Search results for: Thermal Treatment
10940 Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors
Authors: K. Touafek, A. Khelifa, E. H. Khettaf, A. Embarek
Abstract:
Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a hybrid prototype to evaluate electrical and thermal performance. In this paper, an experimental study of two new configurations of hybrid collectors is exposed. The results are given and interpreted. The two configurations of absorber studied are a new combination with tubes and galvanized tank, the other is a tubes and sheet.Keywords: experimental, photovoltaic, solar, temperature
Procedia PDF Downloads 48610939 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.Keywords: inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness
Procedia PDF Downloads 33210938 Dealing with Buckling Effect in Snorkel by Finite Element Analysis: A Life Enhancement Approach in CAS-OB Operation
Authors: Subodh Nath Patel, Raja Raman, Mananshi Adhikary, Jitendra Mathur, Sandip Bhattacharyya
Abstract:
The composition adjustment by sealed argon bubbling–oxygen blowing (CAS-OB) process is a process designed for adjusting steel composition and temperature during secondary metallurgy. One of the equipment in the said process is a snorkel or bell, fixed to a movable bracket. Snorkel serves the purpose of feeding ferroalloys into the liquid metal simultaneously removing gases to the gas cleaning system through its port at its top. The bell-shaped snorkel consists of two parts. The upper part has an inside liner, and the lower part is lined on both side with high-alumina castable reinforced with 2% stainless steel needles. Both the parts are coupled with a flange bolt system. These flanges were found to get buckled during operation, and the gap was generating between them. This problem was chronic since its. It was expected to give a life of 80 heats, but it was failing within 45-50 heats. After every 25-30 heats, it had to be repaired by changing and/or tightening its nuts and bolts. Visual observation, microstructural analysis through optical microscopes and SEM, hardness measurement and thermal strain calculation were carried out to find out the root cause of this problem. The calculated thermal strain was compared with actual thermal strain; comparison of the two revealed that thermal strain was responsible for buckling. Finite element analysis (FEA) was carried out to reaffirm the effect temperature on the flanges. FEA was also used in the modification in the design of snorkel flange to accommodate thermal strain. Thermal insulation was also recommended which increased its life from 45 heats to 65 heats, impacting business process positively.Keywords: CAS OB process, finite element analysis, snorkel, thermal strain
Procedia PDF Downloads 13510937 Acoustic and Thermal Insulating Materials Based on Natural Fibres Used in Floor Construction
Authors: Jitka Hroudova, Jiri Zach
Abstract:
The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed.Keywords: Green thermal and acoustic insulating materials, natural fibres, technical hemp, flax, floor construction
Procedia PDF Downloads 33310936 Physicochemical and Thermal Characterization of Starch from Three Different Plantain Cultivars in Puerto Rico
Authors: Carmen E. Pérez-Donado, Fernando Pérez-Muñoz, Rosa N. Chávez-Jáuregui
Abstract:
Plantain contains starch as the majority component and represents a relevant source of this carbohydrate. Starches from different cultivars of plantain and bananas have been studied for industrialization purposes due to their morphological and thermal characteristics and their influence on food products. This study aimed to characterize the physical, chemical, and thermal properties of starch from three different plantains cultivated in Puerto Rico: Maricongo, Maiden, and FHIA 20. Amylose and amylopectin content, color, granular size, morphology, and thermal properties were determined. According to the content of amylose in starches, FHIA 20 starch presented minor content of the three cultivars studied. In terms of color, Maiden and FHIA 20 starch exhibited a significantly higher whiteness index comparing their values with Maricongo starch. The starches of the three cultivars had an elongated-ovoid morphology, with a smooth surface and a non-porous appearance. Regardless of similarities in their morphology, FHIA 20 showed a lower aspect ratio, which meant that their granules tended to be more elongated granules. Comparing the thermal properties of starches, it was found that the initial gelatinization temperature of the starch of the cultivars was similar. However, the final gelatinization temperatures of the starches belonging to the cultivars Maricongo (79.69°C) and Maiden (77.40°C) were similar, whereas FHIA 20 starch presented a noticeably higher final gelatinization temperature (87.95°C) and transition enthalpy. Despite source similarities, starches from plantain cultivars showed differences in their composition and thermal behavior. Therefore, this represents an opportunity to diversify their use in food-related applications.Keywords: aspect ratio, morphology, Musa spp., starch, thermal properties
Procedia PDF Downloads 26410935 Wastewater Treatment Using Microalgae
Authors: Chigbo Ikechukwu Emmanuel
Abstract:
Microalgae can be used for tertiary treatment of wastewater due to their capacity to assimilate nutrients. The pH increase which is mediated by the growing algae also induces phosphorus precipitation and ammonia stripping to the air, and may in addition act disinfecting on the wastewater. Domestic wastewater is ideal for algal growth since it contains high concentrations of all necessary nutrients. The growth limiting factor is rather light, especially at higher latitudes. The most important operational factors for successful wastewater treatment with microalgae are depth, turbulence and hydraulic retention time.Keywords: microalgae, wastewater treatment, phosphorus, nitrogen, light, operation, ponds, growth
Procedia PDF Downloads 47610934 A Correlative Study of Heating Values of Saw Dust and Rice Husks in the Thermal Generation of Electricity
Authors: Muhammad Danladi, Muhammad Bura Garba, Muhammad Yahaya, Dahiru Muhammad
Abstract:
Biomass is one of the primary sources of energy supply, which contributes to about 78% of Nigeria. In this work, a comparative analysis of the heating values of sawdust and rice husks in the thermal generation of electricity was carried out. In the study, different masses of biomass were used and the corresponding electromotive force in millivolts was obtained. A graph of e.m.f was plotted against the mass of each biomass and a gradient was obtained. Bar graphs were plotted to represent the values of e.m.f and masses of the biomass. Also, a graph of e.m.f against eating values of sawdust and rice husks was plotted, and in each case, as the e.m.f increases also, the heating values increases. The result shows that saw dust with 0.033Mv/g gradient and 3.5 points of intercept had the highest gradient, followed by rice husks with 0.026Mv/g gradient and 2.6 points of intercept. It is, therefore, concluded that sawdust is the most efficient of the two types of biomass in the thermal generation of electricity.Keywords: biomass, electricity, thermal, generation
Procedia PDF Downloads 9610933 Investigation of Solar Concentrator Prototypes under Tunisian Conditions
Authors: Moncef Balghouthi, Mahmoud Ben Amara, Abdessalem Ben Hadj Ali, Amenallah Guizani
Abstract:
Concentrated solar power technology constitutes an interesting option to meet a part of future energy demand, especially when considering the high levels of solar radiation and clearness index that are available particularly in Tunisia. In this work, we present three experimental prototypes of solar concentrators installed in the research center of energy CRTEn in Tunisia. Two are medium temperature parabolic trough solar collector used to drive a cooling installation and for steam generation. The third is a parabolic dish concentrator used for hybrid generation of thermal and electric power. Optical and thermal evaluations were presented. Solutions and possibilities to construct locally the mirrors of the concentrator were discussed. In addition, the enhancement of the performances of the receivers by nano selective absorption coatings was studied. The improvement of heat transfer between the receiver and the heat transfer fluid was discussed for each application.Keywords: solar concentrators, optical and thermal evaluations, cooling and process heat, hybrid thermal and electric generation
Procedia PDF Downloads 25210932 Energy and Exergy Performance Optimization on a Real Gas Turbine Power Plant
Authors: Farhat Hajer, Khir Tahar, Cherni Rafik, Dakhli Radhouen, Ammar Ben Brahim
Abstract:
This paper presents the energy and exergy optimization of a real gas turbine power plant performance of 100 MW of power, installed in the South East of Tunisia. A simulation code is established using the EES (Engineering Equation Solver) software. The parameters considered are those of the actual operating conditions of the gas turbine thermal power station under study. The results show that thermal and exergetic efficiency decreases with the increase of the ambient temperature. Air excess has an important effect on the thermal efficiency. The emission of NOx rises in the summer and decreases in the winter. The obtained rates of NOx are compared with measurements results.Keywords: efficiency, exergy, gas turbine, temperature
Procedia PDF Downloads 28210931 Development of Materials Based on Phosphates of NaZr2(PO4)3 with Low Thermal Expansion
Authors: V. Yu. Volgutov, A. I. Orlova, S. A. Khainakov
Abstract:
NaZr2(PO4)3 (NZP) and their structural analogues are characterized by a peculiar behaviors on heating – they have different expansion and contraction along different crystallographic directions due to specific arrangements of crystal structure in these compounds. An important feature of such structures is the ability to incorporate into their structural analogues wide variety of metal cations having different size and oxidation states, with different combinations and concentrations. These cations are located in different crystallographic non-equivalent positions of octahedral tetrahedral crystal framework as well as in inter-framework cavities. Through, due to iso- and hetero-valent isomorphism of the cations (and the anions) in NZP, it becomes possible to tuning the compositions and to obtain the compounds with ‘on a plan’ properties. For the design of compounds with low and ultra-low thermal expansion including those with tailored thermal expansion properties, the following crystallochemical principles it seems are promising: 1) Insertion into crystal M1 position the cations having different sizes and, 2) the variation in the composition of compounds, providing different occupation of crystal M1 position. Following these principles we have designed and synthesized the next NZP-type phosphates series: a) where radii of the cations in the M1 crystal position was varied: Zr1/4Zr2(PO4)3 - Th1/4Zr2(PO4)3 (series I); R1/3Zr2(PO4)3 where R= Nd, Eu, Er (series II), b) where the occupation of M1 crystal position was varied: Zr1/4Zr2(PO4)3-Er1/3Zr2(PO4)3 (series III) and Zr1/4Zr2(PO4)3-Sr1/2Zr2(PO4)3 (series IV). The thermal expansion parameters were determined over the range of 25-800ºC. For each series the minimum axial coefficient of thermal expansion αa = αb, αc and their anisotropy Δα = Iαa - αcI, 10-6 K-1 was found as next: -1.51, 1.07, 2.58 for Th1/4Zr2(PO4)3 (series I); -0.72, 0.10, 0.81 for Nd1/3Zr2(PO4)3 (series II); -2.78, 1.35, 4.12 for Er1/6Zr1/8Zr2(PO4)3 (series III); 2.23, 1.32, 0.91 for Sr1/2Zr2(PO4)3 (series IV). The measured tendencies of the thermal expansion of crystals were in good agreement with predicted ones. For one of the members from the studied phosphates namely Th1/16Zr3/16Zr2(PO4)3 structural refinement have been carried out at 25, 200, 600, and 800°C. The dependencies of the structural parameters with the temperature have been determined.Keywords: high-temperature crystallography, NaZr2(PO4)3, (NZP) analogs, structural-chemical principles, tuning thermal expansion
Procedia PDF Downloads 23210930 Heat Transfer Enhancement by Localized Time Varying Thermal Perturbations at Hot and Cold Walls in a Rectangular Differentially Heated Cavity
Authors: Nicolas Thiers, Romain Gers, Olivier Skurtys
Abstract:
In this work, we study numerically the effect of a thermal perturbation on the heat transfer in a rectangular differentially heated cavity of aspect ratio 4, filled by air. In order to maintain the center symmetry, the thermal perturbation is imposed by a square wave at both active walls, at the same relative position of the hot or cold boundary layers. The influences of the amplitude and the vertical location of the perturbation are investigated. The air flow is calculated solving the unsteady Boussinesq-Navier-Stokes equations using the PN - PN-2 Spectral Element Method (SEM) programmed in the Nek5000 opencode, at RaH= 9x107, just before the first bifurcation which leads to periodical flow. The results show that the perturbation has a major impact for the highest amplitude, and at about three quarters of the cavity height, upstream, in both hot and cold boundary layers.Keywords: direct numerical simulation, heat transfer enhancement, localized thermal perturbations, natural convection, rectangular differentially-heated cavity
Procedia PDF Downloads 14110929 Thermal Image Segmentation Method for Stratification of Freezing Temperatures
Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka
Abstract:
The study uses an image analysis technique employing thermal imaging to measure the percentage of areas with various temperatures on a freezing surface. An image segmentation method using threshold values is applied to a sequence of image recording the freezing process. The phenomenon is transient and temperatures vary fast to reach the freezing point and complete the freezing process. Freezing salt water is subjected to the salt rejection that makes the freezing point dynamic and dependent on the salinity at the phase interface. For a specific area of freezing, nucleation starts from one side and end to another side, which causes a dynamic and transient temperature in that area. Thermal cameras are able to reveal a difference in temperature due to their sensitivity to infrared radiance. Using Experimental setup, a video is recorded by a thermal camera to monitor radiance and temperatures during the freezing process. Image processing techniques are applied to all frames to detect and classify temperatures on the surface. Image processing segmentation method is used to find contours with same temperatures on the icing surface. Each segment is obtained using the temperature range appeared in the image and correspond pixel values in the image. Using the contours extracted from image and camera parameters, stratified areas with different temperatures are calculated. To observe temperature contours on the icing surface using the thermal camera, the salt water sample is dropped on a cold surface with the temperature of -20°C. A thermal video is recorded for 2 minutes to observe the temperature field. Examining the results obtained by the method and the experimental observations verifies the accuracy and applicability of the method.Keywords: ice contour boundary, image processing, image segmentation, salt ice, thermal image
Procedia PDF Downloads 31910928 Time to Second Line Treatment Initiation Among Drug-Resistant Tuberculosis Patients in Nepal
Authors: Shraddha Acharya, Sharad Kumar Sharma, Ratna Bhattarai, Bhagwan Maharjan, Deepak Dahal, Serpahine Kaminsa
Abstract:
Background: Drug-resistant (DR) tuberculosis (TB) continues to be a threat in Nepal, with an estimated 2800 new cases every year. The treatment of DR-TB with second line TB drugs is complex and takes longer time with comparatively lower treatment success rate than drug-susceptible TB. Delay in treatment initiation for DR-TB patients might further result in unfavorable treatment outcomes and increased transmission. This study thus aims to determine median time taken to initiate second-line treatment among Rifampicin Resistant (RR) diagnosed TB patients and to assess the proportion of treatment delays among various type of DR-TB cases. Method: A retrospective cohort study was done using national routine electronic data (DRTB and TB Laboratory Patient Tracking System-DHIS2) on drug resistant tuberculosis patients between January 2020 and December 2022. The time taken for treatment initiation was computed as– days from first diagnosis as RR TB through Xpert MTB/Rif test to enrollment on second-line treatment. The treatment delay (>7 days after diagnosis) was calculated. Results: Among total RR TB cases (N=954) diagnosed via Xpert nationwide, 61.4% were enrolled under shorter-treatment regimen (STR), 33.0% under longer treatment regimen (LTR), 5.1% for Pre-extensively drug resistant TB (Pre-XDR) and 0.4% for Extensively drug resistant TB (XDR) treatment. Among these cases, it was found that the median time from diagnosis to treatment initiation was 6 days (IQR:2-15.8). The median time was 5 days (IQR:2.0-13.3) among STR, 6 days (IQR:3.0-15.0) among LTR, 30 days (IQR:5.5-66.8) among Pre-XDR and 4 days (IQR:2.5-9.0) among XDR TB cases. The overall treatment delay (>7 days after diagnosis) was observed in 42.4% of the patients, among which, cases enrolled under Pre-XDR contributed substantially to treatment delay (72.0%), followed by LTR (43.6%), STR (39.1%) and XDR (33.3%). Conclusion: Timely diagnosis and prompt treatment initiation remain fundamental focus of the National TB program. The findings of the study, however suggest gaps in timeliness of treatment initiation for the drug-resistant TB patients, which could bring adverse treatment outcomes. Moreover, there is an alarming delay in second line treatment initiation for the Pre-XDR TB patients. Therefore, this study generates evidence to identify existing gaps in treatment initiation and highlights need for formulating specific policies and intervention in creating effective linkage between the RR TB diagnosis and enrollment on second line TB treatment with intensified efforts from health providers for follow-ups and expansion of more decentralized, adequate, and accessible diagnostic and treatment services for DR-TB, especially Pre-XDR TB cases, due to the observed long treatment delays.Keywords: drug-resistant, tuberculosis, treatment initiation, Nepal, treatment delay
Procedia PDF Downloads 8210927 Multi-Scale Modelling of Thermal Wrinkling of Thin Membranes
Authors: Salim Belouettar, Kodjo Attipou
Abstract:
The thermal wrinkling behavior of thin membranes is investigated. The Fourier double scale series are used to deduce the macroscopic membrane wrinkling equations. The obtained equations account for the global and local wrinkling modes. Numerical examples are conducted to assess the validity of the approach developed. Compared to the finite element full model, the present model needs only few degrees of freedom to recover accurately the bifurcation curves and wrinkling paths. Different parameters such as membrane’s aspect ratio, wave number, pre-stressed membranes are discussed from a numerical point of view and the properties of the wrinkles (critical load, wavelength, size and location) are presented.Keywords: wrinkling, thermal stresses, Fourier series, thin membranes
Procedia PDF Downloads 38910926 Multifunctional Nanofiber Based Aerogels: Bridging Electrospinning with Aerogel Fabrication
Authors: Tahira Pirzada, Zahra Ashrafi, Saad Khan
Abstract:
We present a facile and sustainable solid templating approach to fabricate highly porous, flexible and superhydrophobic aerogels of composite nanofibers of cellulose diacetate and silica which are produced through sol gel electrospinning. Scanning electron microscopy, contact angle measurement, and attenuated total reflection-Fourier transform infrared spectrometry are used to understand the structural features of the resultant aerogels while thermogravimetric analysis and differential scanning calorimetry demonstrate their thermal stability. These aerogels exhibit a self-supportive three-dimensional network abundant in large secondary pores surrounded by primary pores resulting in a highly porous structure. Thermal crosslinking of the aerogels has further stabilized their structure and flexibility without compromising on the porosity. Ease of processing, thermal stability, high porosity and oleophilic nature of these aerogels make them promising candidate for a wide variety of applications including acoustic and thermal insulation and oil and water separation.Keywords: hybrid aerogels, sol-gel electrospinning, oil-water separation, nanofibers
Procedia PDF Downloads 15610925 Experimental Study on the Effect of Storage Conditions on Thermal Hazard of Nitrocellulose
Authors: Hua Chai, Qiangling Duan, Huiqi Cao, Mi Li, Jinhua Sun
Abstract:
Nitrocellulose (NC), a kind of energetic material, has been widely used in the industrial and military fields. However, this material can also cause serious social disasters due to storage conditions. Thermal hazard of nitrocellulose (NC) was experimentally investigated using the CALVET heat flux calorimeter C80, and three kinds of storage conditions were considered in the experiments: (1) drying time, (2) moisture content, (3) cycles. The results showed that the heat flow curves of NC moved to the low-temperature direction firstly and then slightly moved back by increasing the drying hours. Moisture that was responsible for the appearance of small exothermic peaks was proven to be the unfavorable safety factor yet it could increase the onset temperature of the main peak to some extent. And cycles could both lower the onset temperature and the maximum heat flow but enlarged the peak temperature. Besides, relevant kinetic parameters such as the heat of reaction (ΔH) and the activation energy (Ea) were obtained and compared. It was found that all the three conditions could reduce the values of Ea and most of them produced larger reaction heat. In addition, the critical explosion temperature (Tb) of the NC samples were derived. It was clear that not only the drying time but also the cycles would increase the thermal hazard of the NC. Yet, the right amount of water helped to reduce the thermal hazard.Keywords: C80, nitrocellulose, storage conditions, the critical explosion temperature, thermal hazard
Procedia PDF Downloads 16310924 Risk Allocation in Public-Private Partnership (PPP) Projects for Wastewater Treatment Plants
Authors: Samuel Capintero, Ole H. Petersen
Abstract:
This paper examines the utilization of public-private partnerships for the building and operation of wastewater treatment plants. Our research focuses on risk allocation in this kind of projects. Our analysis builds on more than hundred wastewater treatment plants built and operated through PPP projects in Aragon (Spain). The paper illustrates the consequences of an inadequate management of construction risk and an unsuitable transfer of demand risk in wastewater treatment plants. It also shows that the involvement of many public bodies at local, regional and national level further increases the complexity of this kind of projects and make time delays more likely.Keywords: wastewater, treatment plants, PPP, construction
Procedia PDF Downloads 64810923 Optimization of Double-Layered Microchannel Heat Sinks
Authors: Tu-Chieh Hung, Wei-Mon Yan, Xiao-Dong Wang, Yu-Xian Huang
Abstract:
This work employs a combined optimization procedure including a simplified conjugate-gradient method and a three-dimensional fluid flow and heat transfer model to study the optimal geometric parameter design of double-layered microchannel heat sinks. The overall thermal resistance RT is the objective function to be minimized with number of channels, N, the channel width ratio, β, the bottom channel aspect ratio, αb, and upper channel aspect ratio, αu, as the search variables. It is shown that, for the given bottom area (10 mm×10 mm) and heat flux (100 W cm-2), the optimal (minimum) thermal resistance of double-layered microchannel heat sinks is about RT=0.12 ℃/m2W with the corresponding optimal geometric parameters N=73, β=0.50, αb=3.52, and, αu= 7.21 under a constant pumping power of 0.05 W. The optimization process produces a maximum reduction by 52.8% in the overall thermal resistance compared with an initial guess (N=112, β=0.37, αb=10.32 and, αu=10.93). The results also show that the optimal thermal resistance decreases rapidly with the pumping power and tends to be a saturated value afterward. The corresponding optimal values of parameters N, αb, and αu increase while that of β decrease as the pumping power increases. However, further increasing pumping power is not always cost-effective for the application of heat sink designs.Keywords: optimization, double-layered microchannel heat sink, simplified conjugate-gradient method, thermal resistance
Procedia PDF Downloads 48910922 Study on Eco-Feedback of Thermal Comfort and Cost Efficiency for Low Energy Residence
Authors: Y. Jin, N. Zhang, X. Luo, W. Zhang
Abstract:
China with annual increasing 0.5-0.6 billion squares city residence has brought in enormous energy consumption by HVAC facilities and other appliances. In this regard, governments and researchers are encouraging renewable energy like solar energy, geothermal energy using in houses. However, high cost of equipment and low energy conversion result in a very low acceptable to residents. So what’s the equilibrium point of eco-feedback to reach economic benefit and thermal comfort? That is the main question should be answered. In this paper, the objective is an on-site solar PV and heater house, which has been evaluated as a low energy building. Since HVAC system is considered as main energy consumption equipment, the residence with 24-hour monitoring system set to measure temperature, wind velocity and energy in-out value with no HVAC system for one month of summer and winter. Thermal comfort time period will be analyzed and confirmed; then the air-conditioner will be started within thermal discomfort time for the following one summer and winter month. The same data will be recorded to calculate the average energy consumption monthly for a purpose of whole day thermal comfort. Finally, two analysis work will be done: 1) Original building thermal simulation by computer at design stage with actual measured temperature after construction will be contrastive analyzed; 2) The cost of renewable energy facilities and power consumption converted to cost efficient rate to assess the feasibility of renewable energy input for residence. The results of the experiment showed that a certain deviation exists between actual measured data and simulated one for human thermal comfort, especially in summer period. Moreover, the cost-effectiveness is high for a house in targeting city Guilin now with at least 11 years of cost-covering. The conclusion proves that an eco-feedback of a low energy residence is never only consideration of its energy net value, but also the cost efficiency that is the critical factor to push renewable energy acceptable by the public.Keywords: cost efficiency, eco-feedback, low energy residence, thermal comfort
Procedia PDF Downloads 25510921 The Role of Strategic Metals in Cr-Al-Pt-V Composition of Protective Bond Coats
Authors: A. M. Pashayev, A. S. Samedov, T. B. Usubaliyev, N. Sh. Yusifov
Abstract:
Different types of coating technologies are widely used for gas turbine blades. Thermal barrier coatings, consisting of ceramic top coat, thermally grown oxide and a metallic bond coat are used in applications for thermal protection of hot section components in gas turbine engines. Operational characteristics and longevity of high-temperature turbine blades substantially depend on a right choice of composition of the protective thermal barrier coatings. At a choice of composition of a coating and content of the basic elements it is necessary to consider following factors, as minimum distinctions of coefficients of thermal expansions of elements, level of working temperatures and composition of the oxidizing environment, defining the conditions for the formation of protective layers, intensity of diffusive processes and degradation speed of protective properties of elements, extent of influence on the fatigue durability of details during operation, using of elements with high characteristics of thermal stability and satisfactory resilience of gas corrosion, density, hardness, thermal conduction and other physical characteristics. Forecasting and a choice of a thermal barrier coating composition, all above factors at the same time cannot be considered, as some of these characteristics are defined by experimental studies. The implemented studies and investigations show that one of the main failures of coatings used on gas turbine blades is related to not fully taking the physical-chemical features of elements into consideration during the determination of the composition of alloys. It leads to the formation of more difficult spatial structure, composition which also changes chaotically in some interval of concentration that doesn't promote thermal and structural firmness of a coating. For the purpose of increasing the thermal and structural resistant of gas turbine blade coatings is offered a new approach to forecasting of composition on the basis of analysis of physical-chemical characteristics of alloys taking into account the size factor, electron configuration, type of crystal lattices and Darken-Gurry method. As a result, of calculations and experimental investigations is offered the new four-component metallic bond coat on the basis of chrome for the gas turbine blades.Keywords: gas turbine blades, thermal barrier coating, metallic bond coat, strategic metals, physical-chemical features
Procedia PDF Downloads 31410920 A Theoretical Analysis of Air Cooling System Using Thermal Ejector under Variable Generator Pressure
Authors: Mohamed Ouzzane, Mahmoud Bady
Abstract:
Due to energy and environment context, research is looking for the use of clean and energy efficient system in cooling industry. In this regard, the ejector represents one of the promising solutions. The thermal ejector is a passive component used for thermal compression in refrigeration and cooling systems, usually activated by heat either waste or solar. The present study introduces a theoretical analysis of the cooling system which uses a gas ejector thermal compression. A theoretical model is developed and applied for the design and simulation of the ejector, as well as the whole cooling system. Besides the conservation equations of mass, energy and momentum, the gas dynamic equations, state equations, isentropic relations as well as some appropriate assumptions are applied to simulate the flow and mixing in the ejector. This model coupled with the equations of the other components (condenser, evaporator, pump, and generator) is used to analyze profiles of pressure and velocity (Mach number), as well as evaluation of the cycle cooling capacity. A FORTRAN program is developed to carry out the investigation. Properties of refrigerant R134a are calculated using real gas equations. Among many parameters, it is thought that the generator pressure is the cornerstone in the cycle, and hence considered as the key parameter in this investigation. Results show that the generator pressure has a great effect on the ejector and on the whole cooling system. At high generator pressures, strong shock waves inside the ejector are created, which lead to significant condenser pressure at the ejector exit. Additionally, at higher generator pressures, the designed system can deliver cooling capacity for high condensing pressure (hot season).Keywords: air cooling system, refrigeration, thermal ejector, thermal compression
Procedia PDF Downloads 15710919 Experimental Characterization of the Thermal Behavior of a Sawdust Mortar
Authors: F. Taouche-Kheloui, O. Fedaoui-Akmoussi, K. Ait tahar, Li. Alex
Abstract:
Currently, the reduction of energy consumption, through the use of abundant and recyclable natural materials, for better thermal insulation represents an important area of research. To this end, the use of bio-sourced materials has been identified as one of the green sectors with a very high economic development potential for the future. Because of its role in reducing the consumption of fossil-based raw materials, it contributes significantly to the storage of atmospheric carbon, limits greenhouse gas emissions and creates new economic opportunities. This study constitutes a contribution to the elaboration and the experimental characterization of the thermal behavior of a sawdust-reduced mortar matrix. We have taken into account the influence of the size of the grain fibers of sawdust, hence the use of three different ranges and also different percentage in the different confections. The intended practical application consists of producing a light weight compound at a lower cost to ensure a better thermal and acoustic behavior compared to that existing in the field, in addition to the desired resistances. Improving energy performance, while reducing greenhouse gas emissions from the building sector, is amongst the objectives to be achieved. The results are very encouraging and highlight the value of the proposed design of organic-source mortar panels which have specific mechanical properties acceptable for their use, low densities, lower cost of manufacture and labor, and above all a positive impact on the environment.Keywords: mortar, sawdust waste, thermal, experimental, analysis
Procedia PDF Downloads 8310918 A Note on MHD Flow and Heat Transfer over a Curved Stretching Sheet by Considering Variable Thermal Conductivity
Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows
Abstract:
The mixed convective flow of MHD incompressible, steady boundary layer in heat transfer over a curved stretching sheet due to temperature dependent thermal conductivity is studied. We use curvilinear coordinate system in order to describe the governing flow equations. Finite difference solutions with central differencing have been used to solve the transform governing equations. Numerical results for the flow velocity and temperature profiles are presented as a function of the non-dimensional curvature radius. Skin friction coefficient and local Nusselt number at the surface of the curved sheet are discussed as well.Keywords: curved stretching sheet, finite difference method, MHD, variable thermal conductivity
Procedia PDF Downloads 19210917 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application
Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb
Abstract:
This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/ Poly (ethylene-co vinyl acetate)(EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nano composite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25 oC) and (480 ± 25 oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1 oC) and captured double melting point at 84 (±2 oC) and 108 (±2 oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.Keywords: thermal properties, nano MH, nano particles, cable and wire, LDPE/EVA
Procedia PDF Downloads 45010916 High Quality Gallium Oxide Microstructures by Catalyst-Free Thermal Oxidation
Authors: Jiang-Bei Qin, Rui-Xia Miao, Wei Ren
Abstract:
In this study, high crystalline gallium oxide microstructures (wires, belts, and sheets) were synthesized by catalyst-free thermal oxidation. Structural studies such as X-ray diffraction, Raman and transmission electron microscope (TEM) investigations on the microstructures showed monoclinic phase of gallium oxide and single crystalline structure. The scanning electron microscopy (SEM) observations revealed that a huge super microsheet even grows up to 450 µm in length and 206 µm in width. Gallium oxide microstructures exhibit high crystallinity along (002) and (401), respectively. The PL spectrum of these microstructures excites a blue light band centered at 441 and 489nm. The growth mechanism of gallium oxide microstructures is discussed. These gallium oxide microstructures have great potential in functional devices.Keywords: catalyst-free, gallium oxide, microstructures, thermal oxide
Procedia PDF Downloads 18610915 Preliminary Treatment in Wastewater Treatment Plants: Operation and Maintenance Aspects
Authors: Priscila M. Lima, Corine A. P. de Almeida, Muriele R. de Lima, Fernando J. C. Magalhães Filho
Abstract:
This work characterized the preliminary treatment in WWTPs in the state of Mato Grosso Do Sul (Brazil) and analyzed aspects of operation and maintenance of solid waste retained, and was evaluated the interference of this step in treatment efficiency beyond the relationship between solid waste generation with rainfall and seasonality in the region of each WTPs. The results shown that the standard setting in the preliminary treatment consists of grid along with Sand Trap, followed by Parshall that is used in 94.12% of WWTPs analyzed, and in 5.88% of WWTPs it was added the air-lift to the Sand Trap. Was concluded that the influence of rainfall, flow and seasonality associated with the rate of waste generation in the preliminary treatment, had little relation to the operation and maintenance of the primary treatment. But in some cases, precipitation data showed increased rainfall converging with increased flow and solid waste generation.Keywords: pretreatment, sewage, solid waste, wastewater
Procedia PDF Downloads 46810914 Online Self-Help Metacognitive Therapy for OCD: A Case Series
Abstract:
Cognitive behavioural therapy (CBT) and exposure and response prevention (ERP) are currently the most efficacious treatments for Obsessive-compulsive disorder (OCD). Many clients, however, remain symptomatic following treatment. As a result, refusal of treatment, withdrawal from treatment, and partial adherence to treatment are common amongst ERP. Such limitations have caused few professionals to actually engage in ERP therapy, which has warranted the exploration of alternative treatments. This study evaluated an online self-help treatment program for OCD (the OCD Doctor Online); a 4-week Metacognitive Therapy (MCT) program which has implemented strategies from Wells’ Metacognitive model of OCD. The aim of the present study was to investigate whether an online self-help treatment using MCT would reduce symptoms of OCD, reduce unhelpful metacognitions and improve quality of life. Treatment effectiveness was assessed using a case series methodology in 3 consecutively referred individuals. At post-treatment, all participants showed reductions in unhelpful metacognitive beliefs (MCQ-30) and improvements in quality of life (Q-LES-Q), which were maintained through to 4 week follow-up. Two of the three participants showed reductions in OCD symptomology (OCI-R), which were further reduced at 4-week follow-up. The present study suggests that internet-based self-help treatment may be an effective means of delivering MCT to adults with OCD.Keywords: internet-based, metacognitive therapy, obsessive-compulsive disorder, self-help
Procedia PDF Downloads 43310913 Experimental Characterization of Fatigue Crack Initiation of AA320 Alloy under Combined Thermal Cycling (CTC) and Mechanical Loading (ML) during Four Point Rotating and Bending Fatigue Testing Machine
Authors: Rana Atta Ur Rahman, Daniel Juhre
Abstract:
Initiation of crack during fatigue of casting alloys are noticed mainly on the basis of experimental results. Crack initiation and strength of fatigue of AA320 are summarized here. Load sequence effect is applied to notify initiation phase life. Crack initiation at notch root and fatigue life is calculated under single & two-step mechanical loading (ML) with and without combined thermal cycling (CTC). An Experimental setup is proposed to create the working temperature as per alloy applications. S-N curves are plotted, and a comparison is made between crack initiation leading to failure under different ML with & without thermal loading (TL).Keywords: fatigue, initiation, SN curve, alloy
Procedia PDF Downloads 40810912 Canopy Temperature Acquired from Daytime and Nighttime Aerial Data as an Indicator of Trees’ Health Status
Authors: Agata Zakrzewska, Dominik Kopeć, Adrian Ochtyra
Abstract:
The growing number of new cameras, sensors, and research methods allow for a broader application of thermal data in remote sensing vegetation studies. The aim of this research was to check whether it is possible to use thermal infrared data with a spectral range (3.6-4.9 μm) obtained during the day and the night to assess the health condition of selected species of deciduous trees in an urban environment. For this purpose, research was carried out in the city center of Warsaw (Poland) in 2020. During the airborne data acquisition, thermal data, laser scanning, and orthophoto map images were collected. Synchronously with airborne data, ground reference data were obtained for 617 studied species (Acer platanoides, Acer pseudoplatanus, Aesculus hippocastanum, Tilia cordata, and Tilia × euchlora) in different health condition states. The results were as follows: (i) healthy trees are cooler than trees in poor condition and dying both in the daytime and nighttime data; (ii) the difference in the canopy temperatures between healthy and dying trees was 1.06oC of mean value on the nighttime data and 3.28oC of mean value on the daytime data; (iii) condition classes significantly differentiate on both daytime and nighttime thermal data, but only on daytime data all condition classes differed statistically significantly from each other. In conclusion, the aerial thermal data can be considered as an alternative to hyperspectral data, a method of assessing the health condition of trees in an urban environment. Especially data obtained during the day, which can differentiate condition classes better than data obtained at night. The method based on thermal infrared and laser scanning data fusion could be a quick and efficient solution for identifying trees in poor health that should be visually checked in the field.Keywords: middle wave infrared, thermal imagery, tree discoloration, urban trees
Procedia PDF Downloads 11410911 An Assessment of Thermal Comfort and Air Quality in Educational Space: A Case Study of Design Studios in the Arab Academy for Science, Technology and Maritime Transport, Alexandria
Authors: Bakr Gomaa, Hana Awad
Abstract:
A stuffy room is one of the indicators of poor indoor air quality. Through working in an educational building in Alexandria, it is noticed that one of the rooms is smelly. A field study is conducted in a private university building in Alexandria to achieve indoor sustainable educational environment. Additionally, the indoor air quality is empirically assessed, and thermal comfort is identified in educational buildings, in studio halls specifically during lecture hours. The current research uses qualitative and quantitative methods in the form of literature review, investigation and test measurements. At a similar time that the teachers and students fill in a questionnaire regarding the concept of indoor climate, thermal comfort variables are determined. The indoor thermal conditions of the studio are assessed through three variables including Fanger’s comfort indicators (calculated using PMV, predicted mean vote and PPD, predicted percentage of dissatisfied people), the actual people clothing and metabolic rate. Actual measurements of air quality are obtained in a case study in an architectural building. Results have proved that indoor climatic conditions as air flow and temperature are inconvenient to inhabitants. Regarding questionnaire results, occupants appear to be uncomfortable in both seasons, with result percentages out of the acceptable range. Finally, further researches will center on how to preserve thermal comfort in school buildings since it has a vital influence on the student’s knowledge.Keywords: educational buildings, Indoor air quality, productivity, thermal comfort
Procedia PDF Downloads 194