descriptor is associated to each of these points. In a second stage, we address the problem of grouping the points (CSTIP) into clusters. Experiments and comparison to other motion detection methods on challenging sequences show the performance of the proposed method and its utility for video analysis. Experimental results are obtained from very different types of videos, namely sport videos and animation movies.Keywords: Color Space-Time Interest Points (CSTIP), Color Structure-Texture Image Decomposition, Motion Detection, clustering
Procedia PDF Downloads 3793807 Analysis on Solar Panel Performance and PV-Inverter Configuration for Tropical Region
Authors: Eko Adhi Setiawan, Duli Asih Siregar, Aiman Setiawan
Abstract:
Solar energy is abundant in nature, particularly in the tropics which have peak sun hour that can reach 8 hours per day. In the fabrication process, Photovoltaic’s (PV) performance are tested in standard test conditions (STC). It specifies a module temperature of 25°C, an irradiance of 1000 W/ m² with an air mass 1.5 (AM1.5) spectrum and zero wind speed. Thus, the results of the performance testing of PV at STC conditions cannot fully represent the performance of PV in the tropics. For example Indonesia, which has a temperature of 20-40°C. In this paper, the effect of temperature on the choice of the 5 kW AC inverter topology on the PV system such as the Central Inverter, String Inverter and AC-Module specifically for the tropics will be discussed. The proper inverter topology can be determined by analysis of the effect of temperature and irradiation on the PV panel. The effect of temperature and irradiation will be represented in the characteristics of I-V and P-V curves. PV’s characteristics on high temperature would be analyzed using Solar panel modeling through MATLAB Simulink based on mathematical equations that form Solar panel’s characteristic curve. Based on PV simulation, it is known then that temperature coefficients of short circuit current (ISC), open circuit voltage (VOC), and maximum output power (PMAX) consecutively as high as 0.56%/oC, -0.31%/oC and -0.4%/oC. Those coefficients can be used to calculate PV’s electrical parameters such as ISC, VOC, and PMAX in certain earth’s surface’s certain point. Then, from the parameters, the utility of the 5 kW AC inverter system can be determined. As the result, for tropical area, string inverter topology has the highest utility rates with 98, 80 %. On the other hand, central inverter and AC-Module Topology has utility rates of 92.69 % and 87.7 % eventually.Keywords: Photovoltaic, PV-Inverter Configuration, PV Modeling, Solar Panel Characteristics.
Procedia PDF Downloads 3803806 A Modular and Reusable Bond Graph Model of Epithelial Transport in the Proximal Convoluted Tubule
Authors: Leyla Noroozbabaee, David Nickerson
Abstract:
We introduce a modular, consistent, reusable bond graph model of the renal nephron’s proximal convoluted tubule (PCT), which can reproduce biological behaviour. In this work, we focus on ion and volume transport in the proximal convoluted tubule of the renal nephron. Modelling complex systems requires complex modelling problems to be broken down into manageable pieces. This can be enabled by developing models of subsystems that are subsequently coupled hierarchically. Because they are based on a graph structure. In the current work, we define two modular subsystems: the resistive module representing the membrane and the capacitive module representing solution compartments. Each module is analyzed based on thermodynamic processes, and all the subsystems are reintegrated into circuit theory in network thermodynamics. The epithelial transport system we introduce in the current study consists of five transport membranes and four solution compartments. Coupled dissipations in the system occur in the membrane subsystems and coupled free-energy increasing, or decreasing processes appear in solution compartment subsystems. These structural subsystems also consist of elementary thermodynamic processes: dissipations, free-energy change, and power conversions. We provide free and open access to the Python implementation to ensure our model is accessible, enabling the reader to explore the model through setting their simulations and reproducibility tests.Keywords: Bond Graph, Epithelial Transport, Water Transport, Mathematical Modeling
Procedia PDF Downloads 883805 Timely Detection and Identification of Abnormalities for Process Monitoring
Authors: Hyun-Woo Cho
Abstract:
The detection and identification of multivariate manufacturing processes are quite important in order to maintain good product quality. Unusual behaviors or events encountered during its operation can have a serious impact on the process and product quality. Thus they should be detected and identified as soon as possible. This paper focused on the efficient representation of process measurement data in detecting and identifying abnormalities. This qualitative method is effective in representing fault patterns of process data. In addition, it is quite sensitive to measurement noise so that reliable outcomes can be obtained. To evaluate its performance a simulation process was utilized, and the effect of adopting linear and nonlinear methods in the detection and identification was tested with different simulation data. It has shown that the use of a nonlinear technique produced more satisfactory and more robust results for the simulation data sets. This monitoring framework can help operating personnel to detect the occurrence of process abnormalities and identify their assignable causes in an on-line or real-time basis.Keywords: detection, monitoring, identification, measurement data, multivariate techniques
Procedia PDF Downloads 2373804 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming
Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad
Abstract:
Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.Keywords: breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration
Procedia PDF Downloads 2163803 Subsurface Structures Related to the Hydrocarbon Migration and Accumulation in the Afghan Tajik Basin, Northern Afghanistan: Insights from Seismic Attribute Analysis
Authors: Samim Khair Mohammad, Takeshi Tsuji, Chanmaly Chhun
Abstract:
The Afghan Tajik (foreland) basin, located in the depression zone between mountain axes, is under compression and deformation during the collision of India with the Eurasian plate. The southern part of the Afghan Tajik basin in the Northern part of Afghanistan has not been well studied and explored, but considered for the significant potential for oil and gas resources. The Afghan Tajik basin depositional environments (< 8km) resulted from mixing terrestrial and marine systems, which has potential prospects of Jurrasic (deep) and Tertiary (shallow) petroleum systems. We used 2D regional seismic profiles with a total length of 674.8 km (or over an area of 2500 km²) in the southern part of the basin. To characterize hydrocarbon systems and structures in this study area, we applied advanced seismic attributes such as spectral decomposition (10 - 60Hz) based on time-frequency analysis with continuous wavelet transform. The spectral decomposition results yield the (averaging 20 - 30Hz group) spectral amplitude anomaly. Based on this anomaly result, seismic, and structural interpretation, the potential hydrocarbon accumulations were inferred around the main thrust folds in the tertiary (Paleogene+Neogene) petroleum systems, which appeared to be accumulated around the central study area. Furthermore, it seems that hydrocarbons dominantly migrated along the main thrusts and then concentrated around anticline fold systems which could be sealed by mudstone/carbonate rocks.Keywords: The Afghan Tajik basin, seismic lines, spectral decomposition, thrust folds, hydrocarbon reservoirs
Procedia PDF Downloads 1143802 An Advanced YOLOv8 for Vehicle Detection in Intelligent Traffic Management
Authors: A. Degale Desta, Cheng Jian
Abstract:
Background: Vehicle detection accuracy is critical to intelligent transportation systems and autonomous driving. The state-of-the-art object identification technology YOLOv8 has shown significant gains in efficiency and detection accuracy. This study uses the BDD100K dataset, which is renowned for its extensive and varied annotations, to assess how well YOLOv8 performs in vehicle detection. Objectives: The primary objective of this research is to assess YOLOv8's performance in intelligent transportation system vehicle identification and its ability to accurately identify cars in urban environments for safety prioritization. Methods: The primary objective of this research is to assess YOLOv8's performance in intelligent transportation system vehicle identification and its ability to accurately identify cars in urban environments for safety prioritization. Results: The results show that YOLOv8 achieves high mAP, recall, precision, and F1-score values, indicating state-of-the-art performance. This suggests that YOLOv8 can identify cars in complex urban environments with a high degree of accuracy and reliable results in a variety of traffic scenarios. Conclusion: The results indicate that YOLOv8 is a useful tool for enhancing vehicle detection accuracy in intelligent transportation systems, hence advancing urban public safety and security. The model's demonstrated performance shows how well it may be incorporated into autonomous driving applications to improve situational awareness and responsiveness.Keywords: vehicle detection, YOLOv8, BDD100K, object detection, deep learning
Procedia PDF Downloads 123801 Refactoring Object Oriented Software through Community Detection Using Evolutionary Computation
Authors: R. Nagarani
Abstract:
An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the extent of research on software refactoring at the package level is less. This work presents a novel approach to refactor the package structures of object oriented software using genetic algorithm based community detection. It uses software networks to represent classes and their dependencies. It uses a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. It finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures.Keywords: community detection, complex network, genetic algorithm, package, refactoring
Procedia PDF Downloads 4203800 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station
Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner
Abstract:
A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.Keywords: radio base station, maintenance, classification, detection, deep learning, automation
Procedia PDF Downloads 2023799 Traffic Sign Recognition System Using Convolutional Neural NetworkDevineni
Authors: Devineni Vijay Bhaskar, Yendluri Raja
Abstract:
We recommend a model for traffic sign detection stranded on Convolutional Neural Networks (CNN). We first renovate the unique image into the gray scale image through with support vector machines, then use convolutional neural networks with fixed and learnable layers for revealing and understanding. The permanent layer can reduction the amount of attention areas to notice and crop the limits very close to the boundaries of traffic signs. The learnable coverings can rise the accuracy of detection significantly. Besides, we use bootstrap procedures to progress the accuracy and avoid overfitting problem. In the German Traffic Sign Detection Benchmark, we obtained modest results, with an area under the precision-recall curve (AUC) of 99.49% in the group “Risk”, and an AUC of 96.62% in the group “Obligatory”.Keywords: convolutional neural network, support vector machine, detection, traffic signs, bootstrap procedures, precision-recall curve
Procedia PDF Downloads 1233798 Shared Heart with a Common Atrial Complex and Persistent Right Dorsal Aorta in Conjoined Twins
Authors: L. C. Prasanna, Antony Sylvan D’Souza, Kumar M. R. Bhat
Abstract:
Although life as a conjoined twin would seem intolerable, there has recently been an increased interest in this subject because of the increasing number of cases where attempts have been made to separate them surgically. We have reviewed articles on cardiovascular anomalies in conjoined twins and presenting rarest anomaly in dicephalus parapagus fetus having two heads attached to one body from the neck or upper chest downwards, with a pair of limbs and a set of reproductive organs. Both the twins shared a common thoracic cavity with a single sternum. When the thoracic cavity was opened, a common anterior mediastinum was found. On opening the pericardium, two separate, closely apposed hearts were exposed. The two cardia are placed side by side. The left heart was slightly larger than the right and were joined at the atrial levels. Four atrial appendages were present, two for each twin. The atrial complex was a common chamber posterior to the ventricles. A single large tributary which could be taken as inferior vena cava drains into the common atrial chamber. In this case, the heart could not be assigned to either twin and therefore, it is referred to as the shared heart within a common pericardial sac. The right and left descending thoracic aorta have joined with each other just above the diaphragm to form a common descending thoracic aorta which has an opening in the diaphragm to be continued as common abdominal aorta which has a normal branching pattern. Upon an interior dissection, it is observed that the two atria have a wide communication which could be a wide patent foramen ovale and this common atrial cavity has a communication with a remnant of a possible common sinus venosus.Keywords: atrium, congenital anomaly, conjoined twin, sinus venosus
Procedia PDF Downloads 3943797 Medical Advances in Diagnosing Neurological and Genetic Disorders
Authors: Simon B. N. Thompson
Abstract:
Retinoblastoma is a rare type of childhood genetic cancer that affects children worldwide. The diagnosis is often missed due to lack of education and difficulty in presentation of the tumor. Frequently, the tumor on the retina is noticed by photography when the red-eye flash, commonly seen in normal eyes, is not produced. Instead, a yellow or white colored patch is seen or the child has a noticeable strabismus. Early detection can be life-saving though often results in removal of the affected eye. Remaining functioning in the healthy eye when the child is young has resulted in super-vision and high or above-average intelligence. Technological advancement of cameras has helped in early detection. Brain imaging has also made possible early detection of neurological diseases and, together with the monitoring of cortisol levels and yawning frequency, promises to be the next new early diagnostic tool for the detection of neurological diseases where cortisol insufficiency is particularly salient, such as multiple sclerosis and Cushing’s disease.Keywords: cortisol, neurological disease, retinoblastoma, Thompson cortisol hypothesis, yawning
Procedia PDF Downloads 3863796 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework
Authors: Jindong Gu, Matthias Schubert, Volker Tresp
Abstract:
In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning
Procedia PDF Downloads 1533795 Electrochemical Anodic Oxidation Synthesis of TiO2 nanotube as Perspective Electrode for the Detection of Phenyl Hydrazine
Authors: Sadia Ameen, M. Nazim, Hyumg-Kee Seo, Hyung-Shik Shin
Abstract:
TiO2 nanotube (NT) arrays were grown on titanium (Ti) foil substrate by electrochemical anodic oxidation and utilized as working electrode to fabricate a highly sensitive and reproducible chemical sensor for the detection of harmful phenyl hydrazine chemical. The fabricated chemical sensor based on TiO2 NT arrays electrode exhibited high sensitivity of ~40.9 µA.mM-1.cm-2 and detection limit of ~0.22 µM with short response time (10s).Keywords: TiO2 NT, phenyl hydrazine, chemical sensor, sensitivity, electrocatalytic properties
Procedia PDF Downloads 5013794 Sensing Mechanism of Nano-Toxic Ions Using Quartz Crystal Microbalance
Authors: Chanho Park, Juneseok You, Kuewhan Jang, Sungsoo Na
Abstract:
Detection technique of nanotoxic materials is strongly imperative, because nano-toxic materials can harmfully influence human health and environment as their engineering applications are growing rapidly in recent years. In present work, we report the DNA immobilized quartz crystal microbalance (QCM) based sensor for detection of nano-toxic materials such as silver ions, Hg2+ etc. by using functionalization of quartz crystal with a target-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz crystal is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated fast and in situ detection of nanotoxic materials using quartz crystal microbalance. We report the label-free and highly sensitive detection of silver ion for present case, which is a typical nano-toxic material by using QCM and silver-specific DNA. The detection is based on the measurement of frequency shift of Quartz crystal from constitution of the cytosine-Ag+-cytosine binding. It is shown that the silver-specific DNA measured frequency shift by QCM enables the capturing of silver ions below 100pM. The results suggest that DNA-based detection opens a new avenue for the development of a practical water-testing sensor.Keywords: nano-toxic ions, quartz crystal microbalance, frequency shift, target-specific DNA
Procedia PDF Downloads 3223793 Changing Arbitrary Data Transmission Period by Using Bluetooth Module on Gas Sensor Node of Arduino Board
Authors: Hiesik Kim, Yong-Beom Kim, Jaheon Gu
Abstract:
Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to rate up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group (SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with a different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as open source hardware, gas sensor, and Bluetooth module and algorithm controlling transmission rate is demonstrated. Experiment controlling transmission rate also is progressed by developing Android application receiving measured data, and controlling this rate is available at the experiment result. It is important that in the future, improvement for communication algorithm be needed because a few error occurs when data is transferred or received.Keywords: Arduino, Bluetooth, gas sensor, IoT, transmission
Procedia PDF Downloads 2793792 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network
Authors: Abdulaziz Alsadhan, Naveed Khan
Abstract:
In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)
Procedia PDF Downloads 3673791 An Efficient Clustering Technique for Copy-Paste Attack Detection
Authors: N. Chaitawittanun, M. Munlin
Abstract:
Due to rapid advancement of powerful image processing software, digital images are easy to manipulate and modify by ordinary people. Lots of digital images are edited for a specific purpose and more difficult to distinguish form their original ones. We propose a clustering method to detect a copy-move image forgery of JPEG, BMP, TIFF, and PNG. The process starts with reducing the color of the photos. Then, we use the clustering technique to divide information of measuring data by Hausdorff Distance. The result shows that the purposed methods is capable of inspecting the image file and correctly identify the forgery.Keywords: image detection, forgery image, copy-paste, attack detection
Procedia PDF Downloads 3383790 Green Synthesis of Silver Nanoparticles by Olive Leaf Extract: Application in the Colorimetric Detection of Fe+3 Ions
Authors: Nasibeh Azizi Khereshki
Abstract:
Olive leaf (OL) extract as a green reductant agent was utilized for the biogenic synthesis of silver nanoparticles (Ag NPs) for the first time in this study, and then its performance was evaluated for colorimetric detection of Fe3+ in different media. Some analytical methods were used to characterize the nanosensor. The effective sensing parameters were optimized by central composite design (CCD) combined with response surface methodology (RSM) application. Then, the prepared material's applicability in antibacterial and optical chemical sensing for naked-eye detection of Fe3+ ions in aqueous solutions were evaluated. Furthermore, OL-Ag NPs-loaded paper strips were successfully applied to the colorimetric visualization of Fe3+. The colorimetric probe based on OL-AgNPs illustrated excellent selectivity and sensitivity towards Fe3+ ions, with LOD and LOQ of 0.81 μM and 2.7 μM, respectively. In addition, the developed method was applied to detect Fe3+ ions in real water samples and validated with a 95% confidence level against a reference spectroscopic method.Keywords: Ag NPs, colorimetric detection, Fe(III) ions, green synthesis, olive leaves
Procedia PDF Downloads 803789 Early Detection of Breast Cancer in Digital Mammograms Based on Image Processing and Artificial Intelligence
Authors: Sehreen Moorat, Mussarat Lakho
Abstract:
A method of artificial intelligence using digital mammograms data has been proposed in this paper for detection of breast cancer. Many researchers have developed techniques for the early detection of breast cancer; the early diagnosis helps to save many lives. The detection of breast cancer through mammography is effective method which detects the cancer before it is felt and increases the survival rate. In this paper, we have purposed image processing technique for enhancing the image to detect the graphical table data and markings. Texture features based on Gray-Level Co-Occurrence Matrix and intensity based features are extracted from the selected region. For classification purpose, neural network based supervised classifier system has been used which can discriminate between benign and malignant. Hence, 68 digital mammograms have been used to train the classifier. The obtained result proved that automated detection of breast cancer is beneficial for early diagnosis and increases the survival rates of breast cancer patients. The proposed system will help radiologist in the better interpretation of breast cancer.Keywords: medical imaging, cancer, processing, neural network
Procedia PDF Downloads 2603788 A High Performance Piano Note Recognition Scheme via Precise Onset Detection and Segmented Short-Time Fourier Transform
Authors: Sonali Banrjee, Swarup Kumar Mitra, Aritra Acharyya
Abstract:
A piano note recognition method has been proposed by the authors in this paper. The authors have used a comprehensive method for onset detection of each note present in a piano piece followed by segmented short-time Fourier transform (STFT) for the identification of piano notes. The performance evaluation of the proposed method has been carried out in different harsh noisy environments by adding different levels of additive white Gaussian noise (AWGN) having different signal-to-noise ratio (SNR) in the original signal and evaluating the note detection error rate (NDER) of different piano pieces consisting of different number of notes at different SNR levels. The NDER is found to be remained within 15% for all piano pieces under consideration when the SNR is kept above 8 dB.Keywords: AWGN, onset detection, piano note, STFT
Procedia PDF Downloads 1603787 The BETA Module in Action: An Empirical Study on Enhancing Entrepreneurial Skills through Kearney's and Bloom's Guiding Principles
Authors: Yen Yen Tan, Lynn Lam, Cynthia Lam, Angela Koh, Edwin Seng
Abstract:
Entrepreneurial education plays a crucial role in nurturing future innovators and change-makers. Over time, significant progress has been made in refining instructional approaches to develop the necessary skills among learners effectively. Two highly valuable frameworks, Kearney's "4 Principles of Entrepreneurial Pedagogy" and Bloom's "Three Domains of Learning," serve as guiding principles in entrepreneurial education. Kearney's principles align with experiential and student-centric learning, which are crucial for cultivating an entrepreneurial mindset. The potential synergies between these frameworks hold great promise for enhancing entrepreneurial acumen among students. However, despite this potential, their integration remains largely unexplored. This study aims to bridge this gap by building upon the Business Essentials through Action (BETA) module and investigating its contributions to nurturing the entrepreneurial mindset. This study employs a quasi-experimental mixed-methods approach, combining quantitative and qualitative elements to ensure comprehensive and insightful data. A cohort of 235 students participated, with 118 enrolled in the BETA module and 117 in a traditional curriculum. Their Personal Entrepreneurial Competencies (PECs) were assessed before admission (pre-Y1) and one year into the course (post-Y1) using a comprehensive 55-item PEC questionnaire, enabling measurement of critical traits such as opportunity-seeking, persistence, and risk-taking. Rigorous computations of individual entrepreneurial competencies and overall PEC scores were performed, including a correction factor to mitigate potential self-assessment bias. The orchestration of Kearney's principles and Bloom's domains within the BETA module necessitates a granular examination. Here, qualitative revelations surface, courtesy of structured interviews aligned with contemporary research methodologies. These interviews act as a portal, ushering us into the transformative journey undertaken by students. Meanwhile, the study pivots to explore the BETA module's influence on students' entrepreneurial competencies from the vantage point of faculty members. A symphony of insights emanates from intimate focus group discussions featuring six dedicated lecturers, who share their perceptions, experiences, and reflective narratives, illuminating the profound impact of pedagogical practices embedded within the BETA module. Preliminary findings from ongoing data analysis indicate promising results, showcasing a substantial improvement in entrepreneurial skills among students participating in the BETA module. This study promises not only to elevate students' entrepreneurial competencies but also to illuminate the broader canvas of applicability for Kearney's principles and Bloom's domains. The dynamic interplay of quantitative analyses, proffering precise competency metrics, and qualitative revelations, delving into the nuanced narratives of transformative journeys, engenders a holistic understanding of this educational endeavour. Through a rigorous quasi-experimental mixed-methods approach, this research aims to establish the BETA module's effectiveness in fostering entrepreneurial acumen among students at Singapore Polytechnic, thereby contributing valuable insights to the broader discourse on educational methodologies.Keywords: entrepreneurial education, experiential learning, pedagogical frameworks, innovative competencies
Procedia PDF Downloads 653786 An Erudite Technique for Face Detection and Recognition Using Curvature Analysis
Authors: S. Jagadeesh Kumar
Abstract:
Face detection and recognition is an authoritative technology for image database management, video surveillance, and human computer interface (HCI). Face recognition is a rapidly nascent method, which has been extensively discarded in forensics such as felonious identification, tenable entree, and custodial security. This paper recommends an erudite technique using curvature analysis (CA) that has less false positives incidence, operative in different light environments and confiscates the artifacts that are introduced during image acquisition by ring correction in polar coordinate (RCP) method. This technique affronts mean and median filtering technique to remove the artifacts but it works in polar coordinate during image acquisition. Investigational fallouts for face detection and recognition confirms decent recitation even in diagonal orientation and stance variation.Keywords: curvature analysis, ring correction in polar coordinate method, face detection, face recognition, human computer interaction
Procedia PDF Downloads 2873785 A Review of Intelligent Fire Management Systems to Reduce Wildfires
Authors: Nomfundo Ngombane, Topside E. Mathonsi
Abstract:
Remote sensing and satellite imaging have been widely used to detect wildfires; nevertheless, the technologies present some limitations in terms of early wildfire detection as the technologies are greatly influenced by weather conditions and can miss small fires. The fires need to have spread a few kilometers for the technologies to provide accurate detection. The South African Advanced Fire Information System uses MODIS (Moderate Resolution Imaging Spectroradiometer) as satellite imaging. MODIS has limitations as it can exclude small fires and can fall short in validating fire vulnerability. Thus in the future, a Machine Learning algorithm will be designed and implemented for the early detection of wildfires. A simulator will be used to evaluate the effectiveness of the proposed solution, and the results of the simulation will be presented.Keywords: moderate resolution imaging spectroradiometer, advanced fire information system, machine learning algorithm, detection of wildfires
Procedia PDF Downloads 80