Search results for: density measurements
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5918

Search results for: density measurements

1178 Quantum Information Scrambling and Quantum Chaos in Silicon-Based Fermi-Hubbard Quantum Dot Arrays

Authors: Nikolaos Petropoulos, Elena Blokhina, Andrii Sokolov, Andrii Semenov, Panagiotis Giounanlis, Xutong Wu, Dmytro Mishagli, Eugene Koskin, Robert Bogdan Staszewski, Dirk Leipold

Abstract:

We investigate entanglement and quantum information scrambling (QIS) by the example of a many-body Extended and spinless effective Fermi-Hubbard Model (EFHM and e-FHM, respectively) that describes a special type of quantum dot array provided by Equal1 labs silicon-based quantum computer. The concept of QIS is used in the framework of quantum information processing by quantum circuits and quantum channels. In general, QIS is manifest as the de-localization of quantum information over the entire quantum system; more compactly, information about the input cannot be obtained by local measurements of the output of the quantum system. In our work, we will first make an introduction to the concept of quantum information scrambling and its connection with the 4-point out-of-time-order (OTO) correlators. In order to have a quantitative measure of QIS we use the tripartite mutual information, in similar lines to previous works, that measures the mutual information between 4 different spacetime partitions of the system and study the Transverse Field Ising (TFI) model; this is used to quantify the dynamical spreading of quantum entanglement and information in the system. Then, we investigate scrambling in the quantum many-body Extended Hubbard Model with external magnetic field Bz and spin-spin coupling J for both uniform and thermal quantum channel inputs and show that it scrambles for specific external tuning parameters (e.g., tunneling amplitudes, on-site potentials, magnetic field). In addition, we compare different Hilbert space sizes (different number of qubits) and show the qualitative and quantitative differences in quantum scrambling as we increase the number of quantum degrees of freedom in the system. Moreover, we find a "scrambling phase transition" for a threshold temperature in the thermal case, that is, the temperature of the model that the channel starts to scramble quantum information. Finally, we make comparisons to the TFI model and highlight the key physical differences between the two systems and mention some future directions of research.

Keywords: condensed matter physics, quantum computing, quantum information theory, quantum physics

Procedia PDF Downloads 84
1177 A Neural Network for the Prediction of Contraction after Burn Injuries

Authors: Ginger Egberts, Marianne Schaaphok, Fred Vermolen, Paul van Zuijlen

Abstract:

A few years ago, a promising morphoelastic model was developed for the simulation of contraction formation after burn injuries. Contraction can lead to a serious reduction in physical mobility, like a reduction in the range-of-motion of joints. If this is the case in a healing burn wound, then this is referred to as a contracture that needs medical intervention. The morphoelastic model consists of a set of partial differential equations describing both a chemical part and a mechanical part in dermal wound healing. These equations are solved with the numerical finite element method (FEM). In this method, many calculations are required on each of the chosen elements. In general, the more elements, the more accurate the solution. However, the number of elements increases rapidly if simulations are performed in 2D and 3D. In that case, it not only takes longer before a prediction is available, the computation also becomes more expensive. It is therefore important to investigate alternative possibilities to generate the same results, based on the input parameters only. In this study, a surrogate neural network has been designed to mimic the results of the one-dimensional morphoelastic model. The neural network generates predictions quickly, is easy to implement, and there is freedom in the choice of input and output. Because a neural network requires extensive training and a data set, it is ideal that the one-dimensional FEM code generates output quickly. These feed-forward-type neural network results are very promising. Not only can the network give faster predictions, but it also has a performance of over 99%. It reports on the relative surface area of the wound/scar, the total strain energy density, and the evolutions of the densities of the chemicals and mechanics. It is, therefore, interesting to investigate the applicability of a neural network for the two- and three-dimensional morphoelastic model for contraction after burn injuries.

Keywords: biomechanics, burns, feasibility, feed-forward NN, morphoelasticity, neural network, relative surface area wound

Procedia PDF Downloads 47
1176 Maximum Power and Bone Variables in Young Adult Men

Authors: Anthony Khawaja, Jacques Prioux, Ghassan Maalouf, Rawad El Hage

Abstract:

The regular practice of physical activities characterized by significant mechanical stresses stimulates bone formation and improves bone mineral density (BMD) in the most solicited sites. The purpose of this study was to explore the relationships between maximum power and bone variables in a group of young adult men. Identification of new determinants of BMD, bone mineral content (BMC) and hip geometric indices in young adult men, would allow screening and early management of future cases of osteopenia and osteoporosis. Fifty-three young adult men (18 – 35yr) voluntarily participated in this study. Weight and height were measured, and body mass index was calculated. Body composition, BMC and BMD were determined for each individual by Dual-energy X-ray absorptiometry (DXA; GE Healthcare, Madison, WI) at whole body (WB), lumbar spine (L1-L4), total hip (TH), and femoral neck (FN). FN cross-sectional area (CSA), strength index (SI), buckling ratio (BR), FN section modulus (Z), cross-sectional moment of inertia (CSMI) and L1-L4 TBS were also evaluated by DXA. The vertical jump was evaluated using a field test (sargent test). Two main parameters were retained: vertical jump performance (cm) and power (w). The subjects performed three jumps with 2 minutes of recovery between jumps. The highest vertical jump was selected. Maximum power (P max, in watts) was calculated. Maximum power was positively correlated to WB BMD (r = 0.41; p < 0.01), WB BMC (r = 0.65; p < 0.001), L1-L4 BMC (r = 0.54; p < 0.001), FN BMC (r = 0.35; p < 0.01), TH BMC (r = 0.50; p < 0.001), CSMI (r = 0.50; p < 0.001), CSA (r = 0.33; p < 0.05). Vertical jump was positively correlated to WB BMC (r = 0.31; p < 0.05), L1-L4 BMC (r = 0.40; p < 0.01), CSMI (r = 0.29; p < 0.05). The current study suggests that maximum power is a positive determinant of BMD, BMC and hip geometric indices in young adult men. In addition, it shows also that maximum power is a stronger positive determinant of bone variables than vertical jump in this population. Implementing strategies to increase maximum power in young adult men may be useful for preventing osteoporotic fractures later in life.

Keywords: bone variables, maximum power, osteopenia, osteoporosis, vertical jump, young adult men

Procedia PDF Downloads 173
1175 Desing of Woven Fabric with Increased Sound Transmission Loss Property

Authors: U. Gunal, H. I. Turgut, H. Gurler, S. Kaya

Abstract:

There are many ever-increasing and newly emerging problems with rapid population growth in the world. With the increase in people's quality of life in our daily life, acoustic comfort has become an important feature in the textile industry. In order to meet all these expectations in people's comfort areas and survive in challenging competitive conditions in the market without compromising the customer product quality expectations of textile manufacturers, it has become a necessity to bring functionality to the products. It is inevitable to research and develop materials and processes that will bring these functionalities to textile products. The noise we encounter almost everywhere in our daily life, in the street, at home and work, is one of the problems which textile industry is working on. It brings with it many health problems, both mentally and physically. Therefore, noise control studies become more of an issue. Besides, materials used in noise control are not sufficient to reduce the effect of the noise level. The fabrics used in acoustic studies in the textile industry do not show sufficient performance according to their weight and high cost. Thus, acoustic textile products can not be used in daily life. In the thesis study, the attributions used in the noise control and building acoustics studies in the literature were analyzed, and the product with the highest damping value that a textile material will have was designed, manufactured, and tested. Optimum values were obtained by using different material samples that may affect the performance of the acoustic material. Acoustic measurement methods should be applied to verify the acoustic performances shown by the parameters and the designed three-dimensional structure at different values. In the measurements made in the study, the device designed for determining the acoustic performance of the material for both the impedance tube according to the relevant standards and the different noise types in the study was used. In addition, sound records of noise types encountered in daily life are taken and applied to the acoustic absorbent fabric with the aid of the device, and the feasibility of the results and the commercial ability of the product are examined. MATLAB numerical computing programming language and libraries were used in the frequency and sound power analyses made in the study.

Keywords: acoustic, egg crate, fabric, textile

Procedia PDF Downloads 99
1174 Kinetics and Toxicological Effects of Kickxia elatine Extract-Based Silver Nanoparticles on Rat Brain Acetylcholinesterase

Authors: Noor Ul Huda, Mushtaq Ahmed, Nadia Mushtaq, Naila Sher, Rahmat Ali Khan

Abstract:

Purpose: The green synthesis of AgNPs has been favored over chemical synthesis due to their distinctive properties such as high dispersion, surface-to-volume ratio, low toxicity, and easy preparation. In the present work, the biosynthesis of AgNPs (KE-AgNPs) was carried out in one step by using the traditionally used plant Kickxia elatine (KE) extract and then investigated its enzyme inhibiting activity against rat’s brain acetylcholinesterase (AChE) in vitro. Methods: KE-AgNPs were synthesized from 1mM AgNO₃ using KE extract and characterized by UV–spectroscopy, SEM, EDX, XRD, and FTIR analysis. Rat’s brain acetylcholinesterase (AChE) inhibition activity was evaluated by the standard protocol. Results: UV–spectrum at 416 nm confirmed the formation of KE-AgNPs. X-ray diffraction (XRD) pattern presented 2θ values corresponding to the crystalline nature of KE-AgNPs with an average size of 42.47nm. The scanning electron microscope (SEM) analysis confirmed the presence of spherical-shaped and huge density KE-AgNPs with a size of 50nm. Fourier transform infrared spectroscopy (FT-IR) suggested that the functional groups present in KE extract and on the surface of KE-AgNPs are responsible for the stability of biosynthesized NPs. Energy dispersive X-ray (EDX) displayed an intense sharp peak at 3.2 keV, presenting that Ag was the chief element with 61.67%. Both KE extract and KE-AgNPs showed good and potent anti-AChE activity, with higher inhibition potential at a concentration of 175 µg/ml. Statistical analysis showed that both KEE and AgNPs exhibited non-competitive type inhibition against AChE, i.e., Vmax decreased (34.17-68.64% and 22.29- 62.10%) in the concentration-dependent mode for KEE and KE-AgNPs respectively and while Km values remained constant. Conclusions: KEE and KE-AgNPs can be considered an inhibitor of rats’ brain AChE, and the synthesis of KE-AgNPs-based drugs can be used as a cheaper and alternative option against diseases such as Alzheimer’s disease.

Keywords: Kickxia elatine, AgNPs, brain homogenate, acetylcholinesterase, kinetics

Procedia PDF Downloads 110
1173 Fused Deposition Modeling Printing of Bioinspired Triply Periodic Minimal Surfaces Based Polyvinylidene Fluoride Materials for Scaffold Development in Biomedical Application

Authors: Farusil Najeeb Mullaveettil, Rolanas Dauksevicius

Abstract:

Cellular structures produced by additive manufacturing have earned wide research attention due to their unique specific strength and energy absorption potentiality. The literature review concludes that pattern type and density are vital parameters that affect the mechanical properties of parts formed by additive manufacturing techniques and have an influence on printing time and material consumption. Fused deposition modeling technique (FDM) is used here to produce Polyvinylidene fluoride (PVDF) parts. In this work, patterns are based on triply periodic minimal surfaces (TPMS) produced by PVDF-based filaments using the FDM technique. PVDF homopolymer filament Fluorinar-H™ and PVDF copolymer filament Fluorinar-C™ are printed with three types of TPMS patterns. The patterns printed are Gyroid, Schwartz diamond, and Schwartz primitive. Tensile, flexural, and compression tests under quasi-static loading conditions are performed in compliance with ISO standards. The investigation elucidates the deformation mechanisms and a study that establishes a relationship between the printed and nominal specimens' dimensional accuracy. In comparison to the examined TPMS pattern, Schwartz diamond showed a higher relative elastic modulus and strength than the other patterns in tensile loading, and the Gyroid pattern showed the highest mechanical characteristics in flexural loading. The concluded results could be utilized to produce informed cellular designs for biomedical and mechanical applications.

Keywords: additive manufacturing, FDM, PVDF, gyroid, schwartz primitive, schwartz diamond, TPMS, tensile, flexural

Procedia PDF Downloads 128
1172 Magneto-Transport of Single Molecular Transistor Using Anderson-Holstein-Caldeira-Leggett Model

Authors: Manasa Kalla, Narasimha Raju Chebrolu, Ashok Chatterjee

Abstract:

We have studied the quantum transport properties of a single molecular transistor in the presence of an external magnetic field using the Keldysh Green function technique. We also used the Anderson-Holstein-Caldeira-Leggett Model to describe the single molecular transistor that consists of a molecular quantum dot (QD) coupled to two metallic leads and placed on a substrate that acts as a heat bath. The phonons are eliminated by the Lang-Firsov transformation and the effective Hamiltonian is used to study the effect of an external magnetic field on the spectral density function, Tunneling Current, Differential Conductance and Spin polarization. A peak in the spectral function corresponds to a possible excitation. In the presence of a magnetic field, the spin-up and spin-down states are degenerate and this degeneracy is lifted by the magnetic field leading to the splitting of the central peak of the spectral function. The tunneling current decreases with increasing magnetic field. We have observed that even the differential conductance peak in the zero magnetic field curve is split in the presence electron-phonon interaction. As the magnetic field is increased, each peak splits into two peaks. And each peak indicates the existence of an energy level. Thus the number of energy levels for transport in the bias window increases with the magnetic field. In the presence of the electron-phonon interaction, Differential Conductance in general gets reduced and decreases faster with the magnetic field. As magnetic field strength increases, the spin polarization of the current is increasing. Our results show that a strongly interacting QD coupled to metallic leads in the presence of external magnetic field parallel to the plane of QD acts as a spin filter at zero temperature.

Keywords: Anderson-Holstein model, Caldeira-Leggett model, spin-polarization, quantum dots

Procedia PDF Downloads 168
1171 Room Temperature Ionic Liquids Filled Mixed Matrix Membranes for CO2 Separation

Authors: Asim Laeeq Khan, Mazhar Amjad Gilani, Tayub Raza

Abstract:

The use of fossil fuels for energy generation leads to the emission of greenhouse gases particularly CO2 into the atmosphere. To date, several techniques have been proposed for the efficient removal of CO2 from flue gas mixtures. Membrane technology is a promising choice due to its several inherent advantages such as low capital cost, high energy efficiency, and low ecological footprint. One of the goals in the development of membranes is to achieve high permeability and selectivity. Mixed matrix membranes comprising of inorganic fillers embedded in polymer matrix are a class of membranes that have showed improved separation properties. One of the biggest challenges in the commercialization if mixed matrix membranes are the removal of non-selective voids existing at the polymer-filler interface. In this work, mixed matrix membranes were prepared using polysulfone as polymer matrix and ordered mesoporous MCM-41 as filler materials. A new approach to removing the interfacial voids was developed by introducing room temperature ionic (RTIL) at the polymer-filler interface. The results showed that the imidazolium based RTIL not only provided wettability characteristics but also helped in further improving the separation properties. The removal of interfacial voids and good contact between polymer and filler was verified by SEM measurement. The synthesized membranes were tested in a custom built gas permeation set-up for the measurement of gas permeability and ideal gas selectivity. The results showed that the mixed matrix membranes showed significantly higher CO2 permeability in comparison to the pristine membrane. In order to have further insight into the role of fillers, diffusion and solubility measurements were carried out. The results showed that the presence of highly porous fillers resulted in increasing the diffusion coefficient while the solubility showed a slight drop. The RTIL filled membranes showed higher CO2/CH4 and CO2/N2 selectivity than unfilled membranes while the permeability dropped slightly. The increase in selectivity was due to the highly selective RTIL used in this work. The study revealed that RTIL filled mixed matrix membranes are an interesting candidate for gas separation membranes.

Keywords: ionic liquids, CO2 separation, membranes, mixed matrix membranes

Procedia PDF Downloads 464
1170 Research on the Spatio-Temporal Evolution Pattern of Traffic Dominance in Shaanxi Province

Authors: Leng Jian-Wei, Wang Lai-Jun, Li Ye

Abstract:

In order to measure and analyze the transportation situation within the counties of Shaanxi province over a certain period of time and to promote the province's future transportation planning and development, this paper proposes a reasonable layout plan and compares model rationality. The study uses entropy weight method to measure the transportation advantages of 107 counties in Shaanxi province from three dimensions: road network density, trunk line influence and location advantage in 2013 and 2021, and applies spatial autocorrelation analysis method to analyze the spatial layout and development trend of county-level transportation, and conducts ordinary least square (OLS)regression on transportation impact factors and other influencing factors. The paper also compares the regression fitting degree of the Geographically weighted regression(GWR) model and the OLS model. The results show that spatially, the transportation advantages of Shaanxi province generally show a decreasing trend from the Weihe Plain to the surrounding areas and mainly exhibit high-high clustering phenomenon. Temporally, transportation advantages show an overall upward trend, and the phenomenon of spatial imbalance gradually decreases. People's travel demands have changed to some extent, and the demand for rapid transportation has increased overall. The GWR model regression fitting degree of transportation advantages is 0.74, which is higher than the OLS regression model's fitting degree of 0.64. Based on the evolution of transportation advantages, it is predicted that this trend will continue for a period of time in the future. To improve the transportation advantages of Shaanxi province increasing the layout of rapid transportation can effectively enhance the transportation advantages of Shaanxi province. When analyzing spatial heterogeneity, geographic factors should be considered to establish a more reliable model

Keywords: traffic dominance, GWR model, spatial autocorrelation analysis, temporal and spatial evolution

Procedia PDF Downloads 77
1169 Experimental and Numerical Analysis of Wood Pellet Breakage during Pneumatic Transport

Authors: Julian Jaegers, Siegmar Wirtz, Viktor Scherer

Abstract:

Wood pellets belong to the most established trade formats of wood-based fuels. Especially, because of the transportability and the storage properties, but also due to low moisture content, high energy density, and the homogeneous particle size and shape, wood pellets are well suited for power generation in power plants and for the use in automated domestic firing systems. Before they are thermally converted, wood pellets pass various transport and storage procedures. There they undergo different mechanical impacts, which leads to pellet breakage and abrasion and to an increase in fines. The fines lead to operational problems during storage, charging, and discharging of pellets, they can increase the risk of dust explosions and can lead to pollutant emissions during combustion. In the current work, the dependence of the formation of fines caused by breakage during pneumatic transport is analyzed experimentally and numerically. The focus lies on the influence of conveying velocity, pellet loading, pipe diameter, and the shape of pipe components like bends or couplings. A test rig has been built, which allows the experimental evaluation of the pneumatic transport varying the above-mentioned parameters. Two high-speed cameras are installed for the quantitative optical access to the particle-particle and particle-wall contacts. The particle size distribution of the bulk before and after a transport process is measured as well as the amount of fines produced. The experiments will be compared with results of corresponding DEM/CFD simulations to provide information on contact frequencies and forces. The contribution proposed will present experimental results and report on the status of the DEM/CFD simulations. The final goal of the project is to provide a better insight into pellet breakage during pneumatic transport and to develop guidelines ensuring a more gentle transport.

Keywords: DEM/CFD-simulation of pneumatic conveying, mechanical impact on wood pellets during transportation, pellet breakage, pneumatic transport of wood pellets

Procedia PDF Downloads 138
1168 Including Local Economic and Anthropometric Parameters in the Design of an Stand up Wheelchair

Authors: Urrutia Fernando, López Jessica, Sánchez Carlos, San Antonio Thalía

Abstract:

Ecuador, as a signatory country of the convention of the rights of persons with disabilities (CRPD) has, in the recent years, strengthened the structures and legal framework required to protect this minority comprised of 13.2% of its total population. However, the reality is that this group has disproportionately low earnings and low educational attainment in comparison with the general population. The main struggles, to promote job placement of wheelchairs users, are environmental discrimination caused by accessibility in structures and transportation, this mainly due to the cost, for private and public entities, of performing the reasonable accommodation they require. It is widely known that product development and production is needed to support effective implementation of the CRPD and that walking and standing are the major life activities, in this context the objective of this investigation is to promote job placement of wheelchair user in the province of Tungurahua by means of the design, production and marketing of a customized stand up wheelchair. Exploratory interviews and measurements were performed in a representative sample of working age wheelchairs users that develop their disability after achieving their physical maturity and that are capable of performing professional activities with their upper limbs, this in order to detect the user’s preference and determine the local economic and anthropometric parameters to be included in the wheelchair design. The findings reveal factors that uniquely impact quality of life and development for people with a mobility disability within the context of the province, first that transportation is a big issue since public buses does not have accessibility for wheelchair users and the absence of curb cuts and the presence of trash bins over the sidewalks among other hinders an economic independent mobility, second that the proposal based in the idea of modifying the wheelchairs to make it able to overcome certain obstacles helps people in wheelchair to improve their independent living and by reducing the costs of modification for the employer could improve their chances of finding work.

Keywords: anthropometrics, job placement, stand up wheelchair, user centered design

Procedia PDF Downloads 544
1167 Absorption Behavior of Some Acids During Chemical Aging of HDPE-100 Polyethylene

Authors: Berkas Khaoula

Abstract:

Based on selection characteristics, high-density polyethylene (HDPE) extruded pipes are among the most economical and durable materials as well-designed solutions for water and gas transmission systems. The main reasons for such a choice are the high quality-performance ratio and the long-term service durability under aggressive conditions. Due to inevitable interactions with soils of different chemical compositions and transported fluids, aggressiveness becomes a key factor in studying resilient strength and life prediction limits. This phenomenon is known as environmental stress cracking resistance (ESCR). In this work, the effect of 3 acidic environments (5% acetic, 20% hydrochloric and 20% sulfuric) on HDPE-100 samples (~10x11x24 mm3). The results presented in the form (Δm/m0, %) as a function of √t indicate that the absorption, in the case of strong acids (HCl and H2SO4), evolves towards negative values involving material losses such as antioxidants and some additives. On the other hand, acetic acid and deionized water (DW) give a form of linear Fickean (LF) and B types, respectively. In general, the acids cause a slow but irreversible alteration of the chemical structure, composition and physical integrity of the polymer. The DW absorption is not significant (~0.02%) for an immersion duration of 69 days. Such results are well accepted in actual applications, while changes caused by acidic environments are serious and must be subjected to particular monitoring of the OIT factor (Oxidation Induction Time). After 55 days of aging, the H2SO4 and HCl media showed particular values with a loss of % mass in the interval [0.025-0.038] associated with irreversible chemical reactions as well as physical degradations. This state is usually explained by hydrolysis of the polymer, causing the loss of functions and causing chain scissions. These results are useful for designing and estimating the lifetime of the tube in service and in contact with adverse environments.

Keywords: HDPE, environmental stress cracking, absorption, acid media, chemical aging

Procedia PDF Downloads 74
1166 Reactive Fabrics for Chemical Warfare Agent Decomposition Using Particle Crystallization

Authors: Myungkyu Park, Minkun Kim, Sunghoon Kim, Samgon Ryu

Abstract:

Recently, research for reactive fabrics which have the characteristics of CWA (Chemical Warfare Agent) decomposition is being performed actively. The performance level of decomposition for CWA decomposition in various environmental condition is one of the critical factors in applicability as protective materials for NBC (Nuclear, Biological, and Chemical) protective clothing. In this study, results of performance test for CWA decomposition by reactive fabric made of electrospinning web and reactive particle are presented. Currently, the MOF (metal organic framework) type of UiO-66-NH₂ is frequently being studied as material for decomposing CWA especially blister agent HD [Bis(2-chloroethyl) sulfide]. When we test decomposition rate with electrospinning web made of PVB (Polyvinyl Butiral) polymer and UiO-66-NH₂ particle, we can get very high protective performance than the case other particles are applied. Furthermore, if the repellant surface fabric is added on reactive material as the component of protective fabric, the performance of layer by layered reactive fabric could be approached to the level of current NBC protective fabric for HD decomposition rate. Reactive fabric we used in this study is manufactured by electrospinning process of polymer which contains the reactive particle of UiO-66-NH₂, and we performed crystalizing process once again on that polymer fiber web in solvent systems as a second step for manufacturing reactive fabric. Three kinds of polymer materials are used in this process, but PVB was most suitable as an electrospinning fiber polymer considering the shape of product. The density of particle on fiber web and HD decomposition rate is enhanced by secondary crystallization compared with the results which are not processed. The amount of HD penetration by 24hr AVLAG (Aerosol Vapor Liquid Assessment Group) swatch test through the reactive fabrics with secondary crystallization and without crystallization is 24 and 146μg/cm² respectively. Even though all of the reactive fiber webs for this test are combined with repellant surface layer at outer side of swatch, the effects of secondary crystallization of particle for the reactive fiber web are remarkable.

Keywords: CWA, Chemical Warfare Agent, gas decomposition, particle growth, protective clothing, reactive fabric, swatch test

Procedia PDF Downloads 281
1165 Nanotechnology in Conservation of Artworks: TiO2-Based Nanocoatings for the Protection and Preservation of Stone Monuments

Authors: Sayed M. Ahmed, Sawsan S. Darwish, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Mahmoud A. Adam, Nadia A. Al-Mouallimi

Abstract:

The preservation of cultural heritage is a worldwide problem. Stone monuments represent an important part of this heritage, but due to their prevalently outdoor location, they are generally subject to a complex series of weathering and decay processes, in addition to physical and chemical factors, also biological agents usually play an important role in deterioration phenomena. The aim of this paper is to experimentally verify applicability and feasibility of titanium dioxide (TiO2) nanoparticles for the preservation of historical (architectural, monumental, archaeological) stone surfaces which enables to reduce the deterioration behaviors mentioned above. TiO2 nanoparticles dispersed in an aqueous colloidal suspension were applied directly on travertine (Marble and limestone often used in historical and monumental buildings) by spray-coating in order to obtain a nanometric film on stone samples. SEM, coupled with EDX microanalysis. (SEM-EDX), in order to obtain information oncoating homogeneity, surface morphology before and after aging and penetration depth of the TiO2 within the samples. Activity of the coated surface was evaluated with UV accelerated aging test. Capillary water absorption, thermal aging and colorimetric measurements have been performed on on coated and uncoated samples to evaluate their properties and estimate change of appearance with colour variation. Results show Tio2 nanoparticles good candidate for coating applications on calcareous stone, good water-repellence was observed on the samples after treatment; analyses were carried out on both untreated and freshly treated samples as well as after artificial aging. Colour change showed negligible variations on the coated or uncoated stone as well as after aging. Results showed that treated stone surfaces seem to be not affected after 1000 hours of exposure to UV radiation, no alteration of the original features.

Keywords: architectural and archaeological heritage, calcareous stone, photocatalysis TiO2, self-cleaning, thermal aging

Procedia PDF Downloads 269
1164 Prevalence of Pre Hypertension and Its Association to Risk Factors for Cardiovascular Diseases Among Male Undergraduate Students in Chennai

Authors: R. S. Dinesh Madhavan, M. Logaraj

Abstract:

Background: Recent studies have documented an increase in the risk of cardiovascular diseases (CVD) and a high rate of progression to hypertension in persons with pre hypertension. The risk factors for the growing burden of cardiovascular diseases especially hypertension, diabetes, overweight or obesity and waist hip ratio are increasing. Much study has not been done on cardiovascular risk factors associated with blood pressure (BP) among college students in Indian population. Objectives: The objective of our study was to estimate the prevalence of prehypertension among male students and to assess the association between prehypertension and risk factors for cardiovascular diseases. Material and Methods: A cross-sectional study was conducted among students of a university situated in the suburban area of Chennai. A total of 403 students was studied which included 200 medical and 203 engineering students. The information on selected socio-demographic variables were collected with the help of pre tested structured questionnaire. Measurements of height, weight, blood pressure and postprandial blood glucose were carried out as per standard procedure. Results: The mean age of the participants was 19.56 ± 1.67years. The mean systolic and diastolic blood pressure were 125.80±10.03 mm of Hg and 78.96 ±11.75mm of Hg. The average intake of fruits and vegetable per week were 4.34 ±3.47days and 6.55±4.39 days respectively. Use of smoke and smokeless tobacco were 27.3% and 3% respectively. About 30.3% of the students consume alcohol. Nearly 45.9 % of them did not practice regular exercise. About 29 % were overweight and 5.7% were obese, 24.8% were with waist circumference above 90 centimeters. The prevalence of pre hypertension and hypertension was 49.6% and 19.1% among male students. The prevalence of pre hypertension was higher in medical students (51.5%) compared to engineering students (47.8%). Higher risk of being pre hypertensive were noted above the age of 20 years (OR=4.32), fruit intake less than 3 days a week (OR= 1.03), smokers (OR= 1.13), alcohol intake (OR=1.56), lack of physical exercise (OR=1.90), BMI of more than 25 kg/m2 (OR=1.99). But statistically significant difference was noted between pre hypertensive and normotensive for age (p<0.0001), lack of physical exercise (p=0.004) and BMI (p=0.015). Conclusion: In conclusion nearly half of the students were pre hypertensive. Higher prevalence of smoking, alcohol intake, lack of physical exercise, overweight and increased waist circumference and postprandial blood sugar more than 140 mg/dl was noted among pre-hypertensive compared to normotensive.

Keywords: cardiovascular diseases, prehypertension, risk factors, undergraduate Students

Procedia PDF Downloads 426
1163 The Impacts of the Sit-Stand Workplace Intervention on Cardiometabolic Risk

Authors: Rebecca M. Dagger, Katy Hadgraft, Matthew Teggart, Peter Angell

Abstract:

Background: There is a growing body of evidence that demonstrates the association between sedentary behaviour, cardiometabolic risk and all-cause mortality. Since full time working adults spend approximately 8 hours per day in the workplace, interventions to reduce sedentary behaviour at work may alleviate some of the negative health outcomes associated with sedentary behaviour. The aims of this pilot study were to assess the impacts of using a Sit-Stand workstation on markers of cardiometabolic health in a cohort of desk workers. Methods: Twenty eight participants were recruited and randomly assigned to a control (n=5 males, 9 females, mean age 37 years ± 9.4 years) or intervention group (n= 5 males, 9 females, mean age 42 years ± 12.7 years). All participants attended the labs on 2 occasion’s pre and post intervention, following baseline measurements the intervention participants had the Sit Stand Workstations (Ergotron, USA) installed for a 10 week intervention period. The Sit Stand workstations allow participants to stand or sit at their usual workstation and participants were encouraged to the use the desk in a standing position at regular intervals throughout the working day. Cardiometabolic risk markers assessed were body mass, body composition (using bio impedance analysis; Tanita, Tokyo), fasting blood Total Cholesterol (TC), lipid profiles (HDL-C, LDL-C, TC: HDL-C ratio), triglycerides and fasting glucose (Cholestech LDX), resting systolic and diastolic blood pressure and resting heart rate. ANCOVA controlling for baseline values was used to assess the group difference in changes in risk markers between pre and post intervention. Results: The 10 week intervention was associated with significant reductions in some cardiometabolic risk factors. There were significant group effects on change in body mass (F (1,25)=5.915, p<0.05), total body fat percentage (F(1,25)=12.615, p<0.01), total fat mass (F (1,25)=6.954, p<0.05), and systolic blood pressure (F (1,25)=5.012, p<0.05). There were no other significant group effects on changes in other cardiometabolic risk markers. Conclusion: This pilot study highlights the importance of reducing sedentary behaviour in the workplace for reduction in cardiometabolic risk markers. Further research is required to support these findings.

Keywords: sedentary behaviour, caridometabolic risk, evidence, risk makers

Procedia PDF Downloads 436
1162 Influence of HDI in the Spread of RSV Bronchiolitis in Children Aged 0 to 2 Years

Authors: Chloé Kernaléguen, Laura Kundun, Tessie Lery, Ryan Laleg, Zhangyun Tan

Abstract:

This study explores global disparities in respiratory syncytial virus (RSV) bronchiolitis incidence among children aged 0-2 years, focusing on the human development index (HDI) as a key determinant. RSV bronchiolitis poses a significant health risk to young children, influenced by factors, including socio-economic conditions captured by the HDI. Through a comprehensive systematic review and dataset selection (Switzerland, Brazil, United States of America), we formulated an HDI-SEIRS numerical model within the SEIRS framework. Results show variations in RSV bronchiolitis dynamics across countries, emphasizing the influence of HDI. Modelling reveals a correlation between higher HDI and increased bronchiolitis spread, notably in the USA and Switzerland. The ratios HDIcountry over HDImax strengthen this association, while climate disparities contribute to variations, especially in colder climates like the USA and Switzerland. The study raises the hypothesis of an indirect link between higher HDI and more frequent bronchiolitis, underlining the need for nuanced understanding. Factors like improved healthcare access, population density, mobility, and social behaviors in higher HDI countries might contribute to unexpected trends. Limitations include dataset quality and restricted RSV bronchiolitis data. Future research should encompass diverse HDI datasets to refine HDI's role in bronchiolitis dynamics. In conclusion, HDI-SEIRS models offer insights into factors influencing RSV bronchiolitis spread. While HDI is a significant indicator, its impact is indirect, necessitating a holistic approach to effective public health policies. This analysis sets the stage for further investigations into multifaceted interactions shaping bronchiolitis dynamics in diverse socio-economic contexts.

Keywords: bronchiolitis propagation, HDI influence, respiratory syncytial virus, SEIRS model

Procedia PDF Downloads 51
1161 Polycystic Ovarian Syndrome (PCOS) as an Evolutionary Mismatch Disorder: An Argument for the Significance of Hyperandrogenism on Reproductive Fitness in Ancestral Populations

Authors: Courtney Manthey-Pierce, Anna Warrener

Abstract:

Polycystic ovarian syndrome (PCOS) is the most common endocrine disruptive disorder in females. PCOS is primarily characterized by polycystic ovaries, anovulation, hirsutism, insulin resistance, and hyperandrogenism. Despite negative reproductive consequences for females from anovulation and endocrine dysfunction, genes associated with the pathogenesis of PCOS are highly hereditable (h2 = 0.72). An evolutionary mismatch occurs when a trait that evolved in one environment has become maladaptive in another environment. The idea that PCOS is an evolutionary mismatch disease has been promoted by several researchers. Each trait of the resulting PCOS phenotype should be investigated individually in order to demonstrate an evolutionary mismatch. Hyperandrogenism is often regarded as the main characteristic of PCOS Hyperandrogenism may have aided with conception in older females, increased bone mineral density, and supported prolonged breastfeeding in nutritionally distressed populations. Because of the high prevalence of PCOS in the modern world, approximately 6%, it is often argued that PCOS emerged in an ancestral population prior to the migration out of Africa approximately 200,000 years ago. This environment would be characterized by sporadic periods of nutrition deficit and resource hardships as the climate began changing. Presently, modern society is characterized by obesity and sedentary lifestyles. The prevalence of obesity renders hyperandrogenism PCOS useless as there are no periods of nutritional distress requiring androgens for increased reproductive rates. In an ancestral environment, hyperandrogenism would likely lead to sporadic anovulation and mild secondary symptoms, however high levels of androgens in a modern environment led to prolonged if not permanent infertility and excessive secondary problems. Thus, hyperandrogenism related to PCOS appears to meet evolutionary mismatch criteria. Seen in this light, PCOS may be effectively treated as a probably evolutionary mismatch.

Keywords: evolutionary mismatch, heritability, hyperandrogenism, mismatch disorder

Procedia PDF Downloads 233
1160 Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake

Authors: V. Markogianni, D. Kalivas, G. Petropoulos, E. Dimitriou

Abstract:

Lake water quality monitoring in combination with the use of earth observation products constitutes a major component in many water quality monitoring programs. Landsat 8 images of Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were used in order to explore the possibility of Landsat 8 to estimate water quality parameters and particularly CDOM absorption at specific wavelengths, chlorophyll-a and nutrient concentrations in this oligotrophic freshwater body, characterized by inexistent quantitative, temporal and spatial variability. Water samples have been collected at 22 different stations, on late August of 2014 and the satellite image of the same date was used to statistically correlate the in-situ measurements with various combinations of Landsat 8 bands in order to develop algorithms that best describe those relationships and calculate accurately the aforementioned water quality components. Optimal models were applied to the image of late October of 2013 and the validation of the results was conducted through their comparison with the respective available in-situ data of 2013. Initial results indicated the limited ability of the Landsat 8 sensor to accurately estimate water quality components in an oligotrophic waterbody. As resulted by the validation process, ammonium concentrations were proved to be the most accurately estimated component (R = 0.7), followed by chl-a concentration (R = 0.5) and the CDOM absorption at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were measured as lower than the detection limit of the instrument used, hence no statistical elaboration was conducted. On the other hand, multiple linear regression among reflectance measures and total phosphorus concentrations resulted in low and statistical insignificant correlations. Our results were concurrent with other studies in international literature, indicating that estimations for eutrophic and mesotrophic lakes are more accurate than oligotrophic, owing to the lack of suspended particles that are detectable by satellite sensors. Nevertheless, although those predictive models, developed and applied to Trichonis oligotrophic lake are less accurate, may still be useful indicators of its water quality deterioration.

Keywords: landsat 8, oligotrophic lake, remote sensing, water quality

Procedia PDF Downloads 384
1159 Feasibility Study on Hybrid Multi-Stage Direct-Drive Generator for Large-Scale Wind Turbine

Authors: Jin Uk Han, Hye Won Han, Hyo Lim Kang, Tae An Kim, Seung Ho Han

Abstract:

Direct-drive generators for large-scale wind turbine, which are divided into AFPM(Axial Flux Permanent Magnet) and RFPM(Radial Flux Permanent Magnet) type machine, have attracted interest because of a higher energy density in comparison with gear train type generators. Each type of the machines provides distinguishable geometrical features such as narrow width with a large diameter for the AFPM-type machine and wide width with a certain diameter for the RFPM-type machine. When the AFPM-type machine is applied, an increase of electric power production through a multi-stage arrangement in axial direction is easily achieved. On the other hand, the RFPM-type machine can be applied by using its geometric feature of wide width. In this study, a hybrid two-stage direct-drive generator for 6.2MW class wind turbine was proposed, in which the two-stage AFPM-type machine for 5 MW was composed of two models arranged in axial direction with a hollow shape topology of the rotor with annular disc, the stator and the main shaft mounted on coupled slew bearings. In addition, the RFPM-type machine for 1.2MW was installed at the empty space of the rotor. Analytic results obtained from an electro-magnetic and structural interaction analysis showed that the structural weight of the proposed hybrid two-stage direct-drive generator can be achieved as 155tonf in a condition satisfying the requirements of structural behaviors such as allowable air-gap clearance and strength. Therefore, it was sure that the 6.2MW hybrid two-stage direct-drive generator is competitive than conventional generators. (NRF grant funded by the Korea government MEST, No. 2017R1A2B4005405).

Keywords: AFPM-type machine, direct-drive generator, electro-magnetic analysis, large-scale wind turbine, RFPM-type machine

Procedia PDF Downloads 161
1158 Examining the Effects of Exercise and Healthy Diet on Certain Blood Parameter Levels, Oxidative Stress and Anthropometric Measurements in Slightly Overweight Women

Authors: Nezihe Şengün, Ragip Pala

Abstract:

To prevent overweight and obesity, individuals need to consume food and beverages according to their nutritional needs, engage in regular exercises, and regularly monitor their body weight. This study aimed to examine the effects of exercise, diet, or combined intervention on changes in blood lipid parameters (total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides) and the level of malondialdehyde (MDA), a marker of oxidative stress, in parallel with the increase in body weight due to poor nutrition and sedentary lifestyle conditions. The study included a total of 48 female students aged 18-28 years with a BMI between 25.0 and 29.9 kg/m². They were divided into four groups: control (C), exercise (Ex), diet (D), and exercise+diet (Ex+D). Those in the exercise groups received aerobic exercises at 60-70% intensity (10 minutes warm-up, 30 minutes running, 10 minutes cool-down), while those in the diet groups were provided with a diet program based on the calculation of energy needs considering basal metabolic rate, physical activity level, age, and BMI. The students’ body weight, body fat mass, Body Mass Index (BMI), and waist-hip ratios were measured at the beginning (day 1) and end (day 60) of the 8-week intervention period. Their total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, and MDA levels were evaluated and analyzed, considering a statistical significance level of p<0.05. As a result, female students in the Ex+D group had the largest difference in body weight, body fat mass, BMI, and waist-hip ratios, and this difference was statistically significant. Except for those in the C group, those in the other groups experienced a decrease in their total cholesterol, LDL cholesterol, and triglyceride levels and an increase in their HDL cholesterol levels. The decrease in total cholesterol, LDL cholesterol, and triglyceride levels was statistically significant for those in the D group, and the increase in HDL cholesterol level was statistically significant for those in the Ex+D group (p<0.05). A decrease in MDA level was found in all groups except those in the C group, and this decrease was significantly higher in the Ex group. In conclusion, our study revealed that the most effective way to achieve weight loss is through a combination of exercise and diet. The application of Ex+D is considered to balance blood lipid levels and suppress oxidative stress.

Keywords: obesity, exercise, diet, body mass index, blood lipids

Procedia PDF Downloads 67
1157 Microencapsulation of Tuna Oil and Mentha Piperita Oil Mixture using Different Combinations of Wall Materials with Whey Protein Isolate

Authors: Amr Mohamed Bakry Ibrahim, Yingzhou Ni, Hao Cheng, Li Liang

Abstract:

Tuna oil (omega-3 oil) has become increasingly popular in the last ten years, because it is considered one of the treasures of food which has many beneficial health effects for the humans. Nevertheless, the susceptibility of omega-3 oils to oxidative deterioration, resulting in the formation of oxidation products, in addition to organoleptic problems including “fishy” flavors, have presented obstacles to the more widespread use of tuna oils in the food industry. This study sought to evaluate the potential impact of Mentha piperita oil on physicochemical characteristics and oxidative stability of tuna oil microcapsules formed by spray drying using the partial substitution to whey protein isolate by carboxymethyl cellulose and pullulan. The emulsions before the drying process were characterized regarding size and ζ-potential, viscosity, surface tension. Confocal laser scanning microscopy showed that all emulsions were sphericity and homogeneous distribution without any visible particle aggregation. The microcapsules obtained after spray drying were characterized regarding microencapsulation efficiency, water activity, color, bulk density, flowability, scanning surface morphology and oxidative stability. The microcapsules were spherical shape had low water activity (0.11-0.23 aw). The microcapsules containing both tuna oil and Mentha piperita oil were smaller than others and addition of pullulan into wall materials improved the morphology of microcapsules. Microencapsulation efficiency of powdered oil ranged from 90% to 94%. Using Mentha piperita oil in the process of microencapsulation tuna oil enhanced the oxidative stability using whey protein isolate only or with carboxymethyl cellulose or pullulan as wall materials, resulting in improved storage stability and mask fishy odor. Therefore, it is foreseen using tuna-Mentha piperita oil mixture microcapsules in the applications of the food industries.

Keywords: Mentha piperita oil, microcapsule, tuna oil, whey protein isolate

Procedia PDF Downloads 339
1156 Defining the Customers' Color Preference for the Apparel Industry in Terms of Chromaticity Coordinates

Authors: Banu Hatice Gürcüm, Pınar Arslan, Mahmut Yalçın

Abstract:

Fashion designers create lots of dresses, suits, shoes, and other clothing and accessories, which are purchased every year by consumers. Fashion trends, sketches of designs, accessories affect the apparel goods, but colors make the finishing touches to an outfit. In all fields of apparel men's, women's, and children's wear, including casual wear, suits, sportswear, formal wear, outerwear, maternity, and intimate apparel, color sells. Thus, specialization in color in apparel is a basic concern each season. The perception of color is the key to sales for every sector in textile business. Mechanism of color perception, cognition in brain and color emotion are unique subjects, which scientists have been investigating for many years. The parameters of color may not be corresponding to visual scales since human emotions induced by color are completely subjective. However, with a very few exception each manufacturer concern their top selling colors for each season through seasonal sales reports of apparel companies. This paper examines sensory and instrumental methods for quantifying color of fabrics and investigates the relationship between fabric color and sale numbers. 5 top selling colors for each season from 10 leading apparel companies in the same segment are taken. The compilation is based according to the sales of the companies for 5 to 10 years. The research’s main concern is the corelation with the magnitude of seasonal color selling figures and the CIE chromaticity coordinates. The colors are chosen from the globally accepted Pantone Textile Color System and the three-dimentional measurement system CIE L*a*b* (CIELAB) is used, L* representing the degree of lightness of color, a* the degree of color ranging from magenta to green, and b* the degree of color ranging from blue to yellow. The objective of this paper is to demonstrate the feasibility of relating color perceptance to a laboratory instrument yielding measurements in the CIELAB system. Our approach is to obtain a total of a hundred reference fabrics to be measured on a laboratory spectrophotometer calibrated to the CIELAB color system. Relationships between the CIE tristimulus (X, Y, Z) and CIELAB (L*, a*, b*) are examined and are reported herein.

Keywords: CIELAB, CIE tristimulus, color preference, fashion

Procedia PDF Downloads 322
1155 Characterization of Sorption Behavior and Mass Transfer Properties of Four Central Africa Tropical Woods

Authors: Merlin Simo Tagne, Romain Rémond

Abstract:

This study provides the sorption isotherm, its hysteresis and their mass transfer properties of four Central Africa Tropical woods largely used for building construction: frake, lotofa, sapelle and ayous. Characterization of these three species in particular and Central Africa tropical woods, in general, was necessary to develop conservation and treatment of wood after first transformation using the drying. Isotherms were performed using a dynamic vapor sorption apparatus (Surface Measurement Systems) at 20 and 40°C. The mass diffusivity was determined in steady state using a specific vapometer. Permeability was determined using a specialized device developed to measure over a wide range of permeability values. Permeability and mass transfer properties are determined in the tangential direction with a ‘false’ quartersawn cutting (sapelle and lotofa) and in the radial direction with a ‘false’ flatsawn cutting (ayous and frake). The sample of sapelle, ayous and frake are heartwood when lotofa contains as well as heartwood than sapwood. Results obtained showed that the temperature effect on sorption behavior was low than relative humidity effect. We also observed a low difference between the sorption behavior of our woods and hysteresis of sorption decreases when the temperature increases. Hailwood-Horrobin model’s predicts the isotherms of adsorption and desorption of ours woods and parameters of this model are proposed. Results on the characterization of mass transfer properties showed that, in the steady state, mass diffusivity decreases exponentially when basal density increases. In the phase of desorption, mass diffusivity is great than in the phase of adsorption. The permeability of ours woods are greater than Australian hardwoods but lower than temperate woods. It is difficult to define a relationship between permeability and mass diffusivity.

Keywords: tropical woods, sorption isotherm, diffusion coefficient, gas permeability, Central Africa

Procedia PDF Downloads 481
1154 Reducing the Urban Heat Island Effect by Urban Design Strategies: Case Study of Aksaray Square in Istanbul

Authors: Busra Ekinci

Abstract:

Urban heat island term becomes one of the most important problem in urban areas as a reflection of global warming in local scale last years. Many communities and governments are taking action to reduce heat island effects on urban areas where the half of the world's population live today. At this point, urban design turned out to be an important practice and research area for providing an environmentally sensitive urban development. In this study, mitigating strategies of urban heat island effects by urban design are investigated in Aksaray Square and surroundings in Istanbul. Aksaray is an important historical and commercial center of Istanbul, which has an increasing density due to be the node of urban transportation. Also, Istanbul Metropolitan Municipality prepared an urban design project to respond the needs of growing population in the area for 2018. The purpose of the study is emphasizing the importance of urban design objectives and strategies that are developed to reduce the heat island effects on urban areas. Depending on this, the urban heat island effect of the area was examined based on the albedo (reflectivity) parameter which is the most effective parameter in the formation of the heat island effect in urban areas. Albedo values were calculated by Albedo Viewer web application model that was developed by Energy and Environmental Engineering Department of Kyushu University in Japan. Albedo parameter had examined for the present situation and the planned situation with urban design project. The results show that, the current area has urban heat island potential. With the Aksaray Square Project, the heat island effect on the area can be reduced, but would not be completely prevented. Therefore, urban design strategies had been developed to reduce the island effect in addition to the urban design project of the area. This study proves that urban design objectives and strategies are quite effective to reduce the heat island effects, which negatively affect the social environment and quality of life in urban areas.

Keywords: Albedo, urban design, urban heat island, sustainable design

Procedia PDF Downloads 566
1153 The Structural Behavior of Fiber Reinforced Lightweight Concrete Beams: An Analytical Approach

Authors: Jubee Varghese, Pouria Hafiz

Abstract:

Increased use of lightweight concrete in the construction industry is mainly due to its reduction in the weight of the structural elements, which in turn reduces the cost of production, transportation, and the overall project cost. However, the structural application of these lightweight concrete structures is limited due to its reduced density. Hence, further investigations are in progress to study the effect of fiber inclusion in improving the mechanical properties of lightweight concrete. Incorporating structural steel fibers, in general, enhances the performance of concrete and increases its durability by minimizing its potential to cracking and providing crack arresting mechanism. In this research, Geometric and Materially Non-linear Analysis (GMNA) was conducted for Finite Element Modelling using a software known as ABAQUS, to investigate the structural behavior of lightweight concrete with and without the addition of steel fibers and shear reinforcement. 21 finite element models of beams were created to study the effect of steel fibers based on three main parameters; fiber volume fraction (Vf = 0, 0.5 and 0.75%), shear span to depth ratio (a/d of 2, 3 and 4) and ratio of area of shear stirrups to spacing (As/s of 0.7, 1 and 1.6). The models created were validated with the previous experiment conducted by H.K. Kang et al. in 2011. It was seen that the lightweight fiber reinforcement can replace the use of fiber reinforced normal weight concrete as structural elements. The effect of an increase in steel fiber volume fraction is dominant for beams with higher shear span to depth ratio than for lower ratios. The effect of stirrups in the presence of fibers was very negligible; however; it provided extra confinement to the cracks by reducing the crack propagation and extra shear resistance than when compared to beams with no stirrups.

Keywords: ABAQUS, beams, fiber-reinforced concrete, finite element, light weight, shear span-depth ratio, steel fibers, steel-fiber volume fraction

Procedia PDF Downloads 95
1152 Design, Construction and Evaluation of a Mechanical Vapor Compression Distillation System for Wastewater Treatment in a Poultry Company

Authors: Juan S. Vera, Miguel A. Gomez, Omar Gelvez

Abstract:

Water is Earth's most valuable resource, and the lack of it is currently a critical problem in today’s society. Non-treated wastewaters contribute to this situation, especially those coming from industrial activities, as they reduce the quality of the water bodies, annihilating all kind of life and bringing disease to people in contact with them. An effective solution for this problem is distillation, which removes most contaminants. However, this approach must also be energetically efficient in order to appeal to the industry. In this endeavour, most water distillation treatments fail, with the exception of the Mechanical Vapor Compression (MVC) distillation system, which has a great efficiency due to energy input by a compressor and the latent heat exchange. This paper presents the process of design, construction, and evaluation of a Mechanical Vapor Compression (MVC) distillation system for the main Colombian poultry company Avidesa Macpollo SA. The system will be located in the principal slaughterhouse in the state of Santander, and it will work along with the Gas Energy Mixing system (GEM) to treat the wastewaters from the plant. The main goal of the MVC distiller, rarely used in this type of application, is to reduce the chlorides, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) levels according to the state regulations since the GEM cannot decrease them enough. The MVC distillation system works with three components, the evaporator/condenser heat exchanger where the distillation takes place, a low-pressure compressor which gives the energy to create the temperature differential between the evaporator and condenser cavities and a preheater to save the remaining energy in the distillate. The model equations used to describe how the compressor power consumption, heat exchange area and distilled water are related is based on a thermodynamic balance and heat transfer analysis, with correlations taken from the literature. Finally, the design calculations and the measurements of the installation are compared, showing accordance with the predictions in distillate production and power consumption, changing the temperature difference of the evaporator/condenser.

Keywords: mechanical vapor compression, distillation, wastewater, design, construction, evaluation

Procedia PDF Downloads 153
1151 Ecosystem Engineering Strengthens Bottom-Up and Weakens Top-Down Effects via Trait-Mediated Indirect Interactions

Authors: Zhiwei Zhong, Xiaofei Li, Deli Wang

Abstract:

Ecosystem engineering is a powerful force shaping community structure and ecosystem function. Yet, very little is known about the mechanisms by which engineers affect vital ecosystem processes like trophic interactions. Here, we examine the potential for a herbivore ecosystem engineer, domestic sheep, to affect trophic interactions between the web-building spider Argiope bruennichi, its grasshopper prey Euchorthippus spp., and the grasshoppers’ host plant Leymus chinensis. By integrating small- and large-scale field experiments, we demonstrate that: 1) moderate sheep grazing changed the structure of plant communities by suppressing strongly interacting forbs within a grassland matrix; 2) this change in plant community structure drove interaction modifications between the grasshoppers and their grass host plants and between grasshoppers and their spider predators, and 3) these interaction modifications were entirely mediated by plasticity in grasshopper behavior. Overall, ecosystem engineering by sheep grazing strengthened bottom-up effects and weakened top-down effects via trait-mediated interactions, resulting in a nearly two-fold increase in grasshopper densities. Interestingly, the grasshopper behavioral shifts which reduced spider per capita predation rates in the microcosms did not translate to reduced spider predation rates at the larger system scale because increased grasshopper densities offset behavioral effects at larger scales. Our findings demonstrate that 1) ecosystem engineering can strongly alter trophic interactions, 2) such effects can be driven by cryptic trait-mediated interactions, and 3) the relative importance of trait- versus density effects as measured by microcosm experiments may not reflect the importance of these processes at realistic ecological scales due to scale-dependent interactions.

Keywords: bottom-up effects, ecosystem engineering, trait-mediated indirect effects, top-down effects

Procedia PDF Downloads 335
1150 The High Quality Colored Wind Chimes by Anodization on Aluminum Alloy

Authors: Chia-Chih Wei, Yun-Qi Li, Ssu-Ying Chen, Hsuan-Jung Chen, Hsi-Wen Yang, Chih-Yuan Chen, Chien-Chon Chen

Abstract:

In this paper we used high quality anodization technique to make colored wind chime with a nano-tube structure anodic film, which controls the length to diameter ratio of an aluminum rod and controls the oxide film structure on the surface of the aluminum rod by anodizing method. The research experiment used hard anodization to grow a controllable thickness of anodic film on aluminum alloy surface. The hard anodization film has high hardness, high insulation, high temperature resistance, good corrosion resistance, colors, and mass production properties can be further applied to transportation, electronic products, biomedical fields, or energy industry applications. This study also in-depth research and detailed discussion in the related process of aluminum alloy surface hard anodizing including pre-anodization, anodization, and post-anodization. The experiment parameters of anodization including using a mixed acid solution of sulfuric acid and oxalic acid as an anodization electrolyte, and control the temperature, time, current density, and final voltage to obtain the anodic film. In the experiments results, the properties of anodic film including thickness, hardness, insulation, and corrosion characteristics, microstructure of the anode film were measured and the hard anodization efficiency was calculated. Thereby obtaining different transmission speeds of sound in the aluminum rod and different audio sounds can be presented on the aluminum rod. Another feature of the present invention is the use of anodizing method dyeing method, laser engraving patterning and electrophoresis method to make colored aluminum wind chimes.

Keywords: anodization, colored, high quality, wind chime, nano-tube

Procedia PDF Downloads 231
1149 Localized Variabilities in Traffic-related Air Pollutant Concentrations Revealed Using Compact Sensor Networks

Authors: Eric A. Morris, Xia Liu, Yee Ka Wong, Greg J. Evans, Jeff R. Brook

Abstract:

Air quality monitoring stations tend to be widely distributed and are often located far from major roadways, thus, determining where, when, and which traffic-related air pollutants (TRAPs) have the greatest impact on public health becomes a matter of extrapolation. Compact, multipollutant sensor systems are an effective solution as they enable several TRAPs to be monitored in a geospatially dense network, thus filling in the gaps between conventional monitoring stations. This work describes two applications of one such system named AirSENCE for gathering actionable air quality data relevant to smart city infrastructures. In the first application, four AirSENCE devices were co-located with traffic monitors around the perimeter of a city block in Oshawa, Ontario. This study, which coincided with the COVID-19 outbreak of 2020 and subsequent lockdown measures, demonstrated a direct relationship between decreased traffic volumes and TRAP concentrations. Conversely, road construction was observed to cause elevated TRAP levels while reducing traffic volumes, illustrating that conventional smart city sensors such as traffic counters provide inadequate data for inferring air quality conditions. The second application used two AirSENCE sensors on opposite sides of a major 2-way commuter road in Toronto. Clear correlations of TRAP concentrations with wind direction were observed, which shows that impacted areas are not necessarily static and may exhibit high day-to-day variability in air quality conditions despite consistent traffic volumes. Both of these applications provide compelling evidence favouring the inclusion of air quality sensors in current and future smart city infrastructure planning. Such sensors provide direct measurements that are useful for public health alerting as well as decision-making for projects involving traffic mitigation, heavy construction, and urban renewal efforts.

Keywords: distributed sensor network, continuous ambient air quality monitoring, Smart city sensors, Internet of Things, traffic-related air pollutants

Procedia PDF Downloads 61